
�������
��	���
������

AN710
Implementing fuzzy logic control
with the XA

Author: Zhimin Ding 1996 Dec 30

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

Author: Zhimin Ding

21996 Dec 30

ABSTRACT
Most control applications involve the specification of a relationship
between sensor signals and actuator outputs. Fuzzy logic provides
an intuitive way to accomplish that. It allows the user to use
linguistic rules to specify a nonlinear mapping between sensor
signals and actuator outputs, thus provide a framework for
programing an embedded system. Using a multi-joint robot system
as a testbed, we implemented fuzzy logic on an 8051 compatible
16-bit microcontroller—the XA. The robot controlled by the XA
running the fuzzy logic algorithm is able to carry out a goal-directed
motor sequencing behavior. An 8XC552 is also used to directly
interface with the robot and communicate with the XA through I2C.
In addition to carrying out AD/PWM conversions, the ’552 also
implements multiple loops of linear feedback for servo positioning
and compliance control. This application note will demonstrate the
implementation of Fuzzy Logic in an embedded control solution
using the Philips XA microcontroller.

INTRODUCTION
Fuzzy logic was originally created as a mathematical model of
human thought. It is said that fuzzy logic is able to capture the
“vagueness” and “inexactness” of the concepts that we use for
reasoning. In the past few decades or so, the main area of success
with fuzzy logic has been in industry control. The application of fuzzy
logic allows us to specify the relationship between sensor inputs and
actuator outputs using “if...then...” type of linguistic rules. A fuzzy
logic algorithm would be able to translate or interpolate these rules
into a nonlinear mapping between sensor input signals and actuator
outputs for feedback control [1]. Fuzzy logic makes it easy for a
human designer to fine tune a control system through trial and error.
Together with some other approaches such as artificial neural
networks, genetic algorithm, etc., fuzzy logic is considered a useful
tool for non-model based control system design1.

There are a number of software products available that would allow
the user to design a fuzzy controller interactively with a special
graphic user interface (GUI). These tools would usually generate C
codes which can to be modified to fit into a user target platform. If
you have to determine the parameters of your fuzzy logic control
system on trial-and-error basis, it is certainly desirable to have some
kind of graphic user interface so that you do not have to go into your
code and make modification here and there.

As the number of inputs to a control system increases, the number
of potential useful fuzzy rules increases dramatically and it becomes
increasingly desirable to use some kind of automated method for
rule synthesizing. There are a variety of such methods for doing this
and active research is being carried out in this area currently. For
example, the combination of fuzzy logic with artificial neural

networks, genetic algorithm and learning automata have proved to
be effective in many applications.

In this application note, I will demonstrate the use of fuzzy logic in
the XA. With a two-joint robot system as the testbed, I will discuss
how to use fuzzy logic to tackle a specific control problem as well as
some general programming issues related to the XA. Instead of
exploring all the options that are out there, I will focus on one
effective solution in this application note to get the readers quickly
acquainted with the technique.

ROBUST CONTROL OF A “BUG”-LIKE
ROBOT LEG
Figure 1 is a diagram of the robot leg. It is powered by two
gearmotors and it has a passive foot-like structure at the end of the
distal segment. We call the distal segment the “tibia”, and the
proximal segment the “femur” after animals. The behavioral purpose
of this robot is to grab an object within the space it can reach. The
location of the object is unknown to the robot and changing
periodically. This is very similar to a situation when an insect walking
over a very rough terrain is trying to find an object (such as a tree
branch or twig) to grab onto as a foothold. In this design, range
sensing such as vision is not involved in the search of the object, as
is the case with insects. Insects have developed a behavior shown
in Figure 2 where they use their legs as probes to actively sense
where the object is and then establish a foothold onto it through a
simple reflex [2]. The active sensing reflex makes the
“substrate-finding” behavior quite robust.

