
�������
��	���
�����
�

EIE/AN91009
Driver for 8xC851 E2PROM

January 1992

INTEGRATED CIRCUITS

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

6-2632January 1992

1. INTRODUCTION
A set of software functions is given to access the E2PROM on the 8xC851 microcontrollers. These functions can
be called from application programs written in assembly, PL/M-51 or C. The functions are found in the
E2PROM.OBJ file that can be linked to the application program.

The driver is written and tested with the following software tools from BSO-Tasking:
Assembler: ASM51 V3.2 (OM4142)
PL/M51: PL/M51 V3.0A (OM4144)
C Comp.: C51 V2.0 (OM4136)
Debugger: XRAY51 V1.4c (OM4129)

Resources used by driver:
Exclusive use of 1 register bank (default RB1)
Accumulator
PSW
1 static bit addressable RAM byte

2. FUNCTION DESCRIPTIONS
The functions that use write and/or erase actions are interrupt driven except for E2PROM_wr_byte_pol. The
application can check the status of these actions by testing the flag E2PROM_BUSY. This flag is available via the
function E2PROM_status.

In the 8xC851, the E2PROM interrupt is combined with the UART interrupt. To enable the E2PROM interrupt, EA
(in the IE-register) must be set (should be done in application program), the combined UART/E2PROM enable bit
must be set (ES in the IE-register, done with function E2PROM_int_en) and the E2PROM interrupt enable bit
(EEINT in ECNTRL register) must be set. The E2PROM interrupt flag is automatically set by functions that use
erase/write actions. This means that the UART interrupt enable cannot be disabled while the E2PROM interrupt is
completely enabled. The E2PROM can be disabled separately with the E2PROM_int_dis function.

The priority level for UART and E2PROM interrupt are the same and are defined with the E2PROM_int_en
function.

The E2PROM driver has a link to a UART interrupt handler. When a UART interrupt occurs, the status of the
controller is pushed on the stack and then interrupt flags are tested to determine the source of the interrupt. When
the source of the interrupt is the UART, then subroutine _UART_HDL is called. the implementation of the UART
interrupt handler is done by the user. On the disk a file UART.SRC is available that contains this subroutine. This
routine will only clear the trx-interrupt flag (TI) and rcv-interrupt flag (RI).

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2633

2.1 E2PROM_init

Function description:
This function must be called before any of the other functions is called. The timing register for
writing/erasing the E2PROM is initialized and the register bank that the E2PROM functions can use is
defined.

The default registerbank is RB1; the ETIM register which determines the write/erase timing is default
initialized with 0x7B (XTAL = 12MHz). If other values are required, the parameters REGISTERBANK and
XTAL must be changed in the equate list of the source file (E2PROM.ASM).

The E2PROM/UART interrupt is enabled and set to priority level ‘0’.

Calling Sequence:
E2PROM_init();

Function prototype:
void E2PROM_init (void)

Parameters:
None

2.2 E2PROM_int_en

Function description:
This function will enable the E2PROM/UART interrupt. The global enable bit EA is not effected and must
be controlled by the application program.

The priority level of the E2PROM/UART is controlled by the parameter ‘Pr_Level’.

Calling Sequence:
E2PROM_int_en (Pr_Level);

Function prototype:
void E2PROM_int_en (data char Pr_Level)

Parameters:
Pr_Level: This parameter determines the priority level on which the E2PROM/UART interrupts

are handled. Values greater than 0x01 will be interpreted as 0x01.

2.3 E2PROM_int_dis

Function description:
This function will disable the E2PROM/UART interrupt.

Calling Sequence:
E2PROM_Int_Dis;

Function prototype:
void E2PROM_Int_Dis (void)

Parameters:
None

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2634

2.4 E2PROM_status

Function description:
This function will return the E2PROM_BUSY bit, which indicates whether a read/write transfer from/to the
E2PROM, or an erase action is finished.

‘1’ indicates that a read/write transfer is still in progress.
‘0’ indicates that no read/write transfer is in progress.

If the application program calls an E2PROM function while another E2PROM function is still in progress,
parameters may be overwritten and an erroneous result will be obtained. There are 2 exceptions on this
rule. When the functions “E2PROM_rd_byte_pol” or “E2PROM_wr_byte_pol” are called, parameters are
passed to different registers in the registerbank, the E2PROM status is stored and the transfer is done by
polling.

