
�������
��	���
������

AN711
µC/OS for the Philips XA

Author: Jean Labrosse 1996 Sep 06

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

Author: Jean J. Labrosse

21996 Sep 06

SUMMARY
A real-time kernel is software that manages the time of a
microprocessor or microcontroller to ensure that all time critical
events are processed as efficiently as possible. This application note
describes how a real-time kernel, µC/OS works with the Philips XA
microcontroller. The application note assumes that you are familiar
with the XA and the C programming language.

INTRODUCTION
A real-time kernel allows your project to be divided into multiple
independent elements called tasks. A task is a simple program
which competes for CPU time. With most real-time kernels, each
task is given a priority based on its importance. When you design a
product using a real-time kernel you split the work to be done into
tasks which are responsible for a portion of the problem. A real-time
kernel also provides valuable services to your application such as
time delays, system time, message passing, synchronization,
mutual-exclusion and more.

Most real-time kernels are preemptive. A preemptive kernel ensures
that the highest-priority task ready-to-run is always given control of
the CPU. When an ISR (Interrupt Service Routine) makes a
higher-priority task ready-to-run, the higher-priority task will be given
control of the CPU as soon as all nested interrupts complete. The
execution profile of a system designed using a preemptive kernel is
illustrated in Figure 1. As shown, a low-priority task is executing ➀ .

An asynchronous event interrupts the microprocessor ➁ . The
microprocessor services the interrupt ➂ which makes a high-priority
task ready for execution. Upon completion, the ISR invokes a
service provided by the kernel which decides to return to the
high-priority task instead of the low-priority task ➃ . The high-priority
task executes to completion, unless it also gets interrupted ➄ . At the
end of the high-priority task, the kernel resumes the low-priority task
➅ . As you can see, the kernel ensures that time critical tasks are
performed first. Furthermore, execution of time critical tasks are
deterministic and are almost insensitive to code changes. In fact, in
many cases, you can add low-priority tasks without affecting the
responsiveness of you system to high-priority tasks. During normal
execution, a low-priority task can make a higher-priority task ready
for execution. At that point, the kernel immediately suspends
execution of the lower priority task in order to resume the higher
priority one.

A real–time kernel basically performs two operations: Scheduling
and Context Switching. Scheduling is the process of determining
whether there is a higher priority task ready to run. When a
higher–priority task needs to be executed, the kernel must save all
the information needed to eventually resume the task that is being
suspended. The information saved is called the task context. The
task context generally consist of most, if not all, CPU registers.
When switching to a higher priority task, the kernel perform the
reverse process by loading the context of the new task into the CPU
so that the task can resume execution where it left off.

ISR

HIGH-PRIORITY TASK

LOW-PRIORITY TASK

ISR PRE-EMPTS TASK

➁

➂

ISR RETURNS TO HIGH-PRIORITY TASK

➃

➄

➅

TASK IS STILL READY-TO-RUN

TIME

➀

SU00769

Figure 1.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 3

THE PHILIPS XA AND REAL–TIME KERNELS
The XA has a number of interesting features which makes it
particularly well suited for real–time kernels.

When you use a kernel, each task requires its own stack space. The
size of the stack required for each task is application specific but
basically depends on function call nesting, allocation of local
variables for each function and the worst case interrupt
requirements. Unlike other processors, the XA provides two stack
spaces: a System Stack and a User Stack. The System Stack is
automatically used when processing interrupts and exceptions. The
User Stack is used by your application tasks for subroutine nesting
and storage of local variables. The most important benefit of using
two stacks is that you don’t need to allocate extra space on the
stack of each task to accommodate for interrupt nesting. This
feature greatly reduces the amount of RAM needed in your product.
With the XA, the total amount of RAM needed just for stacks is given
by:

TotalRAMStack � ISRStackMax � �
n

i�1

TaskStacki

The XA divide its 16 MBytes of data address into 256 segments of
64 Kbytes. The stack for each task can be isolated from each other
by having them reside in their own segment. The XA protects each
stack by preventing a task from accessing another task’s stack. This
feature can prevent an errant task from corrupting other tasks.

