
Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

Author: Theo van Daele, Philips Semiconductors Product Concept & Application Laboratory Eindhoven, the Netherlands

11994 Jun 28

SUMMARY
On the 80C552 microcontroller, an 8-input 10-bit ADC is available.
To get correct results from the ADC, the slew-rate of the input signal
during sampling must be limited. 10 Bit accuracy will be obtained if
the layout of the 80C552 application is done correctly. EMC
measures must be taken into account. Some software examples are
given on how to use the ADC.

1.0 INTRODUCTION
The 80C552 microcontroller has an on-chip ADC. The converter
consists of an 8 input analog multiplexer, and a 10-bit binary
successive approximation ADC. A conversion takes 50 machine
cycles (is 20µs at 30MHz oscillator frequency). The ADC has
dedicated analog supply and reference voltages to minimize
influence form digital circuitry. The DAC of the successive
approximation ADC is a resistor ladder network. This ensures that
there no missing codes.

To obtain the 10-bit accuracy, it is important to pay attention to the
design of the application. First the operation of the ADC will be
described. Then design and layout subjects are described that can
influence the accuracy of the conversion result.

References:
1. 80C51-based 8-bit microcontrollers (Data Handbook IC20 1994)

2. Electro Magnetic Compatibility and Printed Circuit Board (PCB)
Constraints (ESG89001)

2.0 INTERNAL OPERATION OF THE ADC

2.1 General Description
Figure 1 shows a general block diagram of the ADC.

The inputs of P5 are connected to a multiplexer and an input buffer
with Schmitt-trigger inputs.

When the digital value on P5 must be read (e.g., with a MOV A,P5
instruction), the output of the Schmitt-trigger is taken. This output
can be used for further processing.

An analog input signal on P5 that must be converted is selected by
the input multiplexer. The bits ADCON.0 . . ADCON.2 of the ADCON
special function register select the input signal. The output of the
multiplexer is connected to the input of a comparator. The sampling
capacitor is included in the comparator. The ADC control block of
the ADC controls the timing of the sampling and conversion.

After the input signal is sampled, the actual analog-to-digital
conversion starts. The comparator compares the input signal VIN
with the output of the 10-bit DAC VDAC. The output voltage of the
DAC is determined by the output of the successive approximation
register (SAR). The range of the DAC signal varies between AVREF–
and AVREF_. These two signal levels also define the voltage range
of the input signal.

MUX
1 OF 8

DAC

AVref–

AVref+

COMPARATOR

ADC CONTROL

SAR

ADC RESULT

SCHMITT
TRIGGER

P5

P5 VALUE

VIN

VDAC

SELECT

RESET/SAMPLE

START/STOP

10

10

8

8

Figure 1.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 2

2.2 Conversion  Process
Figure 2 shows an example of the conversion principle with 3 bit
resolution.

The SAR will make its output bits SAR2 . . SAR0 successively high
from MSB to LSB. Every time a SAR-line is made HIGH, a
DA-conversion will take place. If the output of the DAC (VDAC) is
higher than the input voltage (VIN), the SAR output bit that was
made HIGH the last time will be made LOW. If VDAC is smaller than
VIN, the SAR output bit will remain HIGH. The process will proceed

for the subsequent SAR output bits. At the end of the conversion,
VDAC has converged to a value of VIN±1/2LSB.

Example: VIN is 11/16*VREF. The conversion sequence is shown in
Table 1.

After STEP 3 the conversion is finished. The SAR register contains
the result of the AD-conversion.

The ADC in the 80C552 has 10 bits resolution. The conversion in
this ADC will take 10 conversion steps.

Table 1.  
SAR Value

(SAR2.SAR1.SAR0)
VDAC

(*VREF) Output Comparator Action by SAR

START 000 0 0 SAR2=1

STEP 1 100 4/8 0 SAR1=1

STEP 2 110 6/8 1 SAR1=0, SAR0=1

STEP 3 101 5/8 0

110 101

RESULT: 101

100

CLOCK

SAR2

SAR1

SAR0

t

VDAC

1/8 VREF

2/8 VREF

3/8 VREF

4/8 VREF

5/8 VREF

6/8 VREF

7/8 VREF

Figure 2.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 3

2.3 The ADC in the 80C552
Figure 3 shows a block diagram of the implementation of the ADC in
an 80C552 microcontroller.

The analog input signal VIN is connected to the non-inverting input
of the comparator via switch S1 during the sampling interval.
Internally the comparator consists of 3 serially connected
sampled-data-comparator stages A1 . . A3. The stages are
capacitively coupled. The coupling capacitor of the first comparator
that is connected to S1 will also act as sample capacitor for VIN.

Sampled-data-comparators are used to minimize the effect of offsets
and temperature drive. During the sampling interval, the value of the
offset voltage of the comparator stages are stored on the coupling
capacitors. This voltage will have the opposite sign of the
comparators stages’ offset, so it will cancel this offset voltage. This
process is called auto-zeroing, and will be explained in 2.3.2.

The non-inverting input of the comparator is connected to 1/2VREF
via switch S2. S2 consists of 2 parallel switches. There is always
1 switch closed, so the voltage on this input is always 1/2VREF.
Although S2 looks superfluous from a functional point of view, it
assures that, for instance, switching glitches of S1 and S2 appear
on both inputs of the comparator and will cancel each other.