The robot is equipped with two potentiometers which give us angular
position readings for the two joints. On the two segments of the leg,
strain gauges are pasted as force or touch sensors. The two strain
gauges that are pasted near the junction of each actuator and the
corresponding leg segment give us indications of the output torque
of the two actuators. Three additional strain gauges are pasted
along the distal segment (the tibia). These strain gauge readings
can be decoded to determine where the touch between the leg and
a external object has occurred. One of the strain gauges is pasted at
the foot ankle region to signal foothold.

Our purpose of controlling this leg is to replicate the
“substrate-finding” behavior described above in a robust and reliable
fashion (Figure 2). The challenge of this control problem lies in the
fact that the position and touch sensors do not passively tell where
the object is. The robot has to carry out active search movement to
find out where the object is. In such a case, there is no way to
linearly combine the sensor signals (or their derivatives and
integrations) to produce the desired motor movement as in PID
control. It is therefore an ideal application for us to try out fuzzy
logic.

1. Non-model based design is a design that does not depend on a mathematical description of the plant dynamics.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 3

SIGN OF THE JOINT ANGLES

SERVO MOTOR 1

“FEMUR”

STRAIN GAUGES
(STRESS SENSOR)

TOUCH SENSOR 2

TOUCH SENSOR 1

FOOT STRESS

BUILT IN POTENTIOMETERS
(ANGLE SENSOR)SERVO MOTOR 2

“TIBIA”

SU00803

Figure 1. A two-joint robot leg.
For each axis, there is a potentiometer for angle sensing and a pair of strain gauges to measure the output torque. Additionally, there are three
strain gauges on the tibia to measure the stress caused by touch or foot load. A third servo can be added to this leg to make it three degrees of
freedom.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 4

a.

b.

SU00804

Figure 2. Digitized robot leg movement trajectories from the “substrate-finding’ ’ behavior.
a. The leg encounters an object during the downward sweep of a search cycle; once contact is made, the leg slips up until it just clears

the object and then comes back down to establish a foothold.
b. The leg encounters the object during the upward sweep of a search cycle. This is a typical nonlinear control problem because one

could not linearly combine the sensor signals and get the actuator output values as shown in the figure.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 5

OUTLINE OF OUR APPROACH
As illustrated in Figure 3, two Philips microcontrollers on an I2C-bus
are used to control this robot. Firstly, an 8-bit 8XC552
microcontroller is used to interface directly with the robot. In addition
to carrying out the necessary A/D and PWM functions for sensor
and actuator interface, this 8-bit microcontroller also implements
position and force feedback to shape the actuator dynamics so it
becomes a position servo with proper compliance and damping
properties. This is very important because the compliance in the
actuators allows the robot to carry out contact based maneuvers
stably and reliably. Together with the sensors and actuators of the
robot leg, the 8XC552 implements “virtual muscles” as seen from
the microcontroller at the upper level, which is the 16-bit XA
microcontroller running the fuzzy logic algorithm. I chose an XA as

the fuzzy logic engine because of its higher arithmetics capability.
The XA reads “crisp” sensor values from the 8-bit microcontroller
through I2C interface and converts them into fuzzy membership
grades. These values are evaluated by a set of fuzzy rules
implemented in the XA in order to generate appropriate motor
commands which are sent back to the ’552 through I2C. With I2C,
we can easily put multiple robot legs in the control system as shown
in Figure 3. For example, we can put together a six-legged hexapod
robot.

In this application, the use of fuzzy logic and XA is not intended to
replace low level linear, classical control carried out with the
8XC552. Instead, I use fuzzy logic in an augmented and distributed
fashion. Fuzzy logic in XA and linear classical control in ’552
function in parallel and contribute to different aspects of the control.