Scheduling and task–switching can eat up valuable CPU time which
directly translates to overhead. A processor with an efficient
instruction set such as that found on the XA helps reduce the time
spent performing scheduling and context switching. For instance,
the XA provides two instructions to PUSH and POP multiple

registers onto and from the stack, respectively. This feature makes
for a fast context switch because all seven registers (R0 through R6)
can be saved and restored onto and from the stack in just 42 clock
cycles whereas it would take 70 clock cycles to perform the same
function with individual PUSH and POP instructions.

µC/OS
µC/OS (pronounced micro C OS) is a portable, ROMable,
preemptive, real–time, multitasking kernel and can manage up to 63
tasks. The internals of µC/OS are described in my book called:
µC/OS, The Real–Time Kernel [1]. The book also includes a floppy
disk containing all the source code. µC/OS is written in C for sake of
portability, however, microprocessor specific code is written in
assembly language. Assembly language and microprocessor
specific code is kept to a minimum. µC/OS is comparable in
performance with many commercially available kernels. The
execution time for every service provided by µC/OS (except one) is
both deterministic and constant. µC/OS allows you to:

• Create and manage up to 63 tasks,

• Create and manage binary or counting semaphores,

• Delay tasks for integral number of ticks,

• Lock/Unlock the scheduler,

• Change the priority of tasks,

• Delete tasks,

• Suspend and resume tasks and,

• Send messages from an ISR or a task to other tasks.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 4

USING µC/OS
µC/OS requires that you call OSInit() before you start using any
of the other services provided by µC/OS. After calling OSInit()
you will need to create at least one task before you start multitasking
(i.e., before calling OSStart()). All tasks managed by µC/OS
needs to be created . You create a task by simply calling a service
provided by µC/OS (described later). You need to create each task
in order to prepare them for multitasking. If you want, you can create
all your tasks before calling OSStart() . Once multitasking starts,
µC/OS will start executing the highest priority task that has been
created. You should note that interrupts will be enabled as soon as
the first task starts execution. Your main() function will thus look as
shown in Figure 2.

A task under µC/OS must always be written as an infinite loop as
shown in Figure 3. When your task first executes, it will be passed
an argument (pdata) which can be made to point to task specific
data when the task is created. If you don’t use this feature, you
should simply equate pdata to pdata as shown below to prevent
the compiler from generating a warning. Even though a task is an
infinite loop, it must not use up all of the CPU’s time. To allow other
tasks to get a chance to execute, you have to write each task such
that the task either suspends itself until some amount of time
expires, wait for a semaphore, wait for a message from either
another task or an ISR or simply suspend itself indefinitely until
explicitly resumed by another task or an ISR. µC/OS provides
services to accomplish this.

A task is created by calling the OSTaskCreate() function.
OSTaskCreate() requires four arguments as shown in the
function prototype of Figure 4.

task is a pointer to the task you are creating. pdata is a pointer to
an optional argument that you can pass to your task when it begins
execution. This feature allows you to write a generic task which is
personalized based on arguments passed to it. For example, you
can design a generic serial port driver task which gets passed a
pointer to a structure defining the ports parameters such as the
address of the port, its interrupt vector, the baud rate etc. pstk is a
pointer to the task’s top–of–stack. Finally, prio is the task’s priority.
With µC/OS, each task must have a unique priority. The smaller the
priority number, the more important the task is. In other words, a
task having a priority of 10 is more important than a task with a
priority of 20.

With µC/OS, each task can have a different stack size. This feature
greatly reduces the amount of RAM needed because a task with a
small stack requirement doesn’t get penalized because another task
in your system requires a large amount of stack space. You should

note that you can locate a task’s stack just about anywhere in the
XA’s address space. This is accomplished by specifying the task’s
top–of–stack through a constant (or a #define) as shown in the two
examples of Figure 5.

Here, I located task1’s stack at the top of page 0 while task2’s stack
will start at offset 0xF700 of page 7 and grow downwards from there.
When locating stacks using constants, you must be careful that the
linker does not locate data at these memory locations. If needed,
you can also locate the stacks of multiple tasks in the same page
using the same technique.

OSTaskCreate() returns a value back to its caller to notify it about
whether the task creation was successful or not. When a task is
created, µC/OS assigns a Task Control Block (TCB) to the task.
The TCB is used by µC/OS to store the priority of the task, the
current state of the task (ready, waiting for an event, delayed, etc.),
the current location of the task’s top–of–stack and, other kernel
related data.