When the sampling is finished, the actual conversion will start. S1
will connect the inverting input of the comparator with the output of
the DAC. At this moment, the output of the DAC is connected to the
center tap of the resistor network. The voltage on the inverting input
of the comparator will be 1/2VREF (VREF is defined as
1/2[Vref+ – Vref–]). During conversion, the output of the SAR will
determine which tap of the ladder-network will be connected to the

inverting input. Using a ladder-network guarantees a monotonic
characteristic of the DAC. This in turn will result in an
ADC-characteristic without missing codes. The relative deviations of
the resistor values result in a non-linear transfer characteristic.

The following three phases in the ADC conversion can be
determined and will be described in more detail:
– Start phase

– Sampling phase

– Conversion phase.

Timing of these phases is shown in Figure 4.

2.3.1 Start Detection Phase
An ADC conversion can be started by software or by a hardware
trigger on the STADC pin.

Software start
When an ADC start is initiated by software (set ADCS in ADCON
register), the internal start signal will immediately be active at S6P2
(for state timing, see [Reference ]). The value of ADCS can be read
by software. However, there is a delay of 2 machine cycles between
the internal start signal and the ability of reading a ‘1’ from ADCS.

Hardware start
A hardware start of an ADC conversion is initiated by a rising edge
on STADC. The 80C552 samples STADC every machine cycle
during S6P2. When a valid edge is detected, the internal start signal
will be active at S1P2 in the subsequent machine cycle. To ensure
that the edge is detected, the high and low time should be at least
1 machine cycle each. When a valid edge is detected, ‘ADCS’ is set.

A1

RESET3

A1

RESET1

S1

SAMPLE

A1

RESET2

VIN

SAMPLE

S2

COMPARATOR

VREF+ – VREF–)/2

SAMPLE

VREF+ VREF–

VDAC
DAC

SAR
10

DECODER

R R/2RRRRRRRR/2

START/STOP

Figure 3.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 45 46 47 48 49 50 51
MACHINE
CYCLES

‘ADCS’

START SAMPLING CONVERSION END

BIT9 BIT0

SAMPLE

RESET1

RESET2

RESET3

ADCI

‘ADCS’: INTERNAL SIGNAL. SET BY EITHER SOFTWARE START (ADCON.3=1), OR HARDWARE START (  ON STADC AND ADCON.5=1)

Figure 4.

2.3.2 Sample Phase
The 8 machine cycles following the start detection is the sample
interval (Figure 4). In this time interval, the input signal is sampled
and the 3 comparator stages are auto-zeroed.

The actual sampling of the analog input signal on the input capacitor
starts at machine cycle ‘2’ (Figure 4). The sample capacitor is
connected between VIN and the output of the first comparator state
(Figure 3). The sampling is finished at the end of machine cycle ‘5’.
After this machine cycle, the sample capacitor is connected between
VIN and the input of the first comparator stage. Since this is a very
high impedance input, no extra charge will be stored in the sampling
capacitor.

At the start of the sample phase, the inverting input of the
comparator is connected to VIN via a coupling capacitor. This
coupling capacitor also serves as sampling capacitor. The
non-inverting input is connected to the DAC via a coupling capacitor
to a voltage of 1/2VREF.

Figure 5 shows the sampling and auto-zeroing of the first
comparator stage.

When the RESET1=1, switches will connect the outputs of the
individual comparator stages to their inputs. The outputs will settle to
the unity-gain output voltage VUG.

The differential voltage (error voltage) on the inputs of the first
comparator stage will be:

VIL � VOL �� VOS1�
A1

A1� 1

VIN = Input voltage of ADC
VIL = Differential input voltage of first comparator stage
VOL = Differential output voltage of first comparator stage
VOS1 = Offset voltage of first comparator stage
A1 = Open loop gain of first comparator stage

The switches are opened when RESET1=0. The differential voltage
on the comparator inputs is still VIL because of the stored charge on
the coupling capacitors.

The resulting offset voltage VOS1,I seen on the input of the
comparator stage is obtained by adding this differential voltage VIL
to the input offset voltage VOS1.

VOS1,I � VOS1� VIL � VOS1�� A1

1� A1
�

The effective offset voltage at the input of the comparator stage is
reduced with a factor (1+A1).

The auto-zeroing procedure described above will be repeated
successively for the following 2 stages. After auto-zeroing the third
comparator stage, the differential output voltage of the total
comparator (all 3 comparators in series will be:

VO,3 � A3�
VOS3

1� A3

This voltage can be translated to an effective input offset voltage by
dividing it by the total gain of the comparator:

VOS,I �
VOS3

A1� A2� (1� A3)

If auto-zeroing was not used, and all comparator stages were
DC-coupled, the differential output voltage of the comparator would
be:

VO3 = A1 × A2 × A3 × VOS1 + A2 × A3 × VOS2 + A3 × VOS3

The effective input offset voltage in this case is:

VOS,I � VOS1�
VOS2

A1
�

VOS3

A1� A2

As can be seen, the auto-zeroing reduces the effect of the individual
comparator stages considerably.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 5

VI1� VO1�� VOS1�
A1

(1� A1)
� � VOS1

–A1

VIN

VREF/2

VI1 VOS1 VO1

RESET1

RESET1

–A1

VIN

VREF/2

∼–VOS1 VOS1 VO1

RESET1

RESET1

RESET1 = 1 RESET1 = 0

Figure 5.

