
�������
��	���
�����
�

AN713
XA interrupts

Author: Kent Lowman 1997 Feb 10

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN713XA interrupts

Author: Kent Lowman

21997 Feb 10

CONTENTS

1. Introduction 2.

2. XA Family Interrupt Structure 3.

2.1. XA Family Interrupts 3.

2.2. The Interrupt Mask (Execution Priority) 4.

2.3. PSW Initialization 4.

2.4. Interrupt Service Data Elements 5.

2.4.1. Interrupt Stack Frame 5.

2.4.2. Interrupt Vector Table 5.

2.5. The Reset Exception Interrupt 6.

2.6. XA Interrupt Types 7.

2.6.1. Exception Interrupts 7.

2.6.2. Trap Interrupts 9.

2.6.3. Event Interrupts 10.

2.6.4. Software Interrupts 12.

3. XA-G3 Interrupt Structure 15.

3.1. XA-G3 Interrupts 15.

3.2. XA-G3 Interrupt Vectors 16.

3.2.1. Exception Interrupts 16.

3.2.2. Trap Interrupts 16.

3.2.3. Event Interrupts 17.

3.2.4. Software Interrupts 17.

3.3. XA-G3 Event Interrupts 18.

3.3.1. External Interrupts 19.

3.3.2. Timer Interrupts 20.

3.3.3. Serial Port Interrupts 20.

1. INTRODUCTION
This document will discuss the XA Interrupt Structure from two different perspectives. First we will look at the XA
Family Interrupt Structure since it is important to have an understanding of all the interrupt options available in the
XA Family. This general discussion will introduce us to all available interrupt options in the XA Family. We will
cover the details of Exception Interrupts, Trap Interrupts and Software Interrupts since these will generally be
standard across the XA Family. However, specific implementations for Event Interrupts will not be covered, since
each XA derivative may have a unique subset of Event Interrupts available.

Next we will look in detail at the XA-G3 Interrupt Structure since this is the first available member of the XA
derivative family. This discussion will cover the function and detail of all interrupts included on the XA-G3. We will
assume an understanding of the general structure and function of XA interrupts as given in the section on XA
Family Interrupts. Event Interrupts that are unique to the XA-G3 will be covered in detail.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 3

2. XA FAMILY INTERRUPT STRUCTURE
This section covers all the interrupt options available in the XA Family. It should be used as background material to
gain familiarity with the way XA interrupts function. Please refer to the sections on specific XA derivatives for
details of their individual interrupt structures.

The XA Family offers a very powerful Interrupt Structure with various levels of user programmable configuration
and control. This allows for great flexibility in various applications but does require the user to provide adequate
initialization and set-up for interrupts to function as expected. This required initialization is more detailed than that
needed for microcontrollers such as the 8051 which have a much simpler interrupt structure.

2.1. XA Family Interrupts
The XA architecture defines four kinds of interrupts. These are listed below in order of intrinsic priority:
• Exception Interrupts

• Trap Interrupts

• Event Interrupts

• Software Interrupts

Exception interrupts reflect system events of overriding importance. Examples are stack overflow, divide-by-zero,
and Non-Maskable Interrupt. Exceptions are non maskable and are always processed immediately as they occur,
regardless of the Execution Priority of currently executing code.

Trap interrupts are processed as part of the execution of a TRAP instruction. Since the Trap interrupt is
non-maskable the interrupt vector is always taken when the TRAP instruction is executed.

Event interrupts reflect less critical hardware events, such as a UART needing service or a timer overflow. These
events may be associated with some on-chip device or an external interrupt input. Event interrupts are maskable
and are processed only when their priority is higher than that of currently executing code. Event interrupt priorities
are software selectable by writing bits in the IPA (Interrupt Priority) register for each interrupt source. In this section
we will generically refer to the IPA register but in most XA derivatives this will actually be a group of registers
(IPA0–IPAn) based on the number of event interrupts available. Each event interrupt can be set to one of 16
priority levels by writing four bits in the IPA register assigned to the interrupt event. A priority level of zero
effectively disables the interrupt since the priority must be greater than the Execution Priority of the code that is
currently executing for the interrupt to be serviced.

Software interrupts are an extension of event interrupts, but are caused by software setting a request bit in a
Special Function Register or SFR. Software interrupts are also processed only when their priority is higher than
that of currently executing code. Software interrupt priorities are fixed at levels from 1 through 7. Thus code with an
Execution Priority of 8 or higher can NOT be interrupted by any of the Software Interrupts.

All forms of interrupts trigger the same sequence: First, a stack frame containing the address of the next instruction
and then the current value of the PSW (Program Status Word) is pushed on the System Stack. A vector containing
a new PSW value and a new execution address is fetched from code memory. The new PSW value entirely
replaces the old, and execution continues at the new address, e.g., at the specific interrupt service routine. Since
the execution address for the Interrupt Service Routine (ISR) is only 16 bits wide, the ISR for all XA interrupt
sources must begin in Page 0 of code memory (the first 64K byte page). This allows a faster interrupt response
time than if a full 32 bit ISR address was fetched. Notice that all XA ISR’s always begin in Page 0 of code memory
independently of whether the XA is operating in Page 0 Mode or not. Page 0 Mode is a special mode where total
XA code memory is limited to 64K bytes.

The new PSW value may include a new setting of PSW bit SM (System Mode), allowing handler routines to be
executed in System or User mode, and a new value of PSW bits IM3–IM0, reflecting the Execution Priority of the
new task. These capabilities are basic to multi-tasking support on the XA.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 4

Returns from all interrupts should in most cases be accomplished by the RETI instruction, which pops the System
Stack and continues execution with the restored PSW context. All interrupt service routines will normally be
executed in System Mode. If an RETI instruction is executed from an ISR running in User Mode an exception
interrupt will be generated.