SERVO

STRAIN GAUGE

DRIVERS

AMPLIFIERS

VDD

VDD

PWM0

PWM1

ADC0

ADC1

ADC2

ADC3

ADC4

ADC5

ADC6

ADC7

(PORT 5)

AV SS

AV ref–

P1.6/SCL

P1.7/SDA

VSS

’552

XTAL2

XTAL1

(NC)

CLK

VDD

2.2K x 2

VDD

VDD

P0.0/SCL

P0.2/SDA

VSS

XTAL2

XTAL1

(NC)

CLK

XA

MORE LEGS!

SU00808

Figure 3. A diagram of the robot control circuit.
We use two microcontrollers to implement two levels of control. A 8XC552 is used to directly interface with the robot and carry out actuator level
control feedback. The XA is used here to carry out fuzzy logic algorithms to control the leg movement. The two microcontrollers communicate
with each other through an I2C bus. With I2C, we can easily put more than one robot leg in the same system.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 6

THE IMPLEMENTATION OF FUZZY LOGIC
ALGORITHM IN XA
In this section, I will explain some fuzzy logic related programming
issues. I first explain the algorithm itself by going through the basic
steps and then discuss how to implement the algorithm in the XA.

The first thing to do in a fuzzy logic control system is to translate a
real sensor signal value into fuzzy membership grades. This
procedure is called fuzzification. For example, if we have a sensor
input value x within the range of 0 to 255, we want to find out to
what extent is it “big” or “medium” or “small”. We can assign three
functions corresponding to “big”, “medium” and “small” to do the
translation. Those are called membership functions. As shown in
Figure 4, if x = 10, then “x is small” has a truth value of 0.9; “x is
medium” has a truth value of 0.2; “x is big” has a truth value of 0.1.
In other words, we are mapping the value of x = 10 into a triplet (0.9,
0.2, 0.1).

“SMALL” “MEDIUM” “BIG”

Xx = 10

0.1
0.2

0.9

TRUTH VALUE

SU00806

Figure 4. An illustration of the fuzzy membership functions.
For each x in the range of 0 to 255 (e.g., x=10), we can describe it
as degrees of being “small’’, “medium’’ and “big’’ by using the three
fuzzy membership functions.

The next thing to do at this point is to evaluate rules and find out
their strengths. Suppose we have these three rules that involve
input x.

• if x is small then z is low
• if x is medium then z is high
• if x is high then z is low

In this case, there is one “if ...” part in each rule, the strength of the
rule is simply the truthfulness of the “if ...” part, which is called the
antecedent. The truth values of the above three rules are 0.9, 0.2,
and 0.1, respectively. If there are two or more antecedents, as in

“if x is small and y is big”, the strength of the rule is the smallest of
the truthfulness of the antecedents (if the relationship between the
two antecedents is an “or” instead of an “and”, we would use the
largest value of the truthfulness of the antecedents).

The last thing is to find out is the real value of the output z from rule
evaluation. Before we proceed, we need to define the membership
functions for z. For example, we can simply assign z = 5 to “z is low”
and z = 200 to “z is high”. These membership functions are impulse
functions and they are generally called “singletons”.

To find out the precise (crisp) value of z according to the above
three rules, we simply calculate the weighted average of
z-singletons according to the strength of the three rules, therefore,

z| x�10�
5 * 0.9� 200 * 0.2� 5 * 0.1

0.9� 0.2� 0.1
� 38 (1)

What we have accomplished so far is to map x=10 to z= 38.
According to the three rules, we can map every point of x in range
0–255 to some value of z as shown in Figure 5. Now the reader
might be wondering what difference does it make if we just
implement a look-up table to describe the relationship in Figure 5.
The answer is, for a one-dimensional sensor input, you can
implement exactly the same sensor to actuator mapping with a table
and possibly save code complexity and memory space. It is,
however, not so obvious how to implement multi-dimensional sensor
to actuator mapping with tables. Furthermore, the fuzzy logic
method allows the user to tune the system more easily. For
example, in order to change a mapping relationship between input
and output, for most people, it is more intuitive to change a set of
linguistic rules instead of an array of parameters in a table.2

255

0 X255

SU00807

Z

Figure 5. The curve in this figure represent a mapping
relationship from x to z.