Table 1 shows the function prototypes of the services provided by
µC/OS, V1.09. The prototypes are shown in tabular form for sake of
discussion. The actual prototype of OSTimeDly() for example is
actually:

void OSTimeDly(UWORD ticks);

You will notice that every function starts with the letters ‘OS’. This
makes it easier for you to know that the function call is related to a
kernel service (i.e., an Operating System call). Also, the function
naming convention groups services by functions: ‘OSTask...’ are
task management functions, ‘OSTime...’ are time management
functions, etc. Another item you should notice is that non–standard
data types are in upper–case: UBYTE, UWORD, ULONG and
OS_EVENT. UBYTE, UWORD and ULONG represent an
unsigned–byte (8–bit), an unsigned–word (16–bit), and an
unsigned–long (32–bit), respectively. OS_EVENT is a typedef’ed
data structure declared in UCOS.H and is used to hold information
related to semaphore, message mailboxes and message queues.
Your application will in fact have to declare storage for a pointer to
this data structure as follows:

far OS_EVENT *MySem;

The ‘far’ attribute is specific to the HI–TECH compiler (described
later) and indicates that the pointer MySem will be able to access the
OS_EVENT data structure which may be located in another bank.
OS_EVENT is used in the same capacity as the FILE data–type
used in standard C library. OSSemCreate(), OSMboxCreate() and
OSQCreate() return a pointer which is used to identify the
semaphore, mailbox or queue, respectively.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 5

void main(void)
{
 /* Perform XA Initializations */
 OSInit();
 /* Create at least one task by calling OSTaskCreate() */
 OSStart();
}

SU00770

Figure 2.

void UserTask(far void *pdata)
{
 pdata = pdata;
 /* User task initialization */
 while (1) {
 /* User code goes here */
 /* You MUST invoke a service provided by µC/OS to: */
 /* ... a) Delay the task for ‘n’ ticks */
 /* ... b) Wait on a semaphore */
 /* ... c) Wait for a message from a task or an ISR */
 /* ... d) Suspend execution of this task */
 }
}

SU00771

Figure 3.

UBYTE OSTaskCreate(void (*task)(far void *pd),
 far void *pdata,
 far void *pstk,
 UBYTE prio);

SU00772

Figure 4.

UBYTE OSTaskCreate(task1, pdata1, (far void *)0x00FFFE, prio1);
UBYTE OSTaskCreate(task2, pdata2, (far void *)0x07F700, prio2);

SU00773

Figure 5.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 6

Table 1. µC/OS V1.09
Philips XA, Large Model

RETURN VALUE FUNCTION NAME ARGUMENT #1 ARGUMENT #2 ARGUMENT
#3

ARGUMENT
#4

CALLED
FROM...

Initialization

void OSInit void – – – main()

void OSStart void – – – main()

Task Management

UBYTE OSTaskCreate void (task)(far void *pd) far void *pdata far void *pstk UBYTE prio main() or Task