Note that the E2PROM_BUSY bit is not the same as EWP-flag in the ECNTRL register. For write
operations the EWP-flag indicates when the writing/erasing of a byte to the E2PROM is finished. The
E2PROM_BUSY flag indicates when a complete block of data (e.g., from the E2PROM_wr_block function)
has been written to the E2PROM.

Calling Sequence:
bit Status;
Status = E2PROM_Status;

Function prototype:
bit E2PROM_Status (void)

Parameters:
None

2.5 E2PROM_wr_byte

Function description:
This function will write a byte to E2PROM.
If the source byte has the same value as the byte in the E2PROM, no write action will take place.

Byte transfer is done on interrupt basis. The status of the transfer can be checked with the
“E2PROM_Status” function.

This function will automatically enable the E2PROM interrupt. The application program should take care of
the E2PROM/UART interrupt enable (with E2PROM_int_en) and the EA bit.

Calling Sequence:
E2PROM_wr_byte (Src_Byte,Dest_Ptr);

Function prototype:
void E2PROM_wr_byte (data char Src_Byte,data char Dest_Ptr)

Parameters:
Src_Byte: Byte to be written to E2PROM
Dest_Ptr: Address of E2PROM

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2635

2.6 E2PROM_rd_byte

Function description:
This function will read a byte from E2PROM. The status of the transfer can be checked with the
“E2PROM_Status” function.

Calling Sequence:
data char Result;
Result = E2PROM_rd_byte (Src_Ptr);

Function prototype:
char E2PROM_rd_byte (data char Src_Ptr)

Parameters:
Src_Ptr: Address of E2PROM

2.7 E2PROM_wr_block

Function description:
This function will write a block of data from internal RAM to E2PROM.

Byte transfer is done on interrupt basis. The status of the transfer can be checked with the
“E2PROM_Status” function.

This function will automatically enable the E2PROM interrupt. The application program should take care of
the E2PROM/UART interrupt enable (with E2PROM_int_en) and the EA bit.

If the source bytes are the same as the bytes in the E2PROM, no write action will take place. This function
will automatically generate ROW-erases, whenever this will reduce programming time. If during execution
of this function, the destination address to the E2PROM is equal to the beginning of an E2PROM row
(3 least significant address bits are ‘0’) and at least 8 more bytes have to be programmed, a check will be
done whether a ROW-erase will reduce programming time. If no RWO-erase is done, the time to program
the ROW will be:

Tprog = A.tW+B.(tE+tW) A: Byte in E2PROM is 0x00; source byte in RAM is not 0x00
B: Byte in E2PROM is not 0x00; source byte in RAM <> E2PROM byte

If a ROW-erase is done, programming the ROW will take:
Tprog = tE + C.tW C: Source byte in RAM <> ‘0’

Because the erase time (tE) and the write time (tW) are equal, the function will do a ROW-erase if
A+2.B–C–1 >= 0

Calling Sequence:
E2PROM_wr_block (Src_Ptr,Dest_Ptr,Nr_Bytes);

Function prototype:
void E2PROM_wr_block (data char *data Src_Ptr, data char Dest_Ptr, data char Nr_Bytes)

Parameters:
Src_Ptr: Address pointer to internal RAM
Dest_Ptr: Address of first E2PROM byte
Nr_Bytes: Number of bytes to write to E2PROM

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2636

2.8 E2PROM_rd_block

Function description:
This function will read a block of data from E2PROM and store it in internal RAM. The status of the transfer
can be checked with the “E2PROM_Status” function.

Calling Sequence:
E2PROM_rd_block (Src_Ptr,Dest_Ptr,Nr_Bytes);

Function prototype:
void E2PROM_rd_block (data char Src_Ptr, data char *data Dest_Ptr, data char Nr_Bytes)

Parameters:
Src_Ptr: Address of first E2PROM byte
Dest_Ptr: Address pointer to internal RAM
Nr_Bytes: Number of bytes to read from E2PROM

2.9 E2PROM_wr_byte_pol

Function description:
This function will write a byte from internal RAM to E2PROM.

If the source byte has the same value as the byte in the E2PROM, no write action will take place.

If an E2PROM function is in progress (except E2PROM_rd_byte_pol), this function will be interrupted but
its status will be saved so that the interrupted function will be resumed when the E2PROM_wr_byte_pol
function is finished.

Byte transfer is done by polling.

This function may be used, e.g., in interrupt service routines, where the possibility exists that the
interrupted main program has already started an E2PROM transfer.

