
������

�����
	����
�

AN716
In-circuit programming of the XA-G49
microcontroller

Supersedes data of 1999 Sep 30
2000 Jul 18

INTEGRATED CIRCUITS

ABSTRACT
This application note describes the three methods that can be used to
program the FLASH code memory of the XA-G49 family of
microcontrollers. It discusses in detail the operation of the In-System
Programming (ISP) capability which allows these microcontrollers to
be programmed while mounted in the end product. These
microcontrollers also have an In-Application Programming (IAP)
capability which allows them to be programmed under firmware
control of the embedded application. This capability is also described.

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

22000 Jul 18

INTRODUCTION
This document gives a brief list of features for the XA-G49 family of
microcontrollers with FLASH memory, and describes several ways
that the FLASH memory can be programmed.

XA-G49 FEATURES
• XA CPU

• 64 kB FLASH EPROM

• FLASH EPROM is sectored to allow the user to erase and
reprogram sectors

• 2048 bytes internal RAM

• 2 kB masked BOOTROM for In-System Programming of the
FLASH EPROM

• User callable BOOTROM subroutines for FLASH erase and
programming

• Can automatically run user program or BOOTROM program at
power-up

• Four 8-bit I/O ports

• Two full-duplex UART

• Three standard 16-bit timer/counters (Timer 0, Timer 1 and
Timer 2)

• Idle and power-down modes

• Two external interrupt inputs

• Three security bits

• Fully static operation: 0 to 30 Mhz

• Packages: 44-pin PLCC, 44-pin QFP

The XA-G49 series of microcontrollers contain user programmable
FLASH EPROM. The FLASH EPROM is organized into sectors of
8 kB or 16 kB. Individual sectors can be erased and reprogrammed.

The BOOT ROM overlays the program flash memory space at the
top 2 kB address space, from F800H to FFFFH. The BOOT ROM
may be turned off by SFR AUXR1 bit 7, and the upper 2 kB of
FLASH memory is accessible by the user. The sectors are
organized as follows:

XA-G49 8k 8k 16k 16k 16k

0 8k 16k 32k 48k 64k

SU01267

Figure 1. FLASH ROM Memory Map

The FLASH EPROM can be programmed using
three different methods:
• The traditional parallel programming method

• A new In-System Programming method (ISP) through the serial port

• In Application programming method (IA) under control of a running
microcontroller application program

Programming functions support the following functions:

• erase and blank check FLASH EPROM

• program and read/verify FLASH EPROM

• program and verify security bits, status byte and boot vector

• read signature bytes

IN-SYSTEM PROGRAMMING (ISP)
The In-System Programming (ISP) is performed without removing
the microcontroller from the system. The In-System Programming
(ISP) facility consists of a series of internal hardware resources
coupled with internal firmware to facilitate remote programming of
the XA-G49 through the serial port. This firmware is provided by
Philips and embedded within each XA-G49 device.

The Philips In-System Programming (ISP) facility has made in-circuit
programming in an embedded application possible with a minimum
of additional expense in components and circuit board area.

The ISP function uses five pins: TxD0, RxD0, VSS, VCC, and VPP
(see Figure 2). Only a small connector needs to be available to
interface your application to an external circuit in order to use this
feature. The VPP supply should be adequately decoupled and VPP
not allowed to exceed datasheet limits.

VSS

X2

X1

RST

VCC

+5 V
or +12 V

+5V

TxD

RxD

VSS

VCC

VPP

TxD0

RxD0

SU01268

Figure 2. In-System Programming with a Minimum of Pins

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 3

Power-On Reset Code Execution
The XA-G49 contains two special FLASH registers; the BOOT
VECTOR and the STATUS BYTE. At the falling edge of reset the
XA-G49 examines the contents of the Status Byte. If the Status Byte
is set to zero, power-up execution starts at location 0000H which is
the normal start address of the user’s application code. When the
Status Byte is set to a value other than zero, the contents of the
Boot Vector is used as the high byte of the execution address and
the low byte is set to 00H. The factory default setting is 0F8H,
corresponds to the address 0F800H for the factory masked-ROM
ISP boot loader. A custom boot loader can be written with the Boot
Vector set to the custom boot loader.