UBYTE OSTaskDel UBYTE prio – – – Task

UBYTE OSTaskDelReq UBYTE prio – – – Task

UBYTE OSTaskChangePrio – – Task

UBYTE OSTaskSuspend UBYTE prio – – – Task or ISR

UBYTE OSTaskResume UBYTE prio – – – Task or ISR

void OSSchedLock void – – – Task or ISR

void OSSchedUnlock void – – – Task or ISR

Time Management

void OSTimeDly UWORD ticks – – – Task

UBYTE OSTimeDlyResume UBYTE prio – – – Task

void OSTimeSet ULONG ticks – – – Task or ISR

ULONG OSTimeGet void – – – Task or ISR

Semaphore Management

far OS_EVENT * OSSemCreate UWORD value – – – Task

UWORD OSSemAccept far OS_EVENT *pevent – – – Task or ISR

UBYTE OSSemPost far OS_EVENT *pevent – – – Task or ISR

void OSSemPend far OS_EVENT *pevent UWORD timeout UBYTE *err Task

Message Mailbox Management

far OS_EVENT * OSMboxCreate far void *msg – – – Task

far void * OSMboxAccept far OS_EVENT *pevent – – – Task or ISR

UBYTE OSMboxPost far OS_EVENT *pevent far void *msg – – Task or ISR

far void * OSMboxPend far OS_EVENT *pevent UWORD timeout UBYTE *err – Task

Message Queue Management

far OS_EVENT * OSQCreate far void **start UBYTE size – – Task

far void * OSQAccept far OS_EVENT *pevent – – – Task or ISR

UBYTE OSQPost far OS_EVENT *pevent far void *msg – – Task or ISR

far void * OSQPend far OS_EVENT *pevent UWORD timeout UBYTE *err – Task

Interrupt Management

void OSIntEnter void – – – ISR

void OSIntExit void – – – ISR

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 7

µC/OS AND THE PHILIPS XA
µC/OS (V1.09) was ported to the XA using the HI–TECH C XA tool
chain and the complete source code for both µC/OS and the port to
the XA’s Large Memory Model are available from Philips
Semiconductors, Inc. The large memory model allows you to write
very large applications (up to 16 Mbytes of code) and access a lot of
data memory (up to 16 Mbytes). The XA port has been tested on the
Future Design, Inc. XTEND–G3 evaluation board and the test code
provided with the port is assumed to run on this target. The test
code can, however, be easily modified to support other
environments. The large model requires that your XTEND board has
at least two pages of data RAM. In other words, you must have
more than 64K bytes of RAM in the XA’s addressable data area.
This can be easily accomplished by replacing the two 32K bytes
data RAM chips with two 128K bytes chips.

A number of assumptions have been made about how µC/OS uses
the XA. µC/OS will run the XA in Native Mode. This allows the
compiler to use as many new features of the XA as possible and
does not make any effort to be backwards compatible with the
80C51.

Your application code and most of µC/OS services will be executing
in User mode. The XA will automatically be placed in System mode
when either an interrupt or an exception occurs or, when µC/OS
performs a context switch. Each of your application task will require
its own stack space in Banked RAM while all interrupts will share
the system mode stack. µC/OS allows you to specify a different
stack size for each task. In other words, µC/OS doesn’t require that
the stack for each task be the same size. This feature prevents you
from wasting valuable RAM when the stack requirements for each
task varies.

µC/OS will only manipulate the registers in bank #0. If your
application code changes register bank, you will need to ensure that
your code restores register bank #0 prior to using any of µC/OS’s
services.

µC/OS requires a periodic interrupt source to maintain system time
and provide time delay and timeout services. This periodic interrupt
is called a System Tick and needs to occur between 10 and 100
times per second. The system tick can be generated by using any of
the XA’s three internal timers or externally through the INT0 or INT1
inputs. For lack of a better choice, I used timer #0 and configured it
for a 100 Hz tick rate. The tick interrupt vectors to an assembly
language function called OSTickISR . If you application requires the
use of all of the XA’s timers then you will have to find another source
for the ‘ticker’. For example, if your system is powered from a power
grid, you can bring the line frequency (50 or 60 Hz) in through either
INT0 or INT1.

µC/OS also requires one of the 16 TRAP vectors in order to perform
a context switch. I decided to use TRAP #15 which is defined in the
C macro OS_TASK_SW(). A context switch will force the XA into
system mode and push the return address and the PSW onto the
system stack.

As previously mentioned, you must prepare your tasks for
multitasking by calling OSTaskCreate() . OSTaskCreate()
builds the stack frame for the task being created as illustrated in
Figure 6. DS:USP indicates that once the task gets to execute, the
stack will be located in the bank selected by the DS register at an
offset supplied by the USP. You should note that pointers in the large
model are 32–bits but, only the least significant 24 bits are used.
OSTaskCreate() first sets up the stack to make it look as if your
task has just been called by another C function ➀ . In other words,
when your task first executes, it will think it was called by another
function since the stack pointer will point as shown in ➁ .
OSTaskCreate() then simulates the stacking order of a
PUSHU R0–R6 instruction ➂ which is needed for a context switch.
The initial value of each register is set to the values shown for
debugging purposes and can thus be changed as needed. Next,
OSTaskCreate() stacks both the ES register and the SSEL
register ➃ . Even though both the ES and SSEL registers are 8–bit,
they are stacked as two 16–bit values because all XA stacking
operations are 16–bit. The SSEL register is initialized to 0x80 to
allow your task to read and write data anywhere in the 16–MBytes
data address space. You may not want to change the initial value of
the SSEL register because the compiler will not know that write
through the ES register is not allowed (run–time) but, it will generate
code (compile–time) as if it was. During an interrupt or a context
switch, the XA pushes the PC and the PSW onto the system stack.
The stacking order of these registers as shown on the stack frame
of Figure 6 is reversed because OSTaskCreate() simulates a
move of these registers from the system stack to the user stack ➄ .