The XA architecture contains sophisticated mechanisms for deciding when and if an interrupt sequence actually
occurs. As described below, Exception Interrupts are always serviced as soon as they are triggered. Event
Interrupts are deferred until their Execution Priority is higher than that of the currently executing code. For both
exception and event interrupts, there is a systematic way of handling multiple simultaneous interrupts. Software
Interrupts and Trap Interrupts occur only when program instructions generating them are executed, so there is no
need for conflict resolution within these two interrupt classes.

2.2. The Interrupt Mask (Execution Priority)
The PSW operating mode flags (shown below) set several aspects of the XA operating mode including the
Interrupt Mask or Execution Priority. The terms Interrupt Mask and Execution Priority are two different ways of
defining the same thing. Interrupt Mask refers to the fact that all interrupts with a priority equal to or lower than this
value are “masked” and are not allowed to occur. Execution Priority refers to the fact that for any interrupt (or task)
to be allowed to run, it must have a higher priority than the Execution Priority of the task that is currently running.
The four Interrupt Mask bits (IM3–IM0) identify the Execution Priority of the code that is currently executing. The
XA interrupt controller compares the current setting of the IM bits to the priority of any pending interrupts to decide
whether to initiate an interrupt sequence. The value 0 in the IM bits indicates the lowest Execution Priority, or fully
interruptable code. The value 15 (or 0F hexadecimal) indicates the highest Execution Priority, which is not
interruptable by maskable event interrupts. However, note that an Execution Priority of 15 does not inhibit servicing
of Exception Interrupts or Traps since these are non-maskable.

PSWH (401h) – bit addressable

SM TM RS1 RS0 IM3 IM2 IM1 IM0

PSW operating mode flags

All of the flags in the upper byte of the PSW (PSWH), except the bits RS1 and RS0 (Register Bank Select), may be
modified only by code running in system mode.

2.3. PSW Initialization
At reset, the initial XA PSW value is loaded from the reset vector located at address 0 in code memory. The initial
PSWH value sets the stage for system software initialization and its value requires great attention. PSWL contains
only status flags which do not require initialization. Therefore, the initial value of PSWL is generally of no special
system-wide importance and may be set to zero or some other value. Philips recommends that the PSW
initialization value in the reset vector sets IM3–IM0 to all 1’s so that XA initialization code is set as the highest
Execution Priority process (and therefore can not be interrupted by any source other than an exception or trap). It
is also recommended that the reset vector set the SM bit to 1, so that execution begins in System Mode. This gives
an initial PSW value of 8F00H for normal operation. At the conclusion of the user initialization code, the Execution
Priority is typically reduced, often to 0, to allow all other maskable interrupt driven tasks to run.

Here’s an example set of declarations that create the recommended initial value of PSWH:

system_mode equ 8000h
max_priority equ 0F00h
initial_PSW equ system_mode + max_priority

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 5

2.4. Interrupt Service Data Elements
There are two data elements associated with XA interrupts. The first is the stack frame created when each
interrupt is serviced. The second is the interrupt vector table located at the beginning of code memory.
Understanding the structure and contents of each is essential to the understanding of how XA interrupts are
processed.

2.4.1. Interrupt Stack Frame
A stack frame is generated, always on the System Stack, for each XA interrupt. The stack frame is stored for the
duration of interrupt service and used to return to and restore the CPU state of the interrupted code. There is one
case where this is not true. The Exception Interrupt triggered by a Reset event re-initializes the stack pointers, so
no stack frame is preserved. This makes the Reset Exception Interrupt unique since it is not terminated with an
RETI like all other XA interrupts

The stack frame in the native 24-bit XA operating mode is shown in Figure 1. Three words (6 bytes) are stored on
the stack in this case. The first word pushed is the low-order 16 bits of the current Program Counter (PC), i.e., the
address of the next instruction to be executed. The next word contains the high-order byte of the current PC. A
zero byte is used as a pad since the stack must be word aligned. Since a complete 24-bit address is stored in the
stack frame a return to any code location in the 16M byte XA address range is possible. The third word in the XA
stack frame contains a copy of the PSW at the instant the interrupt was serviced.

6 bytes 00h High byte
 of PC

SSP

SSP

Before
Interrupt

After
Interrupt

Program Memory
Vector Table

PSW (16 bits)

Lower 2 bytes of PC

SU00848

Figure 1. XA Stack Frame – Non Page 0 Mode (24 bit mode)

When the XA is operating in Page 0 Mode (SCR bit PZ = 1) the stack frame is smaller. In Page 0 Mode, only 16
address bits are used throughout the XA. The stack frame in Page 0 Mode is only four bytes since the High Byte of
the PC and the pad byte are not needed. Obviously, it is very important that stack frames of both sizes not be
mixed since this would corrupt the return address and therefore the operation of the XA. This is one reason it is
recommended that the user set the System Configuration Register (SCR) once during XA initialization to select
either Page 0 Mode or 24 bit address mode, and leave it unchanged thereafter.

2.4.2. Interrupt Vector Table
The XA uses the first 284 bytes of code memory (addresses 0 – 011B hex) for an interrupt vector table. The table
may contain up to 71 double-word entries, each corresponding to a particular interrupt event.