A1

VIN

BEFORE CONVERSION DURING CONVERSION

VUG

VUG

VIN – VUG

DAC

VREF/2

S1

VDAC

A1

VIN

VUG

VUG

VIN – VUG

DAC

VREF/2

S1

VDAC

V– = VDAC – (VIN – VUG)

Figure 6.

2.3.3 Conversion Phase
Just before the sampling phase is finished, the following voltages
are present over the coupling capacitors of the first comparator
stage:

Capacitor on inverting input: VIN – VUG

Capacitor on non-inverting input; 1/2VREF – VUG

For clarity, the offset voltages are neglected.

When the conversion phase is started, S1 (Figure 6) will connect the
coupling capacitor of the inverting input to the output of the DAC.
The effective voltage on the comparator input is the voltage applied
to the coupling capacitor minus the voltage that was stored on the
capacitor during the sampling phase.

The following voltages are present on the input of the first
comparator stage:

Inverting input: VDAC – VIN + VUG

Non-inverting input: VUG

The comparator stage amplifies the differential voltage between its
inputs. The output voltage of the first comparator stage will be:

VOL = A1 × (VUG – (VDAC – VI + VUG)) = A1 × (VI – VDAC)

After amplification by the 3 comparator stages the input signal for
the SAR is |A1 × A2 × A3 × (VIN – VDAC)|. Depending on the sign of
this signal, the SAR will set or clear the MSB. In the following cycles
of the conversion, the other bits of the SAR will be updated. At the
end of the conversion VDAC will have a value of VIN±0.5LSB. The
contents of the SAR that generates this VDAC is the result of the
AD-conversion.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 6

3.0 APPLICATION INFORMATION
Although the ADC in the 80C552 has a resolution of 10 bits, the user
must be careful in the design of the application to really get this
resolution. The constraints can be divided in 2 categories:
– Constraints on the analog input signal and the input signal source

– Layout constraints of the design.

3.1 Analog Input Signal Constraints

3.1.1 Range of Analog Input Signal
The value of the analog input signal must be between VREF+ and
VREF–. The span of the analog input signal is VREF = (VREF+ – VREF–).

There is a minimum limit to the span. This limit depends on the gain
of the comparators. A differential voltage of 1LSB (1LSB =
VREF/1024) on the inputs of the comparator should be able to
generate a logic ‘1’ or ‘0’ level on the input of the SAR. If not, the
resolution of 10 bits for the ADC will not be met.

the comparator in the 80C552 needs a minimum differential input
voltage of 0.3mV to generate a valid logic output level. For the
10-bits ADC in the 80C552, this means that VREF should be at lease
1024*0.3mV=0.31V to get 10-bit resolution. The absolute values of
VREF+ and VREF– that determine this span may not exceed AVSS
and AVDD.

3.1.2 Slew Rate of Analog Input Signal
A distinction must be made between 2 different slew-rate
constraints. The first slew-rate constraint deals with the required
accuracy during sampling. The second constraint to prevent wrong
readings deals with a limitation on the slew rate that may otherwise
lead to a conversion result that has no relation at all with the analog
input signal.

1: To obtain a stable reading from the ADC, the analog input signal
should be stable during the sampling time. The sampling may be
triggered by an external event (via ADEX pin). From this trigger point
until machine cycle ‘5’ (see Figure ), the input signal is sampled and
should not change more than the desired accuracy.

Example: If a stability of 0.5LSB is required, then the analog input
signal should not change more than 0.5LSB in 6 machine cycles. In
that situation the maximum slew-rate of the analog input signal is:

dV
dt
� 0.5LSB

6T

where T is the machine cycle time.

The following graph gives the maximum slew-rate as function of the
operating frequency for various values of VREF and a required
stability of 1/2LSB for a 10-bit conversion.

When the slew-rate of the input signal is more than the maximum
slew-rate as determined above, the read-out stability will decrease.
The conversion result will be the digital value of the input signal
somewhere between machine cycle ‘0’ and machine cycle ‘5’.
Consecutive conversions of a signal that consists of a DC-value with
an AC-component that has high slew-rates as mentioned above,
and that has the same amplitude between machine cycle ‘0’ and
machine cycle ‘1’, may give different read-outs. However, the
accuracy of the sampled signal will not be affected.

1.2

1

0.8

0.6

0.4

0.2

0

MAXIMUM SLEW RATE

S
LE

W
 R

A
T

E
 (

V
/m

se
c)

0 6 12 24 3020
FREQUENCY (MHz)

VREF = 5 Volt

VREF = 5 Volt

VREF = 4 Volt

2: If the slew-rate exceeds a certain value, the accuracy of the
conversion will decrease rapidly. The result of the conversion will not
have any result anymore with the analog input signal. Tests have
shown that the most probable conversion result is 0x3ff (result bits
ADS.0 . . ADC.9 are ‘1’).

This error situation will occur when the slew rate is too high in the
time frame from machine cycle ‘2’ to machine cycle ‘9’ of the
conversion. In this time frame, the comparators are auto-zeroing
their offsets. For proper auto-zeroing, the comparator stages must
work in their linear region.

If the input signal is changing rapidly, the voltage change may
couple through the coupling capacitors to the input of the
comparator stage. If this voltage change is sufficiently high, it may
saturate the comparator stage. The comparator stage is not working
in its linear region anymore, and the saturation voltage (equal to
about the supply voltage) is stored on the coupling capacitors.