As previously mentioned, multitasking starts when you call
OSStart() . Figure 7 illustrates the process. OSStart() finds the
TCB of the highest priority task that you created, loads the pointer
OSTCBHighRdy to point to that TCB ➀ and calls the assembly
language function OSStartHighRdy . OSStartHighRdy loads the
USP and the DS register from the task’s TCB ➁ and then moves the
start address of your task, along with the PSW from the user stack
to the system stack ➂ . OSStartHighRdy then pops the remaining
registers from the user stack ➃ and finally, OSStartHighRdy
executes a return from interrupt which loads the PC and PSW from
the system stack ➄ into the XA. Because the PSW was initialized to
0x0000, the XA will now execute the first instructions of your task in
user mode with all interrupts enabled.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 8

void *data (00:B23..B16)

HIGH Memory

DS:USP+30

void *data (B15..B0)DS:USP+28

*task (B15..B0)DS:USP+26

*task (00:B23..B16)DS:USP+24

R6 = 0x6666DS:USP+22

R5 = 0x5555DS:USP+20

R4 = 0x4444DS:USP+18

R3 = 0x3333DS:USP+16

R2 = 0x2222DS:USP+14

R1 = 0x1111DS:USP+12

R0 = 0x0000DS:USP+10

ES = 0xEEEEDS:USP+8

SSEL = 0x8080DS:USP+6

PSW = 0x0000DS:USP+4

*task (00:B23..B16)DS:USP+2

*task (B15..B0)DS:USP+0

16-Bit

➀ Simulated call to your task

➁

➂ Simulated PUSHU R0–R6 instruction

➃ ES and SSEL registers

➄ PC and PSW registers

LOW Memory

Top Of Stack (TOS)

PUSH

POP

SU00774

Figure 6.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 9

*data (00:B23..B16)

HIGH Memory

*data (B15..B0)

*task (B15..B0)

*task (00:B23..B16)

R6 = 0x6666

R5 = 0x5555

R4 = 0x4444

R3 = 0x3333

R2 = 0x2222

R1 = 0x1111

R0 = 0x0000

ES = 0xEEEE

SSEL = 0x8080

PSW = 0x0000

*task (00:B23..B16)

*task (B15..B0)

LOW Memory

User Stack
(Page ‘x’)

R6

R5

R4

R3

R2

R1

R0

USP (R7�)

PSW

PC

SSP (R7)

DS

CS

00

SSEL

ES

➀

➁

➂

➃

➄

XA Registers

SP (00:B23..B16)

SP (B15..B0)

TCB

PC (B15..B0)

PC (00:B23..B16)

PSW

System Stack
(Page 0)

OSTCBHighRdy

SU00775

Figure 7.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 10

CONTEXT SWITCHING WITH µC/OS
Because µC/OS is a preemptive kernel, it always executes the
highest priority task that is ready to run. As your tasks execute they
will eventually invoke a service provided by µC/OS to either wait for
time to expire, wait on a semaphore or wait for a message from
another task or an ISR. A context switch will result when the
outcome of the service is such that the currently running task cannot
continue execution. For example, Figure 8 shows what happens
when a task decides to delay itself for a number of ticks. In ➀ , the
task calls OSTimeDly() which is a service provided by µC/OS.
OSTimeDly() places the task in a list of tasks waiting for time to
expire ➁ . Because the task is no longer able to execute, the
scheduler (OSSched()) is invoked to find the next most important
task to run ➂ . A context switch is performed by issuing a TRAP #15
instruction ➃ . The function OSCtxSw() is written entirely in
assembly language because it directly manipulates XA registers. All
execution times are shown assuming a 24 MHz crystal and the large
model. The highest priority task executes at the completion of the
XA’s RETI instruction ➄ .