The double-word entries each consist of a 16 bit address of an Interrupt Service Routine (ISR) and a 16 bit PSW
replacement value. Because vector addresses are 16-bit, the first instruction of each Interrupt Service Routine
must be located in the first 64K bytes of XA memory. The first instruction of all ISR’s must also be word-aligned.
Note that this is normally handled by the XA assembler, which will insert NOP’s automatically to assure
word-alignment of ALL labels. The replacement PSW value contains key elements such as the choice of System or
User mode for the service routine, the Register Bank selection, and an Interrupt Mask setting.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 6

The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrupt vectors. The second
16 vectors are reserved for Trap Interrupts. The following 32 vectors in the table are reserved for Event Interrupts.
The final 7 vectors are used for Software Interrupts. A figure presented later will illustrate the XA vector table and
the structure of each component vector. Of the vectors assigned to Exceptions, 7 are assigned to events specific to
the XA CPU and 9 are reserved. All 16 Trap Interrupts may be used freely since none are reserved. Assignments
of Event Interrupt vectors are derivative dependent and vary with the peripheral device complement and pinout of
each XA derivative.

Unused interrupt vector locations should typically be set to point to a “null” service routine (an RETI instruction),
rather than be overwritten by executable instructions. This is especially true of the exception interrupts, since these
are non-maskable and could conceivably occur in a system where the designer did not expect them. If these
vectors are routed to an RETI instruction, the system can essentially ignore the unexpected exception or interrupt
condition and continue operation.

Note that when using some hardware development tools it may be preferable not to initialize unused vector
locations with a “null handler”. This allows the XA development tool to recognize and flag these unexpected
interrupt conditions so they can be addressed.

2.5. The Reset Exception Interrupt
Immediately after the –RST line goes high, the XA generates a Reset Exception Interrupt. As a result, the initial
PSW and address of the first instruction (the “start-up code”) are fetched from the reset vector in code memory at
location 0. Here’s an example in generalized assembler format of the setup for the Reset Exception Interrupt:

code_seg ; establish code segment
org 0h ; start at address 0

; reset_vector

dw initial_PSW ; PSW reset value – normally 8F00H
dw startup_code ; starting address of code

; the XA Interrupt Vector Table goes from 0 –011Bh in code memory

org 120h ; start code at address 120h
; (above interrupt vector table)

startup_code: . . . ; put user startup code here
. . .
. . .

; end user startup code by enabling ALL interrupts

mov.b PSWH, #80H ; PSWH run value to allow ALL interrupts
mov.b PSWL, #00H ; PSWL value is not critical

The PSWH initialization value given in this example sets System Mode (SM), selects register bank 0 (any register
bank could be used) and clears TM so that Trace Mode is inactive.

The startup_code sequence may be followed directly by user startup code or by a simple branch to any application
code. At the end of user initialization code remember to lower the Interrupt Mask value in PSWH so maskable
event interrupts can occur. Do NOT use an RETI instruction at the conclusion of the startup_code sequence even
though this is part of the Reset Exception Interrupt handler. The Reset initializes the Stack Pointer (SP) and does

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 7

not leave an interrupt stack frame. This makes the Reset Exception Interrupt unique since it is not terminated with
an RETI like all other XA interrupts.

Notice that the same Reset Exception Interrupt is generated for any of the three possible XA reset sources:

1. Hardware reset via the –RST pin

2. Software reset via the RESET instruction

3. Watchdog Timer generated reset

2.6. XA Interrupt Types
This section describes the four types of XA interrupts. It addresses interrupts that are available in the XA Family
but may or may not be present on any given XA derivative.

2.6.1. Exception Interrupts
Exception interrupts reflect events of overriding importance and are always serviced when they occur. Exceptions
currently defined in the XA core include: Reset, Breakpoint, Trace, Divide-by-0, Stack overflow, and Return from
Interrupt (RETI) executed in User Mode. Nine additional exception interrupts are reserved.

NMI is listed in the table of exception interrupts below because NMI is handled by the XA core in the same manner
as exceptions, and factors into the precedence order of exception processing. However, the vector address
reserved for NMI is actually mapped right in the middle of the Event Interrupt vector address space. This should
not cause NMI, which is a non-maskable Exception Interrupt, to be confused with the maskable Event Interrupts.
Note that NMI is part of the XA Family Interrupt Structure but is not implemented on the first XA derivative (the
XA-G3).

Since exception interrupts are by definition not maskable, they must always be serviced immediately regardless of
the Execution Priority level of currently executing code (as defined by the IM bits in the PSW). In the unusual case
that more than one exception is triggered at the same time, there is a hard-wired service precedence ranking. This
ranking determines which exception vector is taken first if multiple exceptions occur. Of course, being
non-maskable, any exception occurring during execution of the ISR for another exception will still be serviced
immediately. In this case, the exception vector taken last may be considered the highest priority, since its code will
execute first. This LIFO (Last-In-First-Out) system means that an Exception Interrupt with a higher service
precedence actually has a higher priority. Even though the Exception with the higher service precedence will be
taken last, it will still be serviced first.

Programmers should be aware of the following when writing Exception Interrupt handlers:

1. Since another exception could interrupt a stack overflow ISR, care should be taken in all exception handler
code to minimize the possibility of a destructive stack overflow. Remember that stack overflow exceptions only
occur once as the stack crosses the lower address limit of 0080h.