The ADC has the highest sensitivity to these high slew-rate signals
in the time frame from machine cycle ‘8’ to machine cycle ‘9’. In this
time frame the RESET switches of comparator stage 1 and 2 are
open; the RESET switch of comparator stage 3 is closed for
auto-zeroing. An analog input signal with sufficient slew rate may
couple through to comparator stage 3 via the coupling capacitors of
stage 1 and 2. The high sensitivity comes from the fact that the
signal is amplified by comparator stages 1 and 2 before it reaches
the input of comparator stage 3.

When the saturation voltage is stored on the coupling capacitors, the
following comparator stage is not useful anymore to determine the
sign of |VIN – VDAC|. Suppose the coupling capacitors on the input
of the second comparator stage are charged to the saturation
voltage VSAT. The differential output voltage of the first comparator
stage will be A1 × (VIN – VDAC). This signal is fed to the input of the
second comparator stage whose output signal will be
A2 × [A1 × (VIN – VDAC) ± VSAT]. Since the differential output voltage
of the comparator stages can never be higher than ±VSAT, the output
of this comparator stage will stay at its saturation level, independent
of the value of (VIN – VDAC).



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 7

The only way to avoid the error mentioned above is to limit the slew
rate during the sampling interval (machine cycle 2 to 9). For the
ADC in the 80C552 the slew rate of the analog input signal must be
lower than 10V/ms.

From the discussion above, it becomes evident that it is essential
that the slew-rate of the input signal is limited to 10V/ms. Although
‘clean’ DC signals may be applied to the ADC, noise spikes or
crosstalk from neighboring signals may still result in signal
components with a slew-rate >10V/ms on the DC signal during the
sampling interval.

The following measures can be taken to reduce the slew rate on
analog input signals:

• Supply the analog signal from a source with low output
impedance. This will reduce the sensitivity to cross-talk.

• Keep the analog input signal lines away from digital signal lines.
Analog signals may be screened from digital signal lines with a
grounded guard ring on the PCB.

• Do not mix analog and digital signals on P5 pins.

• Connect an RC filter to the analog inputs. The time constant
should be ≥500µs.

For a 5VPP input sine-signal, the slew rate constraint of 10V/ms
results in a maximum input frequency of 637Hz. When we use the
Nyquest criterion (fSAMPLE ≥ 2*fSIGNAL), the maximum input signal
frequency is 1kHz when the 80C552 runs on 1.2MHz (1 conversion
every 500µs).

This shows that the maximum input signal frequency for the ADC of
the 80C552 is determined by the slew-rate . So, increasing the XTAL
frequency on which the 80C552 is operating, does not automatically
imply that the maximum input signal frequency also scales to a
higher value. This scaling is only allowed for signals with a slew rate
<10V/ms.

3.1.3 Analog Signal Drive
The output resistance of the analog signal source should be small
enough not to add a significant error to the conversion result. The
output impedance has two effects on the accuracy of the
conversion, that is, the voltage drop over the source resistance and
the time constant to charge the sampling capacitor.

1: The voltage drop over the output impedance due to the input
current of the ADC. In the 80C552, the input current is a leakage
current. this leakage current is specified as less than 1µA.
Practically, however, the leakage current will be less than 100nA.

CC
2pF

TO COMPARATOR

RM < 3K

CS
12pF

INPUT
MULTIPLEXER

II

80C552

VIN

RS

P5.x

Figure 7.

Figure 7 shows the input circuit. The leakage current comes mainly
from circuitry directly connected to the P5.x pin. Compared with this
leakage current, the input current of the comparator can be neglected.
CS represents the contribution of the stray capacitances; CC
represents the sampling capacitor. Before the sampling capacitor,
there is the series resistance RM of the analog multiplexer.

The output resistance RS of the input signal source will cause a
voltage drop due to the input leakage current. The voltage that will
be converted is the voltage on the sampling capacitor. This voltage
is the input voltage VIN minus the voltage drop over RS. This voltage
drop will give an error contribution in the conversion result of VIN.

When an accuracy of 1/2LSB is required, the maximum source
resistance RS is:

RS � 0.5LSB
II

Example: If VREF = 5.12V and II = 1µA, the source resistor should
be less than 2.5kΩ.

When this constraint on output resistance of the signal source
cannot be met, the analog signal should be buffered with a buffer of
sufficiently low output resistance. this buffer should be placed as
close as possible to the analog source. the longer leads from buffer
to the ADC input will be less sensitive to cross-talk (low impedance
source resistance) than long leads from signal source to buffer (high
impedance source resistance). Filtering may be included in the
buffer stage to limit the slew-rate of the signal to <10V/ms.

2: The ability to charge the sampling capacitor within the sampling
interval. Figure 7 also shows the dimensions of the capacitances as
seen from the analog input. The capacitances consist of
stray-capacitances and the actual sample capacitance. These
capacitances must be charged within 4 machine cycles (machine
cycle ‘2’ until ‘5’), which will put a constraint on the maximum source
resistance.