Calling Sequence:
E2PROM_wr_byte_pol (Src_Byte,Dest_Ptr);

Function prototype:
void E2PROM_wr_byte_pol (data char Src_Byte,data char Dest_Ptr)

Parameters:
Src_Byte: Byte to be written to E2PROM
Dest_Ptr: Address of E2PROM

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2637

2.10 E2PROM_rd_byte_pol

Function description:
This function will read a byte from E2PROM.

If an E2PROM function is in progress (except E2PROM_wr_byte_pol), this function will be interrupted but
its status will be saved so that the interrupted function will be resumed when the E2PROM_rd_byte_pol
function is finished.

This function may be used, e.g., in interrupt service routines, where the possibility exists that the
interrupted main program has already started an E2PROM transfer.

Calling Sequence:
data char Result;
Result = E2PROM_rd_byte_pol (Src_Ptr);

Function prototype:
char E2PROM_Rd_Byte_Pol (data char Src_Ptr)

Parameters:
Src_Ptr: Address of E2PROM

2.11 E2PROM_block_erase

Function description:
This function will erase all 256 E2PROM bytes.

The erase function is done on interrupt basis. The status of the transfer can be checked with the
“E2PROM_Status” function.

This function will automatically enable the E2PROM interrupt. The application program should take care of
the E2PROM/UART interrupt enable (with E2PROM_int_en) and the EA bit.

Calling Sequence:
E2PROM_block_erase();

Function prototype:
void E2PROM_block_erase (void)

Parameters:
None

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2638

2.12 E2PROM_security_on

Function description:
This function inhibits access to E2PROM from external program memory.
The following scheme gives the access possibilities when this function is executed.

EA pin Address of E2PROM
access instruction

Access to E2PROM

1 < 4096 YES
1 >= 4096 NO
0 < 4096 NO
0 >= 4096 NO

The write function is done on interrupt basis. The status of the transfer can be checked with the
“E2PROM Status” function.

This function will automatically enable the E2PROM interrupt. The application program should take care of
the E2PROM/UART interrupt enable (with E2PROM_int_en) and the EA bit.

Calling Sequence:
E2PROM_security_on();

Function prototype:
void E2PROM_security_on (void)

Parameters:
None

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2639

2.13 E2PROM_security_off

Function description:
This function will remove E2PROM protection. Access to E2PROM from external program memory is now
possible if this function is executed from the right program memory.

The following scheme gives the possibilities when ‘E2PROM_security_off’ is executed after completion of
the ‘E2PROM_security_on’ function.

The following table assumes that the address at which ‘E2PROM_security_off’ resides is smaller than 4096.

EA pin Address of E2PROM
access instruction

Mode Access to
E2PROM

E2PROM
erased

1 < 4096 0 YES NO
1 >= 4096 0 YES NO
1 < 4096 1 YES YES
1 >= 4096 1 YES YES

0 < 4096 0 NO NO
0 >= 4096 0 NO NO
0 < 4096 1 YES YES
0 >= 4096 1 YES YES

The following table assumes that the address at which ‘E2PROM_security_off’ resides is greater than 4096.

EA pin Address of E2PROM
access instruction

Mode Access to
E2PROM

E2PROM
erased

1 < 4096 0 YES NO
1 >= 4096 0 NO NO
1 < 4096 1 YES YES
1 >= 4096 1 NO YES

0 < 4096 0 NO NO
0 >= 4096 0 NO NO
0 < 4096 1 YES YES
0 >= 4096 1 YES YES

Calling Sequence:
E2PROM_Security_Off;

Function prototype:
void E2PROM_Security_Off (data char Mode)

Parameters:
Mode: If ‘0’, then the protection will only be removed when this function is executed from internal

program memory. When executed from external memory, the protection remains.
If ‘1’, then the protection can also be removed when this function is executed from external
memory, however, all E2PROM bytes will be erased.

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2640

3. PROGRAM EXAMPLES
Three examples are given that show how to use these functions with C, PL/M51 and assembly programs. In the
examples, a string of characters is written to and read from E2PROM. When reading back the string, spaces are
replaced by underscores.

3.1 C example
The disk contains the file E2PROM.H that should be included in the C application program. E2PROM.H contains
the function prototypes of the E2PROM functions. The example program can be found on the disk in file
TEST_C.C.

When the application module is compiled and assembled, it should be linked to the E2PROM function module
E2PROM.OBJ and the UART interrupt handler UART.OBJ.