2. The Breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint in an emulation
system) and Trace exceptions are intended to be mutually exclusive. In both cases, the handler code will want
to know the address in user code where the exception occurred. If a breakpoint occurs during trace mode, or if
trace mode is activated during execution of the breakpoint handler code, one of the handlers will see a return
address on the stack that points within the other handler code.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 8

Exception Interrupts – Non MaskableÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Exception Interrupt
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Vector Address
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Arbitration Ranking
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Service Precedence

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Breakpoint ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0004h–0007h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trace ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0008h–000Bh ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Stack Overflow ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

000Ch–000Fh ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Divide-by-zero ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0010h–0013h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User RETI ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0014h–0017h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved1>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0018h–001Bh
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ<reserved2>

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ 001Ch–001Fh

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ––

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ––ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved3>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0020h–0023h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved4> ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0024h–0027h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–– ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved5> ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0028h–002Bh ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–– ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved6> ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 002Ch–002Fh ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–– ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved7> ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0030h–0033h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–– ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved8> ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0034h–0037h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–– ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved9>
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0038h–003Fh
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

––
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁNMI

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ009Ch–009Fh

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ6ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reset
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000h–0003h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
(High)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

7
always serviced immediately

aborts other exceptions

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 9

2.6.2. Trap Interrupts
Trap Interrupts are intended to support application-specific requirements, as a convenient mechanism to enter
globally used routines, and to allow transitions between User Mode and System Mode. TRAP 0 through TRAP 15
are defined and may be used as required by applications. Trap interrupts are generated by the TRAP instruction. A
trap interrupt will occur if and only if the instruction is executed, so there is no need for a precedence scheme with
respect to simultaneous traps. A trap acts like an immediate non-maskable interrupt, using a vector to call one of
several pieces of code that will be executed in System Mode. This may be used to obtain system services for
application code, such as altering the Data Segment register for example. Some XA development software and
Real Time Operating Systems may reserve certain Trap instructions for specific system functions. An example of
this would be the Hitech XA C compilers use of Trap 15 to access system services.

Traps – Non-MaskableÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁVector Address

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁArbitration RankingÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁTrap 0
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ0040–0043h

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁTrap 1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ0044–0047h

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 2
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0048–004Bh
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 3 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

004C–004Fh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 4 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0050–0053h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 5 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0054–0057h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 6 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0058–005Bh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 7 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

005C–005Fh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 8 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0060–0063h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 9 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0064–0067h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 10 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0068–006Bh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 11 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

006C–006Fh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 12 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0070–0073h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 13 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0074–0077h ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 14 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0078–007Bh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Trap 15 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

007C–007Fh ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1

Example of Trap Interrupt:

TRAP #05 ; generate Trap 5 Interrupt

; immediate branch to TRAP05 Interrupt Service Routine (non-maskable)

Example of ISR for a Trap Interrupt:

TRAP05: .
. user code
.
RETI

Notice that the Execution Priority (IM3–IM0 value) is not relevant since Traps are non-maskable. When the TRAP
instruction is executed the Trap Interrupt will always occur. No user action is required in the ISR to “clear” the Trap
before the RETI is executed.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 10

2.6.3. Event Interrupts
On typical XA derivatives, event interrupts will arise from on-chip peripherals and from events detected on external
interrupt input pins. Event interrupts may be globally enabled/disabled via the EA bit in the Interrupt Enable register
(IE) and individually masked by specific bits in the IE register or registers. When an event interrupt for a peripheral
device is disabled but the peripheral is not turned off, the peripheral interrupt flag can still be set by the peripheral.
If the peripheral interrupt is re-enabled an interrupt will occur. An event interrupt that is enabled can only be
serviced when its Execution Priority is higher than that of the currently executing code. Event Interrupts have 16
priority levels that can be individually set in the Interrupt Priority (IPA) register for the appropriate interrupt source.
This allows tight control over the scheduling and occurrence of each maskable XA interrupt source. If more than
one event interrupt occurs at the same time, the higher priority setting will determine which one is serviced first. If
more than one interrupt is pending at the same priority level, a hardware precedence scheme is used to choose
the first to service. Consult the data sheet for a specific XA derivative for details on the hardware precedence
scheme or arbitration ranking.

Note that the PSW (including the Interrupt Mask or Execution Priority bits) is loaded from the interrupt vector table
when an event interrupt is serviced. Thus, the priority at which the ISR executes could be different from the priority
at which the interrupt occurred. Since the occurrence priority is determined by the IPA register setting for that
interrupt rather than by the PSW image in the vector table. Normally it is advisable to set the Execution Priority in
the interrupt vector to be the same as the IPA register setting that will be used in the code. If the Execution Priority
for any ISR is set lower than the Interrupt Priority for that interrupt, then that interrupt will interrupt itself
continuously and likely overflow the stack. This can occur since most event interrupts are still pending during part
of the ISR.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 11

Event Interrupts – MaskableÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Flag Bit

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vector Address

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Enable bit

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Interrupt
Priority

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Arbitration
Ranking

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

External interrupt 0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IE0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0080–0083h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

EX0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA0.3–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer 0 interrupt
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TF0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0084–0087h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ET0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA0.7–4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁExternal interrupt 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁIE1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0088–008Bh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁEX1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁIPA1.3–0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ4ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁTimer 1 interrupt
ÁÁÁÁÁÁ
ÁÁÁÁÁÁTF1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ008C–008Fh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁET1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁIPA1.7–4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ5ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁTimer 2 interrupt
ÁÁÁÁÁÁ
ÁÁÁÁÁÁTF2(EXF2)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0090–0093h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁET2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁIPA2.3–0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ6ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ<reserved1>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0094–0097h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved2>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0098–009Bh
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
NMI (non-maskable) ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

009C–009FhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 0 Rx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RI.0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A0–00A3hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ERI0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA4.7–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 0 Tx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TI.0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A4–00A7hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ETI0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA5.3–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 1 Rx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RI.1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A8–00ABhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ERI1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA5.3–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 1 Tx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TI.1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00AC–00AFhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ETI1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA5.7–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

10

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved3> ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00B0–00B3hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved4> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00B4–00B7hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved5> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00B8–00BBhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved6> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00BC–00BFhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved7> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00C0–00C3hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved8> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00C4–00C7hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved9> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00C8–00CBhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved10> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00CC–00CFhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved11>