Example:  An input signal with a slope of 10V/ms applied to the ADC
input. For simplicity, assume that the capacitance that must be
charged via RS is 14pF and the 80C552 is running on 30MHz. At
this frequency, the available charging time for the capacitor is 1.6µs.
With the given slew-rate and the charging time of the capacitor, the
analog voltage VIN has changed 16mV. The response of an
RC-network on an input ramp signal is:

A� t � RC�1 � e� t
RC��

A is slew-rate of input signal; RC is time constant of input
RC-network.

The term:

ARC�1 � e� t
RC�

represents the deviation of the capacitor voltage from VIN.

If this deviation must be less than 1/2LSB (is 2.5mV at VREF =
5.12V) after 1.6µs, then the RC-time must be less than 0.25µs.
Given that RS = 2.5kΩ and C = 124pF, the RC time of the input
circuit of the 8XC552 is 35ns. Hence, there will be no significant
error contribution because of the charging time of the input
capacitance.

The two constraints on RS mentioned above show that the effect of
the input leakage current determines the maximum value for RS.

Conclusion:  RS should not exceed 2.5kΩ.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 8

3.2 Layout Considerations
Although this application note handles subjects related to the ADC,
the following layout considerations are also valid for applications that
do not use the ADC. For more general information on PCB layout
design, see Reference 2.

3.2.1 Decoupling
The analog and digital circuit parts in the 80C552 have their own set
of power supply pins. Mutual inductance between on-chip AVDD and
AVSS signal lines will cause the analog AC current IA to flow in the
AVDD and out of the AVSS pin. The same is true for the digital AC
current ID in the VDD and VSS pins (Figure 8).

Because this mutual inductance is harder to realize off-chip, a
low-impedance signal path must be created for both IA and ID. This

is realized with decoupling capacitors between AVDD and AVSS for
the analog signal part; a decoupling capacitor between VDD and VSS
will decouple the digital signal part.

To ensure a low impedance ground path, the use of a ground plane
is recommended. The decoupling capacitors (for example, 100nF
ceramic capacitors) must be placed as close as possible to the
AVDD and VDD to minimize the loop area of the supply currents.
Series inductors in the power supply lines may be used to improve
decoupling (for example, 1..5µH). Using this decoupling scheme,
both analog and digital supply connections can be connected
together to a single (stable) +5V.

Id

GROUND PLANE

C

ANALOG
CIRCUIT

DIGITAL
CIRCUIT

2Ω

IA + Ia

AVSS VSS

AVDD VDD

80C552

ID + Id

C

Ia

L

L

ID

IA

POWER
SUPPLY

Figure 8.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 9

3.2.2 Grounding
When using both analog and digital circuits on the same PCB, it is
common practice to isolate the analog power supply and ground as
much as possible from the digital power supply and ground. This will
reduce crosstalk via common ground impedances. Common
impedances may result in noise in the (sensitive) analog circuitry
caused by crosstalk of noise that originates from the digital circuitry.

At some point however, both analog and digital grounds must be tied
together. When this takes place far from the microcontroller, it will
increase impedance between the analog and digital ground
connections. This can create a considerable differential voltage
between the analog and digital ground lines. Analog and digital
circuitry inside the microcontroller will operate at different ground
levels and improper functioning may be the result. A second effect of
large ground impedance is that the crosstalk between the analog
and digital circuits does not take place via the common ground
impedance anymore, but via internal parasitic capacitances and
substrate contacts.

To prevent differences in ground levels, the analog and digital
ground inside the 80C552 are connected together via an impedance
of ±2Ω (Figure 8). This will keep both grounds at the same DC level.
This impedance does not mean that now a common ground pin for
analog and digital ground currents can be used. Impedance of the
common bondwire will cause ground bounce, and thus crosstalk
between digital and analog circuits.

When the supply lines are properly decoupled, mutual inductance
between the on-chip supply traces will assure that the AC-part of the
supply current that flows inside AVDD and VDD will leave via the
AVSS and VSS pin even though AVSS and VSS are connected
together via a 2Ω impedance. The best place on the PCB to connect
AVSS and VSS to each other is directly outside the microcontroller.
This is also the best place for the ground connection of the
decoupling capacitors. If the ground connection is to a ground plane,
a ground plane on the component side is preferred.

Two separate grounds are needed if the application has more
analog ICs on the PCB, apart from the 80C552. In that case, the
AVSS and VSS of the 80C552 should be connected to the analog
ground. The digital ground may be the return path for, for instance,
line drivers. This will result in a ground that is less ‘clean’ than the
analog ground. For the digital circuits this less ‘clean’ ground is less
of a problem because they always have a certain noise margin. An
alternative is to create a ‘star-point’. This is a connection between
AVSS and VSS at the ADC area of the 80C552. Care should be
taken to avoid ground loops in the other circuit parts up to the power
supply.

If the 80C552 application also uses external digital circuits, noise
margin may be lost due to possible different ground levels. This can
be reduced by the connecting two anti-parallel diodes close to the
ground pins of the 80C552 and the connected digital circuits
(Figure 9).

ANALOG
CIRCUIT

DIGITAL
CIRCUIT

2Ω

AVSS VSS

AVDD VDD

80C552

EXTERNAL
DIGITAL
CIRCUIT

EXTERNAL
ANALOG
CIRCUIT

DIGITAL GROUNDANALOG GROUND

VSSAVSS

GROUND
NODE

Figure 9.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 10

3.2.3 Placement of External Components
External circuits connected to the microcontroller should be p;aced
as close as possible to the microcontroller. This will reduce signal
loops and common impedances on which high frequent signals may
occur. These signals may come from an external source or may be
generated by the microcontroller itself. When the disturbing signals
are coming from an external source, they may cause improper
functioning of the microcontroller. If originating from the
microcontroller, they will cause unwanted radiation.