3.2 PL/M51 example
The disk contains the file E2PROM.DCL that should be included in the PL/M51 application program.
E2PROM.DCL contains the external function declarations for the E2PROM functions. The example program can
be found on the disk in file TEST_PLM.PLM.

When the application module is compiled and assembled, it should be linked to the E2PROM function module
E2PROM.OBJ and the UART interrupt handler UART.OBJ. When linking, the linking control ‘NOCASE’ must be
used!

3.3 Assembly example
The disk contains the file E2PROM.MAC which contains the macro definitions of the functions. Including these
macro’s in the source file eases programming. For instance, the sequence:

MOV _E2PROM_rd_block_BYTE ,Src_Ptr ;Pointer to E 2PROM
MOV _E2PROM_rd_block_BYTE+1,Dest_Ptr ;Pointer to RAM
MOV _E2PROM_rd_block_BYTE+2,#Nr_Bytes ;Number of bytes to transfer
LCALL _E2PROM_rd_block ;Call function

can be replaced by

%E2PROM_rd_block(Src_Ptr,Dest_Ptr,#Nr_Bytes)

The file E2PROM.GLO contains the EXTRN-definitions of the functions and constants that are used by the driver.
Only the definitions used by the source program should be included.

When the application module is compiled and assembled, it should be linked to the E2PROM function module
E2PROM.OBJ and the UART interrupt handler UART.OBJ.

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2641

3.4 Listing of examples

LISTING C EXAMPLE:

#include “E2PROM.h”
#include <string.h>
#define E2PROM_Base_Address 0x58

rom char txt_tab[]= “This is an E2PROM test for 8xC851”’

void main(void)
{
 data char Data_Buffer[35];
 data char Count;

 E2PROM_init(); /* Initialize E2PROM */
 E2PROM_int_en(0x01); /* E2PROM interrupt level 1 */
 EA=1; /* Global interrupt enable */

 romidmove(&Data_Buffer,&Txt_tab,sizeof(Txt_tab)–1); /* Copy string from ROM
 to RAM */
 E2PROM_wr_block(&Data_Buffer,E2PROM_Base_Address,sizeof(Txt_tab)–1);
 /* Copy setring to E2PROM */

 /* Time to do other useful things while data is being written to
 E2PROM on interrupt basis */

 while (E2PROM_status()); /* Wait till transfer to E2PROM is finished */

 /* Read string from E2PROM and replace spaces “ ” by underscores “_” */
 for (Count=0;Count != sizeof(Txt_tab)–1;Count++)
 {
 /* Read E2PROM byte */
 Data_Buffer[Count] = E2PROM_rd_byte(E2PROM_Base_Address+Count);
 if (Data_Buffer[Count] == ‘ ’)
 Data_Buffer[Count] = ‘_’;
 }

 E2PROM_block_erase(); /* Erase E2PROM */
 /* Time to do other things while erasing */

 while (E2PROM_status()); /* Wait till erasing is finished */
 EA=0;
}

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2642

LISTING PL/M51 EXAMPLE:

$DEBUG
$CODE

E2PROM: Do;
$INCLUDE (E2PROM.DCL)
$INCLUDE (UTIL51.DCL)

 Test: Do;

 Declare E2PROM_Base_Address literally ’58H’;
 Declare Txt_tab(*) Byte Constant
 (’This is an E2PROM test for 8xC851’);
 Declare Data_Buffer(35) Byte Main;
 Declare Count Byte Main;

 Call E2PROM_init; /* Initialize E2PROM */
 Call E2PROM_int_en(01); /* E2PROM interrupt level 1 */
 Enable; /* Global interrupt enable */

 /* Copy string from ROM to RAM */
 Call MOVCD1(.Txt_tab,.Data_Buffer,length(Txt_tab));

 /* Copy string to E2PROM */
 Call E2PROM_wr_block(.Data_Buffer,E2PROM_Base_Address,length(Txt_tab));

 /* Time to do other useful things while data is being written to
 E2PROM on interrupt basis */

 Do While E2PROM_status = 1; /* Wait till transfer to E2PROM is finished */
 End;

 /* Read string from E2PROM and replace spaces “ ” by underscores “_” */
 Do Count=0 To length(Txt_tab);
 /*Read E2PROM byte */
 Data_Buffer(Count) = E2PROM_rd_byte(E2PROM_Base_Address+Count);
 If (Data_Buffer(Count) = ‘ ’) then Data_Buffer(Count) = ‘_’;
 End;