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00D0–00D3h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved12>

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00D4–00D7h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved13>

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00D8–00DBh
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ<reserved14>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ00DC–00DFh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ<reserved15>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ00E0–00E3h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ<reserved16>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ00E4–00E7h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ<reserved17>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ00E8h–00EBh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved18>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00EC–00EFh
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

<reserved19>
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00F0–00F3h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved20> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00F4–00F7hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved21> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00F8–00FBhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
<reserved22> ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00FC–00FFhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Notice that the vector address reserved for NMI is mapped into the Event Interrupt vector address space. This
should not cause NMI, which is a non-maskable Exception Interrupt, to be confused with the maskable Event
Interrupts. The NMI vector address is mapped into this space because NMI shares certain characteristics with the
External Interrupts. Both NMI and External Interrupts are generated by a signal on an external XA pin that is then
fed into the XA interrupt controller.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 12

2.6.4. Software Interrupts
Software Interrupts act just like event interrupts, except that they are caused by software writing to an interrupt
request bit in an SFR. The standard XA implementation of the software interrupt mechanism provides 7 interrupts
that are associated with 2 SFRs. One SFR, the Software Interrupt Request register (SWR), contains 7 request bits
– one for each software interrupt. The second SFR is the Software Interrupt Enable register (SWE), containing one
enable bit for each software interrupt.

SWR (42Ah) – bit addressable

— SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1

Software Interrupt Request

SWE (47Ah) – NOT bit addressable

— SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1

Software Interrupt Enable

Software interrupts have fixed interrupt priorities, one each at priorities 1– 7. These are shown in the table below.
Software interrupts are available in the XA Family Interrupt Structure but may not be present on all XA derivatives.
Consult the data sheet for a specific XA derivative for details on the availability of software interrupts.

Software Interrupts – Maskable
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Flag Bit ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Vector Address ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Enable Bit ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Interrupt Priority
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR1 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0100–0103 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE1 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

(fixed at 1)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0104–0107
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

(fixed at 2)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 3
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0108–010B
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

(fixed at 3)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR4
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

010C–010F
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE4
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

(fixed at 4)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁSoftware interrupt 5

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR5

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0110–0113

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ(fixed at 5)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSoftware interrupt 6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR6

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0114–0117

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE6

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ(fixed at 6)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSoftware interrupt 7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR7

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0118–011B

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE7

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ(fixed at 7)

Example of Software Interrupt:

OR.B SWE, #01 ; enable Software Interrupt 1 indirectly
; since SWE not bit addressable!

SETB SWR1 ; generate Software Interrupt 1

; branch to SWI1 Interrupt Service Routine if and only if the current Execution Priority (IM3–IM0) = 0
; if the Execution Priority of the running code is > 0, then SWI1 will NOT occur, but will remain pending

Example of ISR for a Software Interrupt:

SWI1: .
CLR SWR1 ; clear Software Interrupt 1
.
RETI

Notice that Software Interrupt 1 has a fixed priority of 1. This means that the IM3–IM0 value would need to be 0
(Execution Priority of the current executing code equal 0) for this priority 1 interrupt to occur. Any IM3–IM0 value
> 0 would block the Software Interrupt 1 from occurring. The SWR1 bit must be cleared by the user before exiting
the ISR or the Software Interrupt will re-occur.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 13

It is also important to address the Software Interrupt Request bits by their bit addressable names and not by their
bit position in SWR since they are shifted (i.e., SWR1 is SWR.0 not SWR.1). Thus it is correct to use these
instructions:

SETB SWR1 ; generate Software Interrupt 1
CLR SWR1 ; clear Software Interrupt 1

but incorrect to use these instructions:

SETB SWR.1 ; actually would generate Software Interrupt 2
CLR SWR.1 ; actually would clear Software Interrupt 2

Since the Software Interrupt Enable register is NOT bit addressable it is wise to enable Software Interrupts as
shown below (paying close attention to the actual bit position of the desired enable bit):

OR.B SWE, #01H ; enable Software Interrupt 1 indirectly
OR.B SWE, #02H ; enable Software Interrupt 2 indirectly
OR.B SWE, #04H ; enable Software Interrupt 3 indirectly
OR.B SWE, #08H ; enable Software Interrupt 4 indirectly
OR.B SWE, #10H ; enable Software Interrupt 5 indirectly
OR.B SWE, #20H ; enable Software Interrupt 6 indirectly
OR.B SWE, #40H ; enable Software Interrupt 7 indirectly

Using the “OR” instruction allows the individual Software Interrupt to be enabled without affecting the setting of the
enable bits for any other Software Interrupts.

The primary purpose of the software interrupt mechanism is to provide an organized way in which portions of the
event interrupt routines may be executed at a lower priority level than the one at which the service routine began.
An example of this would be an event Interrupt Service Routine that has been given a very high priority in order to
respond quickly to some critical external event. This ISR has a relatively small portion of code that must be
executed immediately, and a larger portion of follow-up or “clean-up” code that does not need to be completed right
away (but does not need to wait until the main software loop). Overall system performance may be improved if the
lower priority portion of the ISR is actually executed at a lower priority level, allowing other more important
interrupts to be serviced.