This relationship is interpolated from the above three fuzzy rules.

2. An important point has to be stressed now before we go on. A mapping relationship implemented by fuzzy logic is no different from that implemented by a mathematical function.
Such a relationship is clearly defined and fully deterministic. Once the input membership functions are defined, the process of translating rules into mapping functions is strictly conventional
algebra. The buzz word “fuzzy” is thus very misleading.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 7

To implement the above algorithm in an XA, we need to consider the following issues. Since the membership functions do not usually change at
run time, I use arrays stored in the code memory space to represent input membership functions. With this approach, I will not lose membership
function information during power down, and also I can get membership functions of any shape. An easy way to choose the array size
(dimension) for membership functions is to let the array size equal to the resolution of the AD conversion. For example, with an 8-bit A/D input, I
use arrays of size 256 to represent input membership functions. Furthermore, I also use 8-bit unsigned integers to represent the membership
grades so that they go from 0 to 255 instead of 0 to 1. Suppose we have multiple input channels and for each channel, we divide the domain
into a number of clusters; the total number membership function would be the number of input channels times the number of clusters in each
input. For the example in Figure 4, we need three arrays or membership functions to characterize input x. In our robot application, we need a
total of 40 membership function arrays and that takes about 10K code memory space.3

The following is an example that shows how to perform “fuzzification”. It plugs input value x into the membership function array that stands for “x
is small”. The XA instruction movc A, [A+DPTR] (code memory access with indirect addressing with an offset) is used to access membership
function data. this is an 80C51 compatible instruction. In XA, A is mapped to R4L and DPTR is mapped to R6.

x_small: db $ff,$fd,$f8,$f0, ... ;Membership function for ”x is small”.

x data 10h ;Input value x.
antecedent data 11h ;The resultant truth value of the antecedent: “x is small”.

;To find out the truth value of x being ”small”:
mov.w r6,#x_small ;Indirect pointer.
mov.b r4l,x ;Offset.
movc A,[A+DPTR] ;Code memory access.
mov antecedent,r4l ;Return the result.

Once we have an appropriate way to implement membership functions, it is fairly straightforward to evaluate rules. In case there are multiple
antecedents in each rule, however, we need to additionally implement some kind of min() or max() function to evaluate “and”, “or” relationships.
The following is a code example that implements the min() function for fuzzy rule evaluation

num_antecedents equ 4 ;Number of antecedents in a rule, e.g. 4.

antecedents data 20h ;Truth values of the antecedents.

truth_rule data 30h ;The resultant truth value of the rule.

;To evaluate the truth value of the rule with multiple antecedents:

mov.w r0,#antecedents ;Index to antecedents.

mov.b r1l,[r0+]
loop: cmp r1l,[r0]

bl proceed
mov.b r1l,[r0]

proceed: add r0,#1
cmp r0,#antecedents+num_antecedents
bcs loop ;Loop ”num_antecedents” times.

3. If cost of memory space is a concern, there are other ways to implement input membership functions. For example, we can specify a trapezoid membership function with a few key
parameters instead of a 256 dimensional array. We have to then write a subroutine to map inputs into fuzzy membership grades according to these parameters.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 8

The last part of fuzzy logic loop, the “defuzzification” process is most computationally expensive. As shown in equation (1), we need to perform
a series of 8×8 to 16-bit multiplications and a 32×16 to 16 division to get one final output value. This is to assume that our sensor values and
membership grades have 8-bit resolution. We need to use 32-bit (long) integer to represent the numerator of equation (1) and 16-bit integer to
represent the denominator. The following is an example of the defuzzification code segment.

num_rules equ 4 ;Number of rules, e.g. 4.

truth_rules data 10h ;The truth value of the rules (an array).

singletons data 20h ;The output singleton functions (an array);

z data 21h ;The crisp output value.