 Call E2PROM_block_erase; /* Erase E2PROM */
 /* Time to do other things while erasing */

 Do While E2PROM_status = 1; /* Wait till erasing is finished */
 End;
 Disable;

 End Test;
End E2PROM;

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2643

LISTING ASSEMBLY EXAMPLE:

$DEBUG
$CASE

;*===*/
;* */
;* INCLUDE FILE : E2PROM.GLO */
;* PACKAGE : E2PROM */
;* */
;*===*/

EXTRN CODE (_E2PROM_init)

EXTRN CODE (_E2PROM_int_en)
EXTRN CODE (_E2PROM_int_en_BYTE)

EXTRN CODE (_E2PROM_status)

EXTRN CODE (_E2PROM_rd_byte)
EXTRN NUMBER (_E2PROM_rd_byte_BYTE)

EXTRN CODE (_E2PROM_wr_block)
EXTRN NUMBER (_E2PROM_wr_block_BYTE)

EXTRN CODE (_E2PROM_block_erase)

;*===*/
;* Include macro definitions */
;*===*/
$INCLUDE(E2PROM.MAC)

 BUFFER SEGMENT DATA
 RSEG BUFFER
Data_Buffer: ds 35
Count: ds 1
Stack: ds 15

 TABLE SEGMENT CODE
 RSEG TABLE
Txt_tab: db “This is an E2PROM test for 8xC851”

E2PROM_Base_Address EQU 58H
Length_Txt EQU 33

 CSEG AT 00 ;Reset vector
 LJMP MAIN

 TEST_ASM SEGMENT CODE
 RSEG TEST_ASM

MAIN: MOV SP,#Stack–1 ;Initialize stack pointer
 %E2PROM_init ;Initialize E2PROM
 %E2PROM_int_en(#10) ;E2PROM interrupt level 1
 SETB EA ;Enable global interrupt

 MOV DPTR,#Txt_tab ;Initialize pointers to copy Txt_tab to RAM
 MOV R0,#Data_Buffer
 MOV R2,#Length_Txt

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2644

COPY_LOOP: ;Copy Txt_tab to RAM
 CLR A
 MOVC A,@A+DPTR ;Get byte from ROM
 MOV @R0,A ;Store in RAM
 INC DPTR ;Update pointers
 INC R0
 DJNZ R2,COPY_LOOP ;Check if all copied

 ;Write data to E2PROM
 %E2PROM_wr_block(#Data_Buffer,#E2PROM_Base_Address,#Length_Txt)
 ;
 ; Time to do other useful things while data is being written to
 ; E2PROM on interrupt basis
 ;
NEW_CHECK:
 %E2PROM_status ;Wait till transfer to E2PROM is finished
 JC NEW_CHECK

 ;Read string from E2PROM and replace spaces “ ” by underscores “_”
 MOV R0,#Data_Buffer ;Initialize pointers
 MOV R1,#E2PROM_Base_Address
 MOV R2,#Length_Txt
READ_LOOP:
 %E2PROM_rd_byte(R1)
 MOV @R0,A ;Store byte in RAM
 CJNE A,#“ ”,NEXT_READ ;Check if byte is “ ”
 MOV @R0,#“_” ;If yes, replace with “_”
NEXT_READ:
 INC R0 ;Update pointers
 INC R1
 DJNZ R2,READ_LOOP

 %E2PROM_block_erase ;Erase E2PROM

 ;Time to do other things while erasing */

NXT_CHECK:
 %E2PROM_status ;Wait till transfer to E2PROM is finished
 JC NXT_CHECK
 CLR EA ;Disable interrupts
 JMP $;End of program

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2645

4. DEBUG MACROS
The disk contains some debug macros that ease the debugging of programs that use the 8xC851 E2PROM. These
macros can be executed by the XRAY51 High Level Language debugger. The user can read from and write to
E2PROM bytes without programming the individual SFRs.

Before the macros can be executed, they must be loaded by XRAY51. This will be done automatically if the file
‘E2PROM.INC’ is included when invocating XRAY51 or during a debug session. E2PROM.INC will load the macros
and define some symbols used by the macros. If not all macros are used, the file E2PROM.INC can be edited to
prevent the loading of these macros. This may be necessary when there is insufficient memory to load the macros,
because, for instance, other macros have been loaded. Another advantage of only loading the relevant macros is
reduction of loading time.