NOTE:
When erasing the Status Byte or Boot Vector, both bytes
are erased at the same time. It is necessary to reprogram
the Boot Vector after erasing and updating the Status Byte.

Hardware Activation of the Boot Loader
The boot loader can also be executed by holding PSEN low, EA
greater than VIH (such as +5 V), and ALE HIGH (or not connected)
at the falling edge of RESET. This is the same effect as having a
non-zero status byte. This allows an application to be built that will
normally execute the end user’s code but can be manually forced
into ISP operation.

Programming the FLASH Registers May Require
Parallel Programming
If the factory default setting for the Boot Vector (0F8H) is changed, it
will no longer point to the ISP masked-ROM boot loader code. If this
happens, the only way it is possible to change the contents of the
Boot Vector is through the parallel programming method, provided
that the end user application does not contain a customized loader
that provides for erasing and reprogramming of the Boot Vector and
Status Byte.

Activating In-System Programming (ISP)
The ISP feature allows programming of the FLASH EPROM through
the serial port. Programming the FLASH with an executing
application program is described later.

The ISP programming is accomplished by serial boot loader
subroutines that are in the BOOTROM. The BOOT ROM code is
located at memory address F800H and can be invoked by a
selecting values for the Status Byte and the Boot Vector. After
programming the FLASH, the status byte should be programmed to
zero in order to allow execution of the user’s application code
beginning at address 0000H.

We recommend using the following sequence for ISP programming:

1. Program the Boot Vector to 0F8H to use the default serial loader.

2. Program the status byte to non-zero.

3. Perform the ISP programming.

4. Erase both Status Byte and Boot Vector after ISP has been
successfully done. There is no way to erase the Status Byte
without erasing the Boot Vector.

5. Program the Boot Vector back to the original value (0F8H) if the
you want to keep the default serial loader as the ISP
communication channel.

6. Write 00H to the Status Byte so that the program will begin at
address 0000H after reset.

Using the In-System Programming (ISP)
The ISP feature allows for a wide range of baud rates to be used in
your application, independent of the oscillator frequency. It is also
adaptable to a wide range of oscillator frequencies. This is
accomplished by measuring the bit-time of a single bit in a received
character. This information is then used to program the baud rate in
terms of timer counts based on the oscillator frequency. The ISP
feature requires that an initial character (an lowercase f) be sent to
the XA-G49 to establish the baud rate. The ISP firmware provides
auto-echo of received characters.

Once baud rate initialization has been performed, the ISP firmware
will only accept Intel Hex-type records. Intel Hex records consist of
ASCII characters used to represent hexadecimal values and are
summarized below:

:NNAAAARRDD..DDCC<crlf>

In the Intel Hex record, the “NN” represents the number of data
bytes in the record. The XA-G49 will accept up to 16 (10H) data
bytes per record. The “AAAA” string represents the address of the
first byte in the record. If there are zero bytes in the record this field
is often set to 0000. The “RR” string indicates the record type. A
record type of “00” is a data record. A record type of “01” indicates
the end-of-file mark. In this application additional record types will be
added to indicate either commands or data for the ISP facility. The
maximum number of data bytes in a record is limited to 16 (decimal).
ISP commands are summarized in Table 1.

As a record is received by the XA-G49 the information in the record
is stored internally and a checksum calculation is performed. The
operation indicated by the record type is not performed until the
entire record has been received. Should an error occur in the
checksum, the XA-G49 will send an “X” out the serial port indicating
a checksum error. If the checksum calculation is found to match the
checksum in the record then the command will be executed. In most
cases successful reception of the record will be indicated by
transmitting a “.” character out the serial port (displaying the
contents of the internal program memory is an exception).

In the case of a Data Record (record type 00) an additional check is
made. A “.” character will NOT be sent unless the record checksum
matched the calculated checksum and all of the bytes in the record
were successfully programmed. For a data record an “X” indicates
that the checksum failed to match and an “R” character indicates
that one of the bytes did not properly program. It is necessary to
send a type 02 record (specify oscillator frequency) to the XA-G49
before programming data.

The ISP facility was designed so that specific crystal frequencies
were not required in order to generate baud rates or time the
programming pulses. The user thus needs to provide the XA-G49
with information required to generate the proper timing. Record
type 02 is provided for this purpose.