;To perform the defuzzification process

mov.w r0,#0 ;Index to the rules.

mov.b r1h,#0 ;Clear the high order bits of r1.

mov.w r4,#0 ;Initialize low order bits of the numerator.

mov.w r5,#0 ;Initialize high order bits of the numerator.

mov.w r6,#0 ;Initialize the denominator.

loop: mov.b r1l,[r0+truth_rules]

mov.b r2l,[r0+singletons]

mulu.b r2l,r1l ;8x8=16 multiplication.

add.w r4,r2 ;r4 stores the numerator.

addc.w r5,#0 ;add carry to higher bits.

add.w r6,r1 ;calculate the denominator.

add.w r0,#1 ;increment the index.

cmp r01,#num_rules

bcs loop

divu.d r4, r6 ;32/16 –> 16 unsigned division.

mov.w z, r4

The above code segments serve as examples to illustrate how to efficiently use the XA instruction to perform the basic fuzzy logic operation.
One would still have to decide on how to encode rules and control the timing of the peripheral access. Most fuzzy logic controllers sample
sensor inputs and update actuator outputs synchronously at fix time intervals. The XA provides a number of internal timers which can be used
to control the timing of peripheral access.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 9

IMPLEMENTATION OF A COMPLIANT ROBOT
ACTUATOR THROUGH SENSORY FEEDBACK IN
AN 8XC552
As stated earlier, we intend to use fuzzy logic in an augmented
fashion. In this application, the low level servo control can still be
handled more easily with conventional linear feedback. In this
section, we focus on these low level implementation issues.
Specifically, we will discuss the interface between the 8XC552 and
the sensors and actuators of the robot leg.

Most robot actuators use position feedback to implement a
closed-loop position servo. In order to achieve position accuracy,
those actuators are usually quite rigid. Although robots powered by
this kind of servo are usually able to make unconstrained movement
smoothly and quickly, they become unstable and behave erratically
upon contact with external objects [3]. With sufficient power, this
kind of robot could also be dangerous to human operators and
things around it. It is therefore often necessary to avoid any contact
situation. Animal and human muscles, on the other hand, are very
versatile due to the fact that they are usually compliant and more
importantly, the compliance can be actively controlled.

Figure 6 illustrates the implementation of our robot actuator as a
“virtual muscle”. I use a DC gearmotor as the core. Each motor is
integrated with a position sensor (potentiometer) and a feedback
circuit that acts as a position servo. Since the gear motor is
non-backdrivable, without the additional circuitry described below,
the servo system is quite rigid, that is to say, the output angle is
determined by the input command signal, and largely unaffected by
external torques acting on the joint. To achieve actuator properties
that resemble those of muscles, I add additional feedback pathways
through an 8XC552 to allow us to control compliance and damping

properties. The torque signal from strain gauges is fed back to the
position command signal to form a compliance feedback loop. The
gain of the compliance loop determines the extent to which the
servo moves in response to external forces, thus establishing
compliant properties (see Figure 6, the outer loop). The dynamic
properties of the integrated sensor-actuator such as the compliance
and the damping ratio can be controlled by adjusting the variable
gains and low pass filter time constants in the compliance feedback
loop. With compliant robot joint actuators, we effectively added a
cushion between the robot and the objects it is in contact with and
therefore get a significant improvement in contact stability [3], [4].
With an adjustable joint compliance, the robot can serve as both a
contact based probe and an effector that is capable of exerting
forces and maintaining positional accuracy depending on the
behavior context.

The 8XC552 carries out both position and force feedback. The
feedback loop is implemented in a timer interrupt service routine that
is called every 0.1ms. After the 8XC552 completes the sensory
feedback function for the tuning of a compliant actuator dynamics, it
stores copies of all the sensor values in a buffer for access by the XA
through I2C to control the output angle and compliance of the robot
joint. The 8XC552 thus implements a compliant actuator with
electronically controllable compliance and presents itself as an I2C
slave to the XA.