The work done by OSCtxSw() is illustrated in Figure 9. The
scheduler loads OSTCBHighRdy with the address of the new task’s

TCB ➀ before invoking OSCtxSw() which is done through the
TRAP #15 instruction. OSTCBCur already points to the TCB of the
task to suspend. The TRAP #15 instruction automatically pushes
the return address and the PSW onto the system stack ➁ .
OSCtxSw() starts off by saving the remainder of the XA’s registers
onto the user stack ➂ and then, moves the saved PSW and PC from
the system stack to the user stack ➃ . The final step in saving the
context of the task to be suspended is to store the top-of-stack into
the current task’s TCB ➄ . The second half of the context switch
operation restores the context of the new task. This is performed in
the following four steps. First, the user stack pointer is loaded with
the new task’s top–of–stack ➅ . Second, the PC and PSW of the task
to resume is moved from the user stack to the system stack ➆ .
Third, the remainder of the XA’s registers are restored from the user
stack ➇ . Finally, a return from interrupt instruction (RETI) is
executed ➈ to retrieve the new task’s PC and PSW from the system
stack which causes the new task to resume execution where it left
off. As shown in Figure 7, a context switch for the large model takes
only about 10µs at 24MHz.

TIME

10µs25µs20µs

TASK READY-TO-RUN

RETI

TRAP #15

TASK SUSPENDED UNTIL TIME DELAY EXPIRES

55µs

➀

➁

➂

➃

➄

Task calls OSTimeDly()

µC/OS: OSTimeDly()

µC/OS: OSSched()

µC/OS: OSCtxSw()

Next highest priority task

SU00776

Figure 8.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 11

R6

HIGH Memory

R5

R4

R3

R2

R1

R0

ES

SSEL

PSW

PC (00:B23..B16)

PC (B15..B0)

LOW Memory

User Stack
(Page ‘x’)

R6

R5

R4

R3

R2

R1

R0

USP (R7�)

PSW

PC

SSP (R7)

DS

CS

00

SSEL

ES

➁

➂

➀

XA Registers

SP (00:B23..B16)

SP (B15..B0)
PC (B15..B0)

PC (00:B23..B16)

PSW

System Stack
(Page 0)

OSTCBHighRdy

R6

HIGH Memory

R5

R4

R3

R2

R1

R0

ES

SSEL

PSW

PC (00:B23..B16)

PC (B15..B0)

LOW Memory

User Stack
(Page ‘y’)

➇

SP (00:B23..B16)

SP (B15..B0)

Low Priority
Task Control Block

(TCB)

OSTCBCur

➄

➃

High Priority
Task Control Block

(TCB)

➅

➈

➆

SU00777

Figure 9.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 12

INTERRUPT SERVICE ROUTINES (ISRS) AND
µC/OS
Under µC/OS, you must write your ISRs in assembly language as
shown in Figure 10. This code assumes you are using the HI–TECH
C compiler and assembler. You must always save all the registers at
the beginning of the ISR and restore them at the completion of the
ISR. You must also always notify µC/OS when you are starting to
process an ISR by calling OSIntEnter() . OSIntEnter() simply
increments an interrupt nesting counter and thus takes very little
time to execute. You can either process the interrupting device
direcly in assembly language or, call a C handler as shown in
Figure 9. Note that you are responsible for clearing the interrupt.
When you are done processing the interrupt, you must call
OSIntExit() . OSIntExit() decrements the nesting counter
and, when the nesting counter reaches 0, all interrupts have nested
and the scheduler is invoked to determine whether the ISR needs to
return to the interrupted task or, whether a higher priority task has
been made ready to run by one of the ISRs. If there is a higher

priority task, µC/OS will need to perform a context switch to return to
the more important task.

The stack frames (system and user) during an interrupt is shown in
Figure 11. Items ➀ , ➁ and ➂ are performed at the beginning of your
ISR. When you call OSIntExit() , the return address is pushed
onto the system stack. OSIntExit() creates a local variable on
the stack by saving R4. If a context switch is needed,
OSIntExit() calls OSIntCtxSw() which also causes its return
address to be pushed onto the stack. In order for OSIntCtxSw() to
properly perform a context switch, the stack pointer (R7) needs to
be adjusted so that it points as shown in Figure 11, ➃ . The
adjustment value of the stack pointer depends on the compiler
model and the compiler options selected. The value is, however, at
least 8 (for the large model) because of the two return addresses. If
your application crashes you may want to make sure that you have
the proper value for this constant. The rest of the context switch is
exactly the same as previously discussed.

signat _YourISR,24
global _OSIntEnter
global _YourISRHandler
global _OSIntExit

_YourISR:
pushu r0,r1,r2,r3,r4,r5,r6 ; Save R0 through R6
pushu.b 442h ; Save ES
pushu.b 403h ; Save SSEL
pop r2 ; Move PSW to user stack
pushu r2
pop r2 ; Move PCH to user stack
pushu r2
pop r2 ; Move PCL to user stack
pushu r2