WinISP, a software utility to implement ISP programming with a PC,
is available from Philips.

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 4

Table 1. Intel-Hex Records Used by In-System Programming
RECORD TYPE COMMAND/DATA FUNCTION

00 Data Record
:nnaaaa00dd....ddcc

Where:
Nn = number of bytes (hex) in record
Aaaa = memory address of first byte in record
dd....dd = data bytes
cc = checksum

Example:
:10008000AF5F67F0602703E0322CFA92007780C3FD

01 End of File (EOF), no operation
:xxxxxx01cc

Where:
xxxxxx = required field, but value is a “don’t care”
cc = checksum

Example:
:00000001FF

02 Specify Oscillator Frequency
:01xxxx02ddcc

Where:
xxxx = required field, but value is a “don’t care”
dd = integer oscillator frequency rounded down to nearest MHz
cc = checksum

Example:
:0100000210ED (dd = 10h = 16, used for 16.0–16.9 MHz)

03 Miscellaneous Write Functions
:nnxxxx03ffssddcc

Where:
nn = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
03 = Write Function
ff = subfunction code
ss = selection code
dd = data input (as needed)
cc = checksum

Subfunction Code = 01 (Erase Blocks)
ff = 01
ss = block number in bits 7:5, Bits 4:0 = zeros
Example:
 :0200000301A05A erase block 5

Subfunction Code = 04 (Erase Boot Vector and Status Byte)
ff = 04
ss = don’t care
dd = don’t care
Example:
 :0100000304F8 erase boot vector and status byte

Subfunction Code = 05 (Program Security Bits)
ff = 05
ss = 00 program security bit 1
 01 program security bit 2
 02 program security bit 3
Example:
 :020000030501F5 program security bit 2

Subfunction Code = 06 (Program Status Byte or Boot Vector)
ff = 06
ss = 00 program status byte
 01 program boot vector
Example:
 :020000030601F4 program boot vector
 :020000030601F8FC to F8

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 5

RECORD TYPE COMMAND/DATA FUNCTION

04 Display Device Data or Blank Check – Record type 04 causes the contents of the entire FLASH array to be sent out
the serial port in a formatted display. This display consists of an address and the contents of 16 bytes starting with that
address. No display of the device contents will occur if security bit 2 has been programmed. The dumping of the device
data to the serial port is terminated by the reception of any character.

General Format of Function 04
:05xxxx04sssseeeeffcc

Where:
05 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
04 = “Display Device Data or Blank Check” function code
ssss = starting address
eeee = ending address
ff = subfunction

 00 = display data
 01 = blank check

cc = checksum
Example:

:0500000440004FFF0069 display 4000–4FFF

05 Miscellaneous Read Functions

General Format of Function 05
:02xxxx05ffsscc

Where:
02 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
05 = “Miscellaneous Read” function code
ffss = subfunction and selection code

0000 = read signature byte – manufacturer id (15H)
0001 = read signature byte – device id # 1 (EAH)
0002 = read signature byte – device id # 2
 (XA-G49 = 54H)
0700 = read security bits
0701 = read status byte
0702 = read boot vector

cc = checksum
Example:

:020000050001F8 read signature byte – device id # 1

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 6

WINISP – The Windows In-System Programmer
Utility Program
The WINISP program is available from your Philips representative,
or from the Philips website.

Attaching the ISP device to a computer
The device is connected to a computer using a DB9/9 or DB9/25
RS-232 serial interface cable. The 9 pin male connector plugs into
the rear serial socket of the device while the other end (9 or 25 pin
female connector, depending on the computers attached serial port)
plugging into an available serial port in the rear of the computer.

Power to the unit can be provided by means of 7.5 V to 12 V power
adapter.

Installing the microcontroller into the ISP BOARD
With the controller socket in the down position, place the chip in the
socket with the chip key matching the socket key. Gently push the
chip down into the socket until the chip is completely inserted.

ISP Switches and buttons
The ISP contains a RESET button and a NORMAL/TEST jumper.
These switches are used in combination during the programming
and erasing of FLASH sectors.

Configuring the ISP Program
Launch the ISP program into a window. Use the mouse to select the
part type, the Windows serial port being used, and the oscillator
frequency.