When a common ground plane cannot be implemented, the
microcontroller and circuits directly connected to the 80C552 must
have a local groundplane (Figure 10). This local ground should have
a connection to the main ground of the application at some point.

If, for layout reasons, it is not possible to place the external circuitry
close the the microcontroller, an RC-filter may be placed between
the microcontroller and the external circuit (Figure 10). When
microcontroller lines are connected to Off-PCB circuits, it is also
advised to connect an RC network to the I/O line. The reason is
sensitivity of the microcontroller to short (4 . . 5ns) high-voltage
(30 . . 40V) spikes. Although these pulses will not damage the

microcontroller, they may be responsible for incorrect functioning.
With microcontrollers becoming faster, the on-chip I/O drivers will
have increased bandwidths, hence become more sensitive for short
spikes.

The resistor of the filter should be connected as close as possible to
the output of the driving device. The capacitor of the filter should be
connected as close as possible to the input of the receiving device.
Also the ground connection of the capacitor must be connected as
close as possible to the ground of the receiving device.

Values of the resistor of the filter depend on the drive capability of
the outputs and the input impedances/levels of the inputs connected
to the filter. The series resistor will reduce some noise margin.
Typical capacitor values are 470pF. When connected to 80C552
inputs, the resistor value may be 1k; for 80C552 outputs 100Ω may
be used.

NO (filter)-capacitors should be connected directly to outputs! This
will cause (dis)charge currents to flow in the supply and ground
lines. This can cause severe noise problems in the application.

I/O INTERFACE
#2

VDD

VSS

SUPPLY

LO

PERIPHERAL
#2

VDD

VSS

PERIPHERAL
#1

VDD

VSS

LO

80C552

VDD

VSS

LO

I/O INTERFACE
#1

VDD

VSS

LO

AVDD

BUILD CLOSELY TOGETHER

CO CO CO CO CO

C

R

R

C

CO

IN

OUT
AVSS

LOCAL
GROUND

MAIN
GROUND

LO, CO: DECOUPLING COMPONENTS
RO, CO: FILTERING COMPONENTS

Figure 10.



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 11

4.0 PROGRAM EXAMPLES
Two program examples are given that show how to operate the ADC
with software. The sources are written in ‘C’. The program
‘ADC_pol.c’ works on polling basis; the program ‘ADC_int.c’ works
on interrupts.

The programs will start scanning all ADC inputs when a rising edge
appears on the STADC pin. This can be realized with a resistor from
ground to STADC and a switch from STADC to VDD. If STADC is
connected to P4.0, a conversion of all channels will start every
1.14ms. Timer T2 controls the timing of P4.0. When all analog input
signals on P5 are converted, the results will be sent to the UART
and be made visible on a terminal. The communication part of the
program is given in the file ‘output.c’. After compiling and
assembling ‘output.c’, it should be linked to ‘ADC_pol’ or ‘ADC_int’.

The required terminal settings are:
– 8 data bits

– no parity

– 1 STOP-bit

– 19200 baud.

The 80C552 must run on 11.0592MHz.

The following points are important when writing code for the ADC:

• ADCS and ADCI must be cleared, before programming
AADC0..AADR2.

• Channel selection bits AADR0..AADR2 must be programmed
before setting ADCS (software start) or ADEX (enabling hardware
start)

• When working in polling mode, use ADCI to test if the conversion
is finished.

– Do not  test ‘ADCS=0’ for this purpose.

– When and ADC conversion is initiated by software, there is a
delay of 2 machine cycles between the moment of writing a ‘1’
to ADCS and reading a ‘1’ from the ADCS-bit in ADCON.

– When an ADC conversion must be initiated by a rising edge on
ADEX, it is not known when ADCS becomes ‘1’. This depends
on the external signal that starts the conversion.

The following development tools were used on a PC (DOS 5.0):

TOOL TYPE PHILIPS NUMBER

C-compiler BSO/Tasking V2.1 OM4136

Assembler BSO/Tasking V3.3 OM4142

Emulator SDS+80C552 probe OM4120S
+OM1092
+OM1095

Debugger BSO/Tasking XRAY51 V1.4d OM4129

ADC_pol.c

/************************************************************************
*
***
*0*      MODULE             : adc_pol.c
***
*0*     FILENAME           : adc_pol.c
***
*0*     APPLICAITON        : Demo code for ADC of 8xC552 polling
*0*                          mode
***
*0*     PROGRAMMER         : T. v. Daele
***
*0*     DESCRIPTION        : After rising edge on STADC–pin, all
*0*                          ADC channels are scanned.
*0*                          Rising edges are available on P4.7 at a
*0*                          repetition rate of 1.14ms. This timing is
*0*                          controlled by T2.
*0*                          Results are sent to UART.
***
*************************************************************************
/

#define ADEX     0x20
#define ADCI     0x10
#define ADCS     0x08

void write_UART (unsigned int *, unsigned int);



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 12

void  main(void)
{
 unsigned int conversion,result_ADC[8];
 unsigned char ADC_Channel;