;
fcall _OSIntEnter ; Notify uC/OS of ISR begin
mov.b 401h,#80h ; Allow interrupt nesting
fcall _YourISRHandler ; Call your C ISR handler
fcall _OSIntExit ; Notify uC/OS of ISR end

;
popu r2 ; Move PCL to system stack
push r2
popu r2 ; Move PCH to system stack
push r2
popu r2 ; Move PSW to system stack
push r2
popu.b 403h ; Restore SSEL
popu.b 442h ; Restore ES
popu r0,r1,r2,r3,r4,r5,r6 ; Restore R0 through R6

;
reti ; Return from Interrupt

SU00778

Figure 10.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 13

R6

HIGH Memory

R5

R4

R3

R2

R1

R0

ES

SSEL

PSW

PC (0:B23..B16)

PC (B15..B0

LOW Memory

User Stack
(Page ‘x’)

R6

R5

R4

R3

R2

R1

R0

USP (R7�)

PSW

PC

SSP (R7)

DS

CS

00

SSEL

ES

➂

➁

➄

XA Registers

PC (B15..B0)

PC (00:B23..B16)

R4

System Stack
(Page 0)

PC (B15..B0)

PC (00:B23..B16)

PC (B15..B0)

PC (00:B23..B16)

R4

+10

➃

FCALL to OSIntExit()

Local variable

FCAL to OSIntCtxSw()

SU00779

Figure 11.

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 14

REFERENCES

[1] µC/OS, The Real–Time Kernel
Jean J. Labrosse
R&D Books, 1992
ISBN 0–87930–444–8

[2] Embedded Systems Building Blocks, Complete and
Ready–to–Use Modules in C
Jean J. Labrosse
R&D Books, 1995
ISBN 0–87930–440–5

[3] 16–bit 80C51XA Microcontrollers (eXtended Architecture)
Philips Semiconductors, Inc.
Data Book IC25, 1996

CONTACTS

HI–TECH Software
P.O. Box 103 Alderley
QLD 4051, Australia
+61 7 3300 5011
+61 7 3300 5246 (FAX)
WEB: http://www.hitech.com.au
e–mail: hitech@hitech.com.au

Jean J. Labrosse
9540 N.W. 9th Court
Plantation, FL 33324
954–472–5094
e–mail: 72644.3724@compuserve.com

Philips Semiconductors, Inc.
811 E. Arques Avenue
Sunnyvale, CA 94088–3409
(408) 991–2000
WEB: http://www.semiconductors.philips.com
FTP: ftp://ftp.ibsystems.com/pub/philips–mcu/bbs/xa/rtos
BBS: 800–451–6644 or 408–991–2406

or +31–40–2721102 (Europe)
9600 Baud, 8 bits, no–parity, 1 stop

Filename: UCOS_XA.EXE (MS–DOS self–extracting)
Instructions: From the root directory of the drive on which

you want µC/OS, type: UCOS_XA

R&D Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046–9950
(913) 841–1631
(913) 841–2624 (FAX)
WEB: http://www.rdbooks.com
e–mail: rdorders@rdpub.com

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

1996 Sep 06 15

NOTES

Philips Semiconductors Application note

AN711µC/OS for the Philips XA

�������
��	���
������

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips
Semiconductors reserves the right to make changes at any time without notice in order to improve design
and supply the best possible product.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

DEFINITIONS

Data Sheet Identification Product Status Definition

Objective Specification

Preliminary Specification

Product Specification

Formative or in Design

Preproduction Product

Full Production

This data sheet contains the design target or goal specifications for product development. Specifications
may change in any manner without notice.

This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes
at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

457041/5M/FP/0996/pp16 Date of release: 09-96

Document order number: 9397 750 01178

	SUMMARY
	INTRODUCTION
	THE PHILIPS XA AND REAL–TIME KERNELS
	mC/OS
	USING mC/OS
	mC/OS AND THE PHILIPS XA
	CONTEXT SWITCHING WITH mC/OS
	INTERRUPT SERVICE ROUTINES (ISRS) AND mC/OS
	REFERENCES
	CONTACTS
	DEFINITIONS