CHIP – selects the chip type:

• XA-G49

PORT – Selects which port on the host computer is connected
to the ISP board

• COM1

• COM2

RANGE – Selects the beginning and ending address

• START

• END

ISP Programmer System Commands

Load File
Click the LOAD FILE button and enter the desired file name
into the dialog box

Erase Blocks
Click the ERASE BLOCKS button and use the mouse to
select the desired blocks. Click the ERASE! button, then
press the RESET button on the ISP board

Blank Check
Click the BLANK CHECK button. Press the RESET button on
the ISP board

Program Part
Click the PROGRAM PART button. Press the RESET button
on the ISP board

Read Part
Click the READ PART button. Press the RESET button on the
ISP board

Verify Part
Click the VERIFY PART button. Press the RESET button on
the ISP board

Fill Buffer
Enter the starting and ending address in the RANGE boxes.
Click the FILL BUFFER button. Enter the data pattern in the
next dialog box.

NOTE: The XA-G49 must be running the BOOT ROM
ISP program for the Windows ISP to be able to
communicate with the microcontroller. The TEST jumper
is connected to the PSEN line on the microcontroller. Set
the TEST switch to “TEST” (ground) and then press and
release the RESET switch to start the ISP serial boot
loader. Return the TEST switch to “NORMAL” (floating)
and press RESET to start the user’s application program.

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 7

In-Application Programming Method
Several Application Program Interface (API) calls are available for
use by an application program to permit selective erasing and
programming of FLASH sectors. All calls are made through a
common interface, PGM_MTP. The programming functions are

selected by setting up the microcontroller’s registers before making
a call to PGM_MTP at FFF0H. The oscillator frequency is an integer
number rounded down to the nearest megahertz. For example, set
R0 to 22 for 22.1184 MHz. Results are returned in the registers. The
API calls are shown in Table 2.

Table 2. API calls
API CALL PARAMETER

PROGRAM DATA BYTE Input Parameters:
ROH = 02h
R6 = address of byte to program
R4L = byte to program

Return Parameter
R4L = 00 if pass, !00 if fail

ERASE BLOCK Input Parameters:
R0H = 01h
R6 = block number in bits 7:5, bits 4:0 = ’0’

Return Parameter
R4L = 00 if pass, !00 if fail

ERASE BOOT VECTOR Input Parameters:
R0H = 04h
R6 = don’t care

Return Parameter
R4L = 00 if pass, !00 if fail

PROGRAM SECURITY BIT Input Parameters:
R0H = 05h
R6 = 0000h – security bit # 1 (inhibit writing to FLASH)
 00001h – security bit # 2 (inhibit FLASH verify)
 00002h – security bit # 3 (disable external memory)

Return Parameter
none

PROGRAM STATUS BYTE Input Parameters:
R0H = 06h
R6 = 0000h – program status byte
R4L = status byte

Return Parameter
R4L = 00 if pass, !00 if fail

PROGRAM BOOT VECTOR Input Parameters:
R0H = 06h
R6 = 0001h – program boot vector
R4L = boot vector

Return Parameter
R4L = 00 if pass, !00 if fail

READ DEVICE DATA Input Parameters:
R1 = 03h
R6 = address of byte to read

Return Parameter
R4L = value of byte read

READ MANUFACTURER ID Input Parameters:
R0H = 00h
R6 = 0000h (manufacturer ID)

Return Parameter
R4L = value of byte read

READ DEVICE ID # 1 Input Parameters:
R0H = 00h
R6 = 0001h (device ID # 1)

Return Parameter
R4L = value of byte read

READ DEVICE ID # 2 Input Parameters:
R0H = 00h
R6 = 0002h (device ID # 2)

Return Parameter
R4L = value of byte read

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 8

API CALL PARAMETER

READ SECURITY BITS Input Parameters:
R0H = 07h
R6 = 0000h (security bits)

Return Parameter
R4L = value of byte read

READ STATUS BYTE Input Parameters:
R0H = 07h
R6 = 0001h (status byte)

Return Parameter
R4L = value of byte read

READ BOOT VECTOR Input Parameters:
R0H = 07h
R6 = 0002h (boot vector)

Return Parameter
R4L = value of byte read

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 9

APPENDIX A — Installing the WINISP Programmer Software (Win95 / Win98 / WinNT / Win3.1)

Package Contents:
There are two disks included with the installation package labeled
‘SETUP DISK 1’ and ‘SETUP DISK 2’.