Notice that the feedback pathways implemented thus far are strictly
linear feedback loops that are intended for actuator control. This part
of the feedback can be done easily without fuzzy logic4. On the
other hand, the control at this level has to be done in hard real time
to ensure dynamic stability.

POSITION INPUT

OUTER LOOP (COMPLIANCE & DAMPING)

INNER LOOP (POSITION SERVO) ANGLE
SENSOR

MOTOR

STRAIN GAUGE

MOTOR
DRIVER

SU00805

Figure 6. An integrated sensor-actuator assembly for compliant robot joint actuation.
The active compliance is accomplished through stress feedback.

4. It is possible to use fuzzy logic to make an exact linear feedback loop, but this approach would seem counter-productive.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 10

Rule base generation
In this application, fuzzy logic is used to control the robot at higher
level, that is, the coordination between joints in order to carry out
meaningful motion sequence. As mentioned earlier, the main
advantage of fuzzy logic is that the user can design a control system
based on intuition. There are, therefore, not many rules to follow to
generate the fuzzy logic rules. In this section, we discuss a few
techniques that we used in this specific application.

In addition to the strain and position sensor inputs mentioned earlier,
a software generated timer signal implemented in XA is fed to the
fuzzy evaluator internally and this counts as another sensory input.
The timer counts from 0 to 255 repeatedly and they were clustered
into three fuzzy sets corresponding to the three phases of the leg
searching cycle, namely “start”, “probe” and “retract”. This is
necessary because the control of the leg involves the generation of
rhythmic movement in the absence of any specific sensor inputs.
The rhythmic movement ensures that the robot will engage in active
searching when it is not in touch with any object. The timer input
functions as a “central pattern generator”.

In addition to the soft timer, there are a total of 7 sensor inputs to
this system. Each of sensor values are clustered into 5 clusters. For
example, a quantity ranging from 0 to 255 can be characterized by
membership functions corresponding to, “very small”, “small”,
“medium”, “big”, “very big”. For each output, there could be as much
as 57 * 3 = 234375 rules. It is obviously impossible for us to
manually try all the rules on “trial-and-error” basis. Notice that for
this system, the signals detected from the various sensors are highly
correlated. For example, when touch sensor 1 is signaling positive,
touch sensor 2 is likely to signal positive also (but not vice versa). It
is therefore unnecessary to try a rule like

.IF touch sensor 1 positive-big
 AND touch sensor 2 negative-big
 AND ...
 THEN ...

because this situation does not exist.

By this analysis we can reduce the number of rules significantly.
Here are a set of rules that are used to give the performance shown
in Figure 2. Additional rules can be put in to make the leg more
versatile.

.IF tibia stress is zero
 AND femur stress is zero
 AND timer is start
 THEN femur output is negative-small
 AND tibia output is positive-big.

.IF tibia stress is zero
 AND femur stress is zero
 AND timer is probe
 THEN femur output is positive-big
 AND tibia output is negative-big.

.IF tibia stress is zero
 AND femur stress is zero
 AND timer is retract
 THEN femur output is negative-big
 AND tibia output is negative-big.

(* The above three rules are responsible for the generation of the
three phased search pattern when the leg is not in touch of
anything).

.IF touch sensor 1 is negative-small
 THEN femur output is negative-big
 AND tibia output is negative-big.

.IF touch sensor 2 is negative-small
 THEN femur output is negative-big
 AND tibia output is negative-big.

.IF tibia stress is negative-small
 THEN femur output is negative-big
 AND tibia output is negative-big.

.IF touch sensor 1 is positive-small
 THEN femur output is negative-big
 AND tibia output is zero.

.IF touch sensor 2 is positive-small
 THEN femur output is negative-big
 AND tibia output is zero.