If the high priority ISR simply lowers its execution priority at the point where it enters the follow-up code, by writing
a lower value to the IM bits in the PSW, a situation called “priority inversion” could occur. Priority inversion
describes a case where code at a lower priority is executing while a higher priority routine is kept waiting. An
example of how this could occur by writing to the IM bits follows, and is illustrated in Figure 2.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 14

Level 10 Level 12 Priority Level 8 Return Return Return
interrupt interrupt lowered interrupt to to to main
occurs occurs IM = 5 occurs level 5 level 10 program

E
xe

cu
tio

n
P

rio
rit

y
Le

ve
l

Increasing Time

MOV.b PSWH, xxx0101

SU00849

Figure 2. Priority Inversion (No Software Interrupts)

Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at level 10. This is again
interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical portion of its code and wants to lower
the priority of the remainder of its code (the non-time critical portion) in order to allow more important interrupts to
occur. So, it writes to the IM bits, setting the execution priority to 5. The ISR continues executing at level 5 until a
level 8 event interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which also runs to
completion. When the level 5 ISR completes, the previously interrupted level 10 ISR is reactivated and eventually
completes.

It can be seen in this example that lower priority ISR code executed and completed while higher priority code was
kept waiting on the stack. This is priority inversion.

In those cases where it is desirable to alter the priority level of part of an ISR, a software interrupt may be used to
accomplish this without risk of priority inversion. The ISR must first be split into 2 pieces: the high priority portion,
and the lower priority portion. The high priority portion remains associated with the original interrupt vector. The
lower priority portion is associated with the interrupt vector for a software interrupt, in this case Software Interrupt
5. At the completion of the high priority portion of the ISR, the code sets the request bit for software interrupt 5, and
then returns. The remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becomes
the highest priority pending interrupt.

The diagram in Figure 3 shows the same sequence of events as in the example of priority inversion, except using
software interrupt 5 as just described. Note that the code now executes in the correct order (higher priority first).

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 15

15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

Level 10 Level 12 Software Level 8 Return Return Return
interrupt interrupt interrupt interrupt from from to Main
occurs occurs 5 issued, occurs, level 10, level 8, Program

return to waits for level 8 level 5
level 10 level 10 interrupt SW interrupt

completion serviced serviced

E
xe

cu
tio

n
P

rio
rit

y
Le

ve
l

Increasing Time

High priority portion
of Level 12 ISR ends
with instructions:
 SETB SWR5
 RETI

Low priority (SWI 5)
portion of the original
Level 12 ISR

SU00850

Figure 3. Correct Priority Execution with Software Interrupts

3. XA-G3 INTERRUPT STRUCTURE
This section covers only the interrupts that are implemented on the XA-G3. Recall that not all interrupt options
covered in the XA Family Interrupt Structure are available in this first XA derivative product. Our focus here will be
on the actual XA-G3 Interrupts and any differences from the XA Family Interrupts. For details on XA-G3 interrupts
that are identical to the XA Family Interrupts please refer to the appropriate section in the “XA Family Interrupt
Structure”.

3.1. XA-G3 Interrupts
The XA-G3 defines four types of interrupts:
• Exception Interrupts – These are system level errors and other very important occurrences that include Stack

overflow, Divide by 0, Breakpoint, Trace, User Mode RETI and Reset.

• Trap Interrupts – These are TRAP instructions, generally used to call system services in a multi-tasking system.

• Event Interrupts – These are peripheral interrupts from devices such as UARTs, timers, and external interrupt
inputs.

• Software Interrupts – These are equivalent to hardware event interrupts, but are requested only under software
control and have fixed priority levels.

Exception interrupts, trap interrupts, and software interrupts are generally standard for XA derivatives and are
detailed in the XA Family Interrupt Structure. Event Interrupts tend to be different on various XA derivatives and will
be explained in detail for the XA-G3.

The XA-G3 supports 38 vectored interrupt sources. These include 9 maskable Event Interrupts (for the various
XA-G3 peripherals), 7 Software Interrupts, 6 Exception Interrupts and 16 Traps.

The complete interrupt vector list for the XA-G3, including all 4 interrupt types, is shown in the following tables. The
tables include the address of the vector for each interrupt, the related priority register bits (if any), and the
arbitration ranking for that interrupt source. The arbitration ranking determines the order in which interrupts are
processed if more than one interrupt of the same priority occurs simultaneously.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 16

3.2. XA-G3 Interrupt Vectors

3.2.1. Exception Interrupts

Exceptions – Non-Maskable

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Vector Address ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Arbitration Ranking ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Service Precedence

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reset ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–0003h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0 (High) ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

7

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Breakpoint ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0004–0007h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trace ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0008–000Bh ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Stack Overflow ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

000C–000Fh ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Divide-by-0 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0010–0013h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

User RETI ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0014–0017h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

4

3.2.2. Trap Interrupts

Traps – Non-Maskable
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Vector Address ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arbitration Ranking
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 0 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0040–0043h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 1 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0044–0047h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 2 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0048–004Bh ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

004C–004Fh
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 4
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0050–0053h
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 5
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0054–0057h
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁTrap 6

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0058–005Bh

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁTrap 7
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ005C–005Fh

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁTrap 8
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0060–0063h

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁTrap 9
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0064–0067h

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 10
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0068–006Bh
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 11 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

006C–006Fh ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 12 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0070–0073h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 13 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0074–0077h ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 14 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0078–007Bh ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Trap 15 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

007C–007Fh ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 17

3.2.3. Event Interrupts

Event Interrupts – Maskable
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Flag Bit
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vector Address
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Enable bit
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Interrupt
Priority

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Arbitration
Ranking

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

External interrupt 0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IE0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0080–0083hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

EX0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA0.2–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer 0 interrupt ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TF0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0084–0087hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ET0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA0.6–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

External interrupt 1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IE1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0088–008BhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

EX1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA1.2–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer 1 interrupt ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TF1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

008C–008FhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ET1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA1.6–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer 2 interrupt ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TF2(EXF2) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0090–0093hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ET2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA2.2–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