Minimum System Requirements:
33 MHz, 386 processor

8 MB RAM

Win95, Win98, WinNT

Installation:

ISP software is available on the Philips web site
1. With your browser, open this page:

www.semiconductors.com

2. Enter winzip.zip into the Search box at the top of the Philips
web page.

3. Click on Microcontrollers Software support.

4. Download disk1.zip and disk2.zip.

5. Create a directory on your hard drive named WINISP.

6. Unzip the two disk files into this new directory WINISP.

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 10

, APPENDIX B — ISP Reference Design Example

SU01415

P
35

17
P

3.
5/

T
1/

B
U

S
W

P
34

16
P

3.
4/

T
0

P
33

15
IN

T
1/

P
3.

3

P
32

14
IN

T
0/

P
3.

2

P
17

9
P

1.
7/

T
2E

X

P
16

8
P

1.
6/

T
2

P
15

7
P

1.
5/

T
xD

1

P
14

6
P

1.
4/

R
xD

1

P
13

5
P

1.
3/

A
3

P
12

4
P

1.
2/

A
2

P
11

3
P

1.
1/

A
1

P
10

2
P

1.
0/

A
0/

W
R

H

10
R

S
T

V
P

P
35

E
A

/V
P

P
/W

A
IT

20
X

TA
L2

21
X

TA
L1

X
A

–G
49

 (
P

LC
C

)

U
1

22
M

H
z

P
A

R
A

LL
E

L
Y

1
2

1

2
1

C
1

C
2

27
pF

27
pF

2 1

2 1

C
15

0.
1u

F

+
5V

21 1 2

C
7

1u
F

 3
5V

12

R
1

10
K

S
1

R
S

T

P
S

E
N

32
P

S
E

N

R
X

D
11

P
3.