When a macro is called from the debugger, the following SFRs will remain unchanged: ECNTRL, EADRH, EADRL
and ETIM. During macro execution, all interrupts will be disabled. Access to the E2PROM with the macros is
independent of the state of the security bit. The execution and results of the macro are visible on the I/O screen of
XRAY51 (VSCREEN 3).

Read(Start address, Stop address):
The value of E2PROM bytes from ‘START ADDRESS’ to ‘STOP ADDRESS’ will be shown.
If ‘START ADDRESS’ <= ‘STOP ADDRESS’ only the value of ‘START ADDRESS’ will be shown.

Write(Start address, Stop address, Value):
The E2PROM bytes from ‘START ADDRESS’ to ‘STOP ADDRESS’ will be programmed with ‘VALUE’.
If ‘START ADDRESS’ > ‘STOP ADDRESS’, no E2PROM bytes will be programmed.
If the ETIM register contains the value 0x08, it is considered that ETIM is not initialized. The macro will
give a warning, and return to the debug screen.

Copyto(Ram address, E2PROM address, Count):
Macro will copy ‘COUNT’ bytes, starting from internal RAM address ‘RAM ADDRESS’ to the E2PROM,
starting at address ‘E2PROM ADDRESS’.
If during copying, the RAM address becomes > 0x7F or the E2PROM address becomes > 0xFF, copying
will be stopped and a warning is given that an address limit is reached.
If the ETIM register contains the value 0x08, it is considered that ETIM is not initialized. The macro will
give a warning, and return to the debug screen.

Copyfrom(E2PROM address, Ram address, Count):
Macro will copy ‘COUNT’ bytes from E2PROM address ‘E2PROM ADDRESS’ to the internal RAM, starting
at address ‘RAM ADDRESS’.
If during copying, the RAM address becomes > 0x7F or the E2PROM address becomes > 0xFF, copying
will be stopped and a warning is given that an address limit is reached.

Erase():
All E2PROM bytes will be erased.
If the ETIM register contains the value 0x08, it is considered that ETIM is not initialized. The macro will
give a warning, and return to the debug screen.

Philips Semiconductors Application note

EIE/AN91009Driver for 8xC851 E2PROM

January 1992 6-2646

5. CONTENTS OF DISK
The disk contains the following 3 directories:

1. \USER
This directory contains the files that may be included or linked to the source program.
E2PROM.ASM :Source file of E2PROM driver
E2PROM.OBJ :Object file of E2PROM driver
E2PROM.H :Header file for C applications
E2PROM.DCL :Declaration file for PL/M51
E2PROM.MAC :Macro definitions for assembly applications
E2PROM.GLO :Global definitions for assembly applications
UART.SRC :UART interrupt handler (will only clear flags; user should customize it)
UART.OBJ :Object file of UART interrupt handler

2. \DEBUG
This directory contains the macros and include file used with XRAY51 debugger.
E2PROM.INC :Include file that reads macro files in XRAY51
*.MAC :XRAY51 macros

3. \EXAMPLE
This directory contains the source files of the example programs described in the note
TEST_C.C :C example
TEST_PLM.PLM :PL/M51 example
TEST_ASM.ASM :ASM51 example

Philips Semiconductors Products Product specification

EIE/AN91009Driver for 8xC851 E2PROM

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1997
All rights reserved. Printed in U.S.A.

	Cover
	1. Introduction
	2. Function Descriptions
	2.1 E2PROM_init
	2.2 E2PROM_int_en
	2.3 E2PROM_int_dis
	2.4 E2PROM_status
	2.5 E2PROM_wr_byte
	2.6 E2PROM_rd_byte
	2.7 E2PROM_wr_block
	2.8 E2PROM_rd_block
	2.9 E2PROM_wr_byte_pol
	2.10 E2PROM_rd_byte_pol
	2.11 E2PROM_block_erase
	2.12 E2PROM_security_on
	2.13 E2PROM_security_off

	3. Program Examples
	3.1 C example
	3.2 PL/M51 example
	3.3 Assembly example
	3.4 Listing of examples

	4. Debug Macros
	Read(Start address, Stop address):
	Write(Start address, Stop address, Value):
	Copyto(Ram address, E2PROM address, Count):
	Copyfrom(E2PROM address, Ram address, Count):
	Erase():

	5. Contents of Disk