 S0CON=0x40;                         /* 8 bits, no parity, 1 STOPbit */
 TH1+TL1+0xfd;                       /* 19200 Baud @11.0592MHz */
 PCON=0x80;
 TMOD=0x20;
 TR1=1;

 TM2CON=0x0d;                        /* Source T2: osc/96 */
 RTE=0x80;                           /* Overflow rate: 0.569ms
                                        P4.7 toggles every 0.569ms
                                        ADC conversion on rising edge STADC
                                        P4.7/STADC: 1.14ms conversion rate
*/
 conversion=0;

 while(1)
 {
  for (ADC_Channel=0;ADC_Channel<8;ADC_Channel++)
  {
   ADCON=0;                          /* Make sure ADCI and ADCS are cleared
*/
   ADCON=ADC_Channel;                /* before ADC channel is selected */

   if (ADC_Channel==0)
      ADCON=ADEX;                    /* ADC0: External start */
   else
      ADCON+ADCON|ADCS;              /* ADC1..ADC7: Software start */
   while((ADCON&ADCI)==0);           /* Wait till conversion finished
                                        by checking ADCI */
   result_ADC[ADC_Channel]=5*((256*ADCH+(ADCON&0xc0))>>6);
                                     /* Calculate 10–bits binary result
                                        relative to 5.12V ref */
  }
  write_UART(&result_ADC,conversion++); /*Output results to UART */
  if (conversion==10000)
     conversion=0;
 }
}



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 13

ADC_int.c

/************************************************************************
*
***
*0*      MODULE             : adc_int.c
***
*0*     FILENAME           : adc_int.c
***
*0*     APPLICATION        : Demo code for ADC of 8xC552 in interrupt
*0*                          mode
***
*0*     PROGRAMMER         : T. v. Daele
***
*0*     DESCRIPTION        : After rising edge on STADC–pin, all
*0*                          ADC channels are scanned.
*0*                          Rising edges are available on P4.7 at a
*0*                          repetition rate of 1.14ms. This timing is
*0*                          controlled by T2.
*0*                          Results are sent to UART.
***
*************************************************************************
/

#define ADEX    0x20
#define ADCI    0x10
#define ADCS    0x08
#define ADCIn   0xref
#define FALSE   0
#define TRUE    1

void write_UART(unsigned int *, unsigned int);
bit conversion_finished;

void main(void)
{
 unsigned int conversion,result_ADC[8];
 unsigned char ADC_channel;

 S0CON=0x40;                         /* 8 bits, no parity, 1 STOPbit */
 TH1=TL1=0xfd;                       /* 19200 Baud @11.0592MHz */
 PCON=0x80;
 TMOD=0x20;
 TR1=1;

 TM2CON=0x0d;                        /* Source T2; osc/96 */
 RTE=0x80;                           /* Overflow rate: 0.569ms
                                        P4.7 toggles every 0.569ms
                                        ADC conversion on rising edge STQADC
                                        P4.7/STADC: 1.14ms conversion rate
*/

 EAD=1;                              /* Enable ADC interrupt */
 EA=1;

 conversion_finished=FALSE;
 ADC_channel=conversion=0;

 ADCON=0;                            /* First conversion; external start */

 ADCON=ADEX;
 while(1)
 {
  if (conversion_finished==FALSE)
     {
      /* User code executed while conversion is in progress  */
     }



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 14

  else
     {
      result_ADC[ADC_channel]=5*((256*ADCH+(ADCON&0xc0))>>6); /* Store
result */
      if (ADC_channel!=7)
        {
         /* Prepare conversion of next channel */
         ADCON=++ADC_channel;
         ADCON+ADCON|ADCS;
        }
      else
        {
         /* ADC0..ADC7 is converted. Send results to UART */
         write_UART(&result_ADC,conversion++);
         if (conversion==10000)
            conversion=0;
         ADC_channel=0;
         ADCON=0;                        /* Prepare next scan */
         ADCON=ADEX;
        }
     conversion_finished=FALSE;
    }
 }
}

interrupt 10 using 1 void ADC(void)
{
 ADCON=ADCON&ADCIn;                      /* Clear ADCI flag */
 conversion_finished=TRUE;
}



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 15

output.c

/************************************************************************
***
*0*      MODULE             : output.c
***
*0*     FILENAME           : output.c
***
*0*     APPLICATION        : Example program for 80C552 ADC
***
*0*     PROGRAMMER         : T. van Daele
***
*0*     DESCRIPTION        : The results of the conversion are written
*0*                          to the 80C552 UART.
***
*0*     FUNCTIONS          : <name>                <description>
*0*                          write_UART            entry point
*0*                          send_byte             trx byte
*0*                          decode                trx binary nibble
*0*                          send_bin_byte         trx binary byte
*0*                          send_dec_int          trx decimal integer
*0*                          send_string           trx aSCII string
***
************************************************************************/

rom char string_0[]    =       “Conversion #”;
rom char string_1[]    =       “: (Ref is 5.12V)”;
rom char string_2[]    =       “ADC_Channel # ”;
rom char string_3[]    =       “mV”;
rom char string_4[]    =       “: ”;
rom char new_line[]    =       “\r\n”;