0/
R

X
D

0
T

X
D

13

A
LE

33
P

R
O

G
/A

LE

P
37

19
P

3.
7/

R
D

P
36

18
P

3.
6/

W
R

L

P
27

31
P

2.
7/

A
19

D
15

P
26

30
P

2.
6/

A
18

D
14

P
25

29
P

2.
5/

A
17

D
13

P
24

28
P

2.
4/

A
16

D
12

P
23

27
P

2.
3/

A
15

D
11

P
22

26
P

2.
2/

A
14

D
10

P
21

25
P

2.
1/

A
13

D
9

P
20

24
P

2.
0/

A
12

D
8

P
07

36
P

0.
7/

A
11

D
7

P
06

37
P

0.
6/

A
10

D
6

P
05

38
P

0.
5/

A
9D

5

P
04

39
P

0.
4/

A
8D

4

P
03

40
P

0.
3/

A
7D

3

P
02

41
P

0.
2/

A
6D

2

P
01

42
P

0.
1/

A
5D

1

P
00

43
P

0.
0/

A
4D

0

JP
1

P
01

2
P

03
4

P
05

6
P

07
8

+
5V

10

1
P

02
3

P
04

5
P

06
7 9 JP

2
P

11
2

P
13

4
P

15
6

P
17

8
+

5V
10

1
P

12
3

P
14

5
P

16
7 9

P
00

P
10

JP
3

P
21

2
P

23
4

P
25

6
P

27
8 10

1
P

22
3

P
24

5
P

26
7 9

P
20

JP
4

T
X

D
2

P
33

4
P

35
6

P
37

8 10

1
P

32
3

P
34

5
P

36
7 9

R
X

D

JP
5

B
U

F
F

1
2

B
U

F
F

3
4

B
U

F
F

5
6

B
U

F
F

7
8 10

1
B

U
F

F
2

3
B

U
F

F
4

5
B

U
F

F
6

7 9

B
U

F
F

0

+
5V

+
5V

U
3A

18
Y

1
16

Y
2

14
Y

3
12

Y
4

A
1

B
U

F
F

1
A

2
B

U
F

F
2

A
3

B
U

F
F

3
A

4

G

B
U

F
F

0

74
H

C
T

24
0

4 6 82 1

9
Y

1
7

Y
2

5
Y

3
3

Y
4

A
1

A
2

A
3

A
4

G 74
H

C
T

24
0

13 15 1711 19

U
3B

1 2 3 4 5 6 7 8 9 10

LE
D

1

B
U

F
F

5
B

U
F

F
6

B
U

F
F

7

B
U

F
F

4

2 3 4 5 6 7 8 9 10

+
5V

1

2

C
T

S
-7

70
-1

01
-R

47
K

-N
D

R
N

2

3

20 19 18 17 16 15 14 13 12 11

2 3 4 5 6 7 8 9 10

+
5V

C
T

S
-7

70
-1

01
-R

33
1-

N
D

1R
N

1

10
 L

E
D

S
 B

A
R

2
1

V
P

P
R

3

2K

1

A
B

C
D

U
5

LM
78

05
C

T
3

+
5V

V
C

C

2 1

C
14

0.
1u

F

2 1

C
13

0.
1u

F

21

O
U

T
IN

2

P
O

W
E

R
 J

A
C

K
 3

.5
m

m
J1

IN
N

E
R

 J
A

C
K

 =
 +

7.
5V

 to
 +

12
V

O
U

T
E

R
 R

IN
G

 =
 G

N
D

C
12

10
0u

F
 1

6V

1
1 2 3

4

A
B

T
P

2
T

P

1

T
P

1T
P

3

GND

1T
P

4
T

P G
N

D

P
H

IL
IP

S
 S

E
M

IC
O

N
D

U
C

T
O

R
S

 M
C

O
 –

 P
51

X
A

 F
LA

S
H

 IS
P

 b
oa

rd

D
oc

um
en

t N
um

be
r

Ti
tle

S
iz

e
R

ev 1
A

D
at

e:
F

rid
ay

, J
ul

y
14

, 2
00

0
S

he
et

1
of

1

E

JP
6

V
pp

 S
E

LE
C

T

+
5V

234

D

1
2 1

C
8

0.
1u

F

2 1

C
4

0.
1u

F

2 1

C
6

0.
1u

F

+
5V

U
2

M
A

X
23

2C
P

E

15
G

N
D

6
V

–

16
V

C
C

2
V

+
2

1

C
2–

C
2+

C
1–

C
1+

5431

2
1

8
R

2I
N

13
R

1I
N

G
N

D
R

2O
U

T
9

R
1O

U
T

12

T
2I

N
10

T
1I

N
11

R
X

D

G
N

D
T

X
D

14
T

1O
U

T
7

T
2O

U
T

P
1

F
E

M
A

LE
 9

0D
E

G
. D

B
9

C
3

0.
1u

F

C
5

0.
1u

F

5
9
4
8
3
7
2
6
1

U
S

E
R

 V
pp

T
P

5

V
pp

P
hi

lip
s

re
co

m
m

en
ds

 th
at

 th
is

 ju
m

pe
r

be
re

pl
ac

ed
 b

y
a

no
rm

al
ly

 o
pe

n
pu

sh
-b

ut
to

n
sw

itc
h.

H
ol

di
ng

 th
is

 s
w

itc
h

cl
os

ed
, w

hi
le

 p
re

ss
in

g
an

d
re

le
as

in
g

re
se

t,
en

te
rs

 IS
P

 m
od

e.

Y
1

E
C

R
.A

. S
oe

nn
ic

hs
en

1

12

2

P
S

E
N

*

P
3.

1/
T

X
D

0

JP
7

*

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 11

NOTES

Philips Semiconductors Application note

AN716In-circuit programming of the XA-G49 microcontroller

2000 Jul 18 12

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 07-00

Document order number: 9397 750 07329

������

�����
	����
�

	ABSTRACT
	INTRODUCTION
	XA-G49 FEATURES
	The FLASH EPROM can be programmed using three different methods:
	IN-SYSTEM PROGRAMMING (ISP)
	WINISP – The Windows In-System Programmer Utility Program
	ISP Programmer System Commands
	In-Application Programming Method
	APPENDIX A — Installing the WINISP Programmer Software (Win95 / Win98 / WinNT / Win3.1)
	APPENDIX B — ISP Reference Design Example
	Definitions
	Disclaimers