6
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 0 Rx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RI.0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A0–00A3hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ERI0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA4.2–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 0 Tx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TI.0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A4–00A7hÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ETI0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA4.6–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 1 Rx ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RI.1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00A8–00ABhÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ERI1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA5.2–0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Serial port 1 Tx
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TI.1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

00AC–00AFh
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ETI1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

IPA5.6–4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

10

3.2.4. Software Interrupts

Software Interrupts – Maskable
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Flag Bit
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Vector Address
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Enable Bit
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Interrupt Priority
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0100–0103h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE1
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

(fixed at 1)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0104–0107h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE2
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

(fixed at 2)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁSoftware interrupt 3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0108–010Bh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE3

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ(fixed at 3)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSoftware interrupt 4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ010C–010Fh

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE4

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ(fixed at 4)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSoftware interrupt 5
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR5

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0110–0113h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE5

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ(fixed at 5)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSoftware interrupt 6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWR6

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0114–0117h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSWE6

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ(fixed at 6)ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Software interrupt 7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWR7
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0118–011Bh
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

SWE7
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

(fixed at 7)

Arbitration ranking is only relevant when more than one interrupt (from the same category) is triggered at the same
time. For example, 2 exceptions or 2 event interrupts at the same time would use the arbitration ranking to
determine which interrupt source was serviced first. The interrupt with the lower arbitration ranking will be serviced
first, and thus has a higher priority. Since this simultaneous triggering is not possible for Traps or Software
Interrupts, these two interrupt categories do not require an arbitration ranking.

Since Exceptions and Traps are non-maskable they will always occur immediately and therefore do not require an
Interrupt Priority. Exceptions and Traps may be considered to have “infinite” priority.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 18

3.3. XA-G3 Event Interrupts
The 9 maskable Event Interrupts on the XA-G3 share a global interrupt enable bit (the EA bit in the IEL register)
and each also has a separate individual interrupt enable bit (in the IEH or IEL registers). Notice that the power-up
reset value for EA and each of the separate interrupt enable bits is 0. This effectively disables each of the
maskable interrupts in two different places. For a maskable event interrupt to occur the global EA bit must be set to
“1” and the individual interrupt enable bit in the IEH/IEL register must be set for that particular interrupt source. The
interrupt enable bits were listed in the previous table of Event Interrupts along with their associated interrupt. As
shown below the interrupt enable bits are all bit addressable.

IEH (427h) – bit addressable

— — — — ETI1 ERI1 ETI0 ERI0

Interrupt Enable High Byte

IEL (426h) – bit addressable

EA — — ET2 ET1 EX1 ET0 EX0

Interrupt Enable Low Byte

In the XA-G3 each event interrupt can be set to occur at 1 of 8 priority levels via bits in the Interrupt Priority (IPA)
registers, IPA0–IPA5 . The value 0 in the IPA field gives the interrupt priority 0, in effect, disabling the interrupt.
Since the IPA0–IPA5 registers all have power-up reset values of 0, each of the event interrupts starts with a priority
of 0 and is thus disabled.

The XA-G3 differs slightly from the XA Family Interrupt Structure in the way that interrupt priority levels are set via
the IPA registers. Since only 3 of the 4 IPA register bits are implemented in the XA-G3, only 8 of the 16 possible
priority levels are available for each of the event interrupts. The value 0000h in one nibble of the IPA0–IPA5
register gives the interrupt priority 0, a value of 0001h gives the interrupt a priority of 9, the value 0010h gives
priority 10, etc. The value 0111h in one nibble of the IPA0–IPA5 register gives the interrupt priority 15. Since the
MSB or 4th bit in each nibble of the IPA0–IPA5 register is not implemented in the XA-G3, writing the value 0001h
or 1001h to the IPA register will yield the same results. The interrupt in question will be set to a priority level of 9 in
both cases. However, since the 4th bit in each nibble of the IPA0–IPA5 register is not implemented it can not be
read back if written. If 1001h is written to either nibble of the IPA0–IPA5 register and then read back, the value
returned will be 0001h.

On the XA-G3 the user may want to write any non-zero IPA value with the upper bit always set. This provides both
a reminder of the true interrupt priority and software compatibility with future XA derivatives.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 19

PT0—

Priority Timer 0

IPA0 (4A0h) PX0—

Priority External 0

PT1—

Priority Timer 1

IPA1 (4A1h) PX1—

Priority External 1

——

Reserved

IPA2 (4A2h) PT2—

Priority Timer 2

PTI0—

Priority Transmit 0

IPA4 (4A4h) PRI0—

Priority Receive 0

PTI1—

Priority Transmit 1

IPA5 (4A5h) PRI1—

Priority Receive 1

SU00851

Figure 4. Interrupt Priority Registers IPA0–IPA5

Since event interrupts in the XA-G3 only support 8 of the 16 priority levels available in the XA Family Interrupt
Structure, they can only have priorities of either 0 or 9–15. This means that Software Interrupts, with fixed priorities
of 1–7, can not be granted higher priority than any of the XA-G3 Event Interrupts.

Event interrupts in the XA-G3 can be grouped into three basic types:

1. External Interrupts

2. Timer Interrupts

3. Serial Port Interrupts

Let’s take a detailed look at each type of event interrupt.