/************************************************************************
***
*1*     FUNCTION           : send_byte
***
*2*     SYNOPSYS           : send_byte(src_byte)
***
*3*     ARGUMENTS          : type                  name
*3*                          char                  src_byte
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Send byte to terminal via UART
*6*                          Wait till transmission is finished
***
*7*     HISTORY            : data          who             description
*7*                          05–02–93      tvd             initial
***
************************************************************************/

void send_byte(char src_byte)
{
 S0BUF = src_byte;      /* Byte to transmit */
 while (TI == 0);       /* Wait till byte is transmitted */
 TI = 0;                /* Clear transmit flag */
}



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 16

/************************************************************************
***
*1*      FUNCTION           : decode
***
*2*     SYNOPSYS           : decode(char src_nibble)
***
*3*     ARGUMENTS          : type                  name
*3*                          char                  src_nibble
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Decode least significant nibble to
*6*                          ASCII and transmit
***
*7*     HISTORY            : data          who             description
*7*                          05–02–93      tvd             initial
***
************************************************************************/
void decode(char src_nibble)
{
 if ( src_nibble < 0x0a)
     send_byte(src_nibble + 0x30);
 else
     send_byte(src_nibble + 0x41 – 0x0a);
}

/************************************************************************
***
*1*     FUNCTION           : send_bin_byte
***
*2*     SYNOPSYS           : send_bin_byte(char src_byte)
***
*3*     ARGUMENTS          : type                  name
*3*                          char                  src_byte
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Split a binary byte in nibbles, decode
*6*                          to ASCII and transmit
***
*7*     HISTORY            : data          who             description
*7*                          05–02–93      tvd             initial
***
************************************************************************/
void send_bin_byte(char src_byte)
{
 decode((src_byte>>4) & 0x0f);      /* Get ms_nibble */
 decode(src_byte & 0x0f);           /* Get ls_nibble */
}



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 17

/************************************************************************
***
*1*      FUNCTION           : send_dec_int
***
*2*     SYNOPSYS           : send_dec_int(unsigned int src_wrd)
***
*3*     ARGUMENTS          : type                  name
*3*                          unsigned              src_wrd
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Decode binary integer to decimal and
*6*                          transmit
***
*7*     HISTORY            : data          who             description
*7*                          07–07–93      tvd             initial
***
************************************************************************/
void send_dec_int(unsigned int src_wrd)
{
 unsigned char a,b,c,d,e;

 a=src_wrd/1000;                       /* a=‘thousands’ */
 b=((src_wrd%1000)/100);               /* b=‘hundreds’ */
 c=((src_wrd%100)/10;                  /* c=‘tens’ */
 d=src_wrd%10;                         /* d=‘units’ */
 e=16*c+d;                             /* Print value for tens and units */

 /* Print integer without leading zero’s */
 if (a==0)
    {
     send_byte(0x20);
     if (b==0)
        {
         send_byte(0x20);
         if (c==0)
           {
            send_byte(0x20);
            decode(d);
           }
         else
            send_bin_byte(e);
        }
     else
       {
        decode(b);
        send_bin_byte(e);
       }
    }
 else
    {
     send_bin_byte((16*a)+b);
     send_bin_byte(e);
    }
}



Philips Semiconductors Application note

EIE/AN93017
Using the analog-to-digital converter
of the 8XC552 microcontroller

1994 Jun 28 18

/************************************************************************
***
*1*      FUNCTION           : send_string
***
*2*     SYNOPSYS           : send_string(rom char *str_ptr)
***
*3*     ARGUMENTS          : type                  name
*3*                          rom char *            str_ptr
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Send a string of characters from ROM to
*6*                          terminal.
***
*7*     HISTORY            : data          who             description
*7*                          05–02–93      tvd             initial
***
************************************************************************/
void send_string(rom char *str_ptr)
{
 while (*str_ptr != 0)
       send_byte(*(str_ptr++));    /* Send byte */
}

/************************************************************************
***
*1*     FUNCTION           : write_UART
***
*2*     SYNOPSYS           : write_UART(unsigned int *ADC_result,
***                                     unsigned int conversion_cnt)
***
*3*     ARGUMENTS          : type                  name
*3*                          unsigned int *        src_ptr
*3*                          unsigned int          msg_ptr
***
*4*     RETURNS            : nothing
***
*5*     MODIFIES           : nothing
***
*6*     DESCRIPTION        : Decode results to correct format and send
*6*                          to UART
***
*7*     HISTORY            : data          who             description
*7*                          30–06–93      tvd             initial
***
************************************************************************/
void write_UART(unsigned int *result_ptr, unsigned int conversion_cnt)
{
 unsigned char cnt;

 send_string(new_line);
 send_string(new_line);
 send_string(string_0);            /* Send message number */
 send_dec_int(conversion_cnt);
 send_string(string_1);
 for (cnt=0;cnt<8;cnt++)
 {
  send_string(new_line);
  send_string(string_2);
  decode(cnt);                     /* Send channel number */
  send_string(string_4);
  send_dec_int(*(result_ptr++));   /* Send result to UART */
  send_string(string_3);
 }
}


	SUMMARY
	1.0 INTRODUCTION
	2.0 INTERNAL OPERATION OF THE ADC
	2.1 General Description
	2.2 Conversion Process
	2.3 The ADC in the 80C552

	3.0 APPLICATION INFORMATION
	3.1 Analog Input Signal Constraints
	3.2 Layout Considerations

	4.0 PROGRAM EXAMPLES
	ADC_int.
	output.c


