
�������
��	���
�����
�

AN709
Reversing bits within a data byte on the XA

1996 Dec 09

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN709Reversing bits within a data byte on the XA

Author: Greg Goodhue, Microcontroller Product Planning, Philips Semiconductors, Sunnyvale, CA

21996 Dec 09

Implementing an algorithm to reverse the bits within a data byte is
notorious for producing inefficient code on most processors. This
function can serve as a case study of how to trade off code size for
performance and shows some of the methods that might be
employed in similar types of data conversion situations.

Here four solutions are shown to implement the byte reverse
function. The first version (Listing 1) uses a very simple approach.
The result is produced by shifting a bit out of the initial data value
and shifting the same bit back into the result value. This is repeated
in a loop for each bit. Since the two shift operations are done in
opposite directions, the result value is a bit reversal of the initial
value. This version is the smallest in size, using only 11 bytes.
However, it takes 128 XA clock periods to complete.

Listing 2 uses the same method as the first, but “unfolds” the loop to
eliminate the counting and branching overhead. What is left are the
instructions from the inside of the loop repeated eight times.
Unfolding the loop gives faster execution, 64 clocks in this case. The
code size grows somewhat to 16 bytes.

The third method (Listing 3) uses a partial lookup table to reverse
one nibble at a time and assemble the complete byte from two
lookup values. In a reversed byte, the upper nibble of the result
consists of the reversed bits of the lower nibble of the initial value,

while the lower nibble of the result consists of the reversed bits of
the upper nibble of the initial value. The code example uses each
nibble of the initial value as an index into the lookup table, which
provides a nibble of result data. The two partial results are then
combined to produce the complete result. This version uses 42
bytes for both the code and the lookup table, but requires only 42
XA clock periods to complete.

The final method shown (Listing 4) uses a full lookup table to
produce the entire result very quickly. The initial data byte is used as
an index into the lookup table and the value from the table is the
complete result byte. This method produces the result in only 12 XA
clocks. However, the code plus the lookup table occupies a fairly
large amount of code space: 264 bytes.

CONCLUSION
These examples show how code size may often be traded for
execution speed, or execution speed for code size, depending on an
application’s requirements. This is summarized in Figure 1. Other
solutions to this particular algorithm are certainly possible and other
algorithms will likely have different types of solutions with different
resulting tradeoffs.

0

50

100

150

200

250

300

LISTING 1 LISTING 2 LISTING 3 LISTING 4

CODE BYTES

CLOCKS

SU00819

Figure 1. Tradeoff of code size to performance.

Sebastiaan Dorgelo

Sebastiaan Dorgelo

Philips Semiconductors Application note

AN709Reversing bits within a data byte on the XA

1996 Dec 09 3

LISTING 1
; Listing 1) Smallest solution in terms of code space:

; Enter with value to be reversed in R0L, result in R0H.

; This works by shifting the register out in one direction and back in

; the other.

mov count,#8 ; 3 clks

loop: rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

djnz count,loop ; 8/5 clks

; total time = 8*(4+4) + 7*8 + 3+5 = 128 clocks

LISTING 2
; Listing 2) Solution 1 with the loop ”unfolded”.

; Enter with value to be reversed in R0L, result in R0H.

; This works by shifting the register out in one direction and back in

; the other.

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

rrc r0l,#1 ; 4 clks

rlc r0h,#1 ; 4 clks

; total time = 8*(4+4) = 64 clocks

Philips Semiconductors Application note

AN709Reversing bits within a data byte on the XA

1996 Dec 09 4

LISTING 3
; Listing 3) Fastest solution (without using a 256 byte lookup table):

; Enter with value to reverse in R4L, result returned in R0L.

; This works by reversing each nibble using a look up table and reversing

; the two nibbles separately as part of the procedure.

mov r6,#LUT1 ; 3 clks

push r4l ; 3 clks

and r4l,#$0f ; 3 clks

movc a,[a+dptr] ; 6 clks

mov r0l,r4l ; 3 clks

rr r0l,#4 ; 4 clks

pop r4l ; 4 clks

and r4l,#$f0 ; 3 clks

rr r4l,#4 ; 4 clks

movc a,[a+dptr] ; 6 clks

or r0l,r4l ; 3 clks

. .

. .

. .

; this is a nibble reverse lookup table:

LUT1: db $00 ; 0000 => 0000

db $08 ; 0001 => 1000

db $04 ; 0010 => 0100

db $0C ; 0011 => 1100

db $02 ; 0100 => 0010

db $0A ; 0101 => 1010

db $06 ; 0110 => 0110

db $0E ; 0111 => 1110

db $01 ; 1000 => 0001

db $09 ; 1001 => 1001

db $05 ; 1010 => 0101

db $0D ; 1011 => 1101

db $03 ; 1100 => 0011

db $0B ; 1101 => 1011

db $07 ; 1110 => 0111

db $0F ; 1111 => 1111

; total time = 42 clocks

LISTING 4
; Listing 4) Fastest solution (using a 256 byte lookup table):

; Enter with value to reverse in R4L, result returned in R0L.

mov r6,#LUT2 ; 3 clks

movc a,[a+dptr] ; 6 clks

mov r0l,r4l ; 3 clks

. .

. .

. .

; this is a byte reverse lookup table:

LUT2:

db $00 ; 00000000 => 00000000

db $80 ; 00000001 => 10000000

db $40 ; 00000010 => 01000000

db $C0 ; 00000011 => 11000000

. .

. .

. .

; total = 12 clocks

Philips Semiconductors Application note

AN709Reversing bits within a data byte on the XA

1996 Dec 09 5

NOTES

Philips Semiconductors Application note

AN709Reversing bits within a data byte on the XA

1996 Dec 09 6

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

�������
��	���
�����
�

	CONCLUSION
	LISTING 1
	LISTING 2
	LISTING 3
	LISTING 4