.IF tibia stress is positive-small
 THEN femur output is negative-big
 AND tibia output is zero.

.IF femur angle is negative-big
 and tibia angle is negative-big
 THEN tibia output is positive-big.

(* The above rules are responsible for the retract movement when
the leg is in touch with an object in a way as shown in Figure 2.)

.IF foot stress is negative-small
 THEN femur output is positive-small
 AND tibia output is negative-small.

(* This rule is responsible for the foot to keep in contact with an
object by pressing onto it.)

Figure 2 gives the digitized trajectory plots of the “substrate finding”
behavior performed by our robot leg. When the robot leg is not in
contact with anything, it carries out a three-phased searching
movement. As soon as the leg touches an object, it would generate
reflexes as shown in Figure 2. For example, in Figure 2a, the tibia
would press against the object while slipping upwards. As soon as
the tibia just clears the object, the robot will reposition the foot on to
the object and keep a pressure. If the substrate moves, the leg is
able to adjust promptly to maintain contact with the substrate due to
the joint compliance. Even though there is no visual guidance, with
active sensing, the robot leg is able to find and grab onto any firm
object quite reliably.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Dec 30 11

DISCUSSIONS
The feedback pathways in a control system can often be
categorized into two classes, linear (e.g., PID control) and nonlinear,
and they often serve quite different purposes. In this application, the
linear feedback control loops are implemented to “tune” the robot
joint dynamics in some desired fashion, i.e., position servo with
some compliance, whereas the nonlinear feedback control reflexes
are used to control the coordination between multiple robot joints in
order to achieve a more concrete objective such as the requirement
for the robot to grab and hold onto an object. The linear feedback
algorithms are usually straightforward to implement but they
generally have high speed requirements for stability reasons.
Nonlinear feedbacks, on the other hand are usually computationally
more intensive due to the requirements for interpolation (fuzzy logic
algorithm does exactly that). This requirement will usually slow
things down a little bit. In this paradigm, the stability and robustness
of a system depends critically on the speed of the linear feedback
layer and is somewhat less sensitive to the speed of the fuzzy logic
loop. We envision that with our next generation of XA (XA-S3). We
can integrate all of these functions into one chip. We will use the XA
multi-tasking capabilities so that we implement several layers of
feedback, some of which carry out simple, but fast servoing for
actuator control and the others running fuzzy logic for goal-directed
motor sequencing behavior.

REFERENCES
[1] Castro, J.L., Fuzzy logic controllers are universal approximators.

IEEE transactions on system, man, and cybernetics, Vol. 25,
No. 4, 629-635.

[2] Bassler, U. (1991) Interruption of searching movements of partly
restrained front legs of stick insects, a model situation for the
start of a stance phase? Biol. Cybern. 65, 507-514.

[3] Hogan, N. (1988) On the stability of manipulators performing
contact tasks. IEEE Journal of Robotics and Automation, vol. 4,
677-686.

[4] Ding, Z., Nelson, M.E. (1995) A neural controller for single-leg
substrate-finding: a first step toward agile locomotion in insects
and robots. In: Computation and Neural Systems 3
F. Eeckman and J.M. Bower, eds., Kluwer Academics Press.

[5] Data Handbook IC25: 16-bit 80C51XA Microcontrollers
(eXtended Architecture). Philips Semiconductors, 1996.

Philips Semiconductors Application note

AN710Implementing fuzzy logic control with the XA

1996 Oct 15 12

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

�������
��	���
������

	ABSTRACT
	INTRODUCTION
	ROBUST CONTROL OF A “BUG”-LIKE ROBOT LEG
	OUTLINE OF OUR APPROACH
	THE IMPLEMENTATION OF FUZZY LOGIC ALGORITHM IN XA
	IMPLEMENTATION OF A COMPLIANT ROBOT ACTUATOR THROUGH SENSORY FEEDBACK IN AN 8XC552
	DISCUSSIONS
	REFERENCES