3.3.1. External Interrupts
External interrupts available on the XA-G3 are External Interrupt 0 and External Interrupt 1. These external
interrupts are controlled by bits in the TCON register as shown below:

TCON (410h) – bit addressable

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Timer/Counter Control

External interrupts can be either falling edge triggered or low level triggered. This is controlled by the Interrupt
Type Control bits IT1/IT0. If IT1/IT0 is set to “1” then that interrupt will be set for falling edge trigger. If IT1/IT0 is set
to “0” then that interrupt will be set for low level trigger. When an external interrupt is detected it will set the
Interrupt Edge Flag IE1/IE0. If the external interrupt is enabled the setting of this flag will generate an External
Interrupt 1 or External Interrupt 0. The IE1/IE0 flag will be cleared when the interrupt is processed or it can be
cleared by software at any time.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 20

3.3.2. Timer Interrupts
Timer interrupts available on the XA-G3 are Timer 0 interrupt, Timer 1 interrupt and Timer 2 interrupt. Timer 0 and
Timer 1 interrupts are identical and are controlled by bits in the TCON register as shown below:

TCON (410h) – bit addressable

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Timer/Counter Control

The timer is turned on by setting the Timer Run Control bit TR1/TR0 to “1”. The timer is turned off by setting the
Timer Run Control bit TR1/TR0 to “0”. When the timer/counter overflows it will set the Timer Overflow Flag
TF1/TF0. If the timer interrupt is enabled the setting of this flag will generate a Timer 0 Interrupt or a Timer 1
Interrupt. The TF1/TF0 flag will be cleared when the interrupt is processed or it can be cleared by software at any
time.

Timer 2 on the XA-G3 has additional functional modes over Timer 0 and 1 that will not be discussed here. Timer 2
interrupts are controlled by bits in the T2CON register as shown below:

T2CON (418h) – bit addressable

TF2 EXF2 RCLK0 TCLK0 EXEN2 TR2 C/T2 CP/RL2

Timer/Counter Control

Timer 2 is turned on by setting the Timer Run Control bit TR2 to “1”. Timer 2 is turned off by setting the Timer Run
Control bit TR2 to “0”. When the timer/counter overflows it will set the Timer 2 Overflow Flag TF2. If the timer 2
interrupt is enabled, the setting of this flag will generate a Timer 2 Interrupt. The TF2 flag will NOT be cleared when
the interrupt is processed so it must be cleared by software or the Timer 2 interrupt will reoccur. If RCLK1/RCLK0
or TCLK1/TCLK0 are set to “1”, then the Timer 2 overflow rate is being used as a baud rate clock source for
UART0 or UART1. In this case the TF2 flag will NOT be set when the timer/counter overflows.

If Timer 2 is enabled in external capture or reload mode, a negative transition on the T2EX pin will set the Timer 2
external flag EXF2. If the Timer 2 interrupt is enabled, the setting of the Timer 2 external flag EXF2 can also
generate a Timer 2 Interrupt. The EXF2 flag will NOT be cleared when the interrupt is processed so it must be
cleared by software or the Timer 2 interrupt will reoccur.

3.3.3. Serial Port Interrupts
The two Serial Ports on the XA-G3 are identical and are called Serial Port 0 and Serial Port 1. Each Serial Port has
two interrupts – one for the transmitter and one for the receiver. Notice that this is an enhancement over the Serial
Port on the 8051 (which had only a single shared interrupt for both the transmitter and receiver). This gives the
XA-G3 a total of four interrupts for the Serial Ports:

1. Serial Port 0 Rx

2. Serial Port 0 Tx

3. Serial Port 1 Rx

4. Serial Port 1 Tx

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 21

These Serial Port interrupts are controlled by bits in identical registers called S0CON and S1CON. To avoid
confusion we will look only at S0CON as shown below:

S0CON (420h) – bit addressable

SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0

Serial Port 0 Control

The Serial Port 0 receiver is enabled by setting the Receiver Enable bit REN_0 to “1”. The Serial Port 0 receiver is
disabled by setting the Receiver Enable bit REN_0 to “0”. When a character is received by Serial Port 0 the
Receive Interrupt Flag RI_0 will be set. If the Serial Port 0 Rx interrupt is enabled the setting of this flag will
generate a Serial Port 0 Rx Interrupt. The RI_0 flag will NOT be cleared when the interrupt is processed so it must
be cleared by software or the Serial Port 0 Rx interrupt will reoccur.

When a character is transmitted by Serial Port 0 the Transmit Interrupt Flag TI_0 will be set. If the Serial Port 0 Tx
interrupt is enabled the setting of this flag will generate a Serial Port 0 Tx Interrupt. The TI_0 flag will NOT be
cleared when the interrupt is processed so it must be cleared by software or the Serial Port 0 Tx interrupt will
reoccur.

Serial Port 0 also has a Status Interrupt flag STINT0 that is contained in the Serial Port 0 Extended Status Register
(S0STAT). If the STINT0 flag is set to “1” the extended status flags are enabled and any one of them can also
generate a Serial Port 0 Rx Interrupt by setting the RI_0 flag. These extended status flags include Framing Error,
Overrun Error and Break Detect. Please refer to the XA-G3 data sheet for more details on these flags. The RI_0
flag will NOT be cleared when the interrupt is processed so it must be cleared by software or the Serial Port 0 Rx
interrupt will reoccur.

As mentioned earlier the function of the Serial Port 1 Interrupts is identical to the Serial Port 0 Interrupts and
therefore will not be covered here.

Philips Semiconductors Application note

AN713XA interrupts

1997 Feb 10 22

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1997
All rights reserved. Printed in U.S.A.

�������
��	���
�����
�

	CONTENTS
	1. INTRODUCTION
	2. XA FAMILY INTERRUPT STRUCTURE
	2.1. XA Family Interrupts
	2.2. The Interrupt Mask (Execution Priority)
	2.3. PSW Initialization
	2.4. Interrupt Service Data Elements
	2.5. The Reset Exception Interrupt
	2.6. XA Interrupt Types

	3. XA-G3 INTERRUPT STRUCTURE
	3.1. XA-G3 Interrupts
	3.2. XA-G3 Interrupt Vectors
	3.3. XA-G3 Event Interrupts

