
�������
��	���
�����
�

AN708
Translating 8051 assembly code to XA

1996 Dec 30

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

21996 Dec 30 Rev. 0.7

CONTENTS
1. Introduction 3.

1.1 The questions you are probably asking right now 3. .
1.2 Overview of the translation process 4.
1.3 What you’ll need 4.
1.4 Preparation 5.
1.5 About the original application 5.
1.6 Translation decisions you must make 5.

2. The translation process 7.
2.1 Starting translation:

Producing tentative XA source 7.
2.1.1 Systematic changes 7.
2.1.2 Translating 7.
2.1.3 How the translator works 8.
2.1.4 Interpreting translator results 8.
2.1.5 Systematic changes revisited 9.
2.1.6 What you’ve got: “tentative XA source” 9. . .

2.2 Continuing translation:
Producing structurally correct XA code 10.
2.2.1 XA startup vector (simple case) 11.
2.2.2 XA startup and interrupt vectors

(more complex case) 11.
2.2.3 The XA stack 13.

Basics 13.
The System Stack 14.
The System Stack and Interrupts 14.
The User Stack 14.
Advanced Stack Issues 14.

2.2.4 Feeding the Watchdog 15.
2.2.5 Obligatory Hardware Initialization 15.
2.2.6 Disposing of Warning Messages 16.

Details of Compatibility Instructions 16.
2.3 The final step:

Generating debugged XA code 17.

3. Special Topics 18.
3.1 Trouble-making items 18.
3.2 Translating indirect references 18.

3.2.1 Indirect reference failure 18.
3.2.2 Recommendations for Indirect References 18
3.2.3 Picking a register for indirect references 18. .

3.3 Translating “degenerate” 8051 source code 19.
3.3.1 “Here” relative addressing 19.
3.3.2 Branch to “Here” 19.
3.3.3 Branch to “Here+offset” or “here-offset” 19. .
3.3.4 In-line strings 20.
3.3.5 General In-line args 20.
3.3.6 Program Resets 21.
3.3.7 Compare trees 21.
3.3.8 Code Table Fetches 21.
3.3.9 Using the stack for vectored execution 21. . .

3.4 Translating “untranslatable” 8051 source 22.
3.4.1 PSW bit addressing 22.
3.4.2 P2 addressing 22.
3.4.3 R7 use 22.

3.5 Wrap-up 22.
3.6 Trouble checklist 22.
3.7 Final Comments 22.

Appendix 1: Startup+Interrupt Prototypes 23.

Appendix 2: Compare/Branch Summary 27.

Example 1 28.
8051 CJNE 28.
XA CJNE 28.
XA CMP/Bxx 28.

Example 2 29.
8051 CJNE 29.
XA CJNE 29.
XA CMP/Bxx 29.

Example 3 30.
8051 CJNE 30.
XA CJNE 30.
XA CMP/Bxx 30.

Example 4 31.
8051 31.
XA CJNE 31.
XA CMP/Bxx 31.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 3

1. INTRODUCTION
What if...

• You’ve been given the task of translating your company’s flagship
80C51 application to XA; your manager gives you an XA data
manual and some diskettes—and until tomorrow to get it done?

• You’re going to be translating lots and lots of 8051 code to XA
over the next few months, and you want to set up the most
effective system for doing so?

• You want to learn the XA architecture by translating an example
8051 application?

8051 SOURCE XA SOURCE

SU00785

Figure 1.

Relax! Translating production 80C51 source code to debugged XA
code is very practical—although we cannot guarantee you’ll make
your deadline—and this application note brings together the
information you’ll need.

We’re going to generally assume that you’re dealing with 80C51
source code you’ve never seen before.

We will also assume you’re a reasonably skilled 80C51 programmer
and that you’ve already studied the basics of XA architecture.
We’re also going to assume you’re able to use Windows in
general, and you’ve familiarized yourself with the XA development
tools. Although using the simulator or emulator is a key part of
verifying your translations, teaching you to use these is beyond the
scope of this note.

Source code for the examples may be found on the Philips ftp site.

1.1 The questions you are probably asking
right now

How is this application note organized?
We’re going to describe a stepwise procedure for translating 80C51
code to working XA code, concentrating mostly on
hardware-independent issues. Later on, we’ll deal with some very
specific issues in detail (section 3: Special Topics), so we
recommend you read through all this material before starting to do
any translation work.

How long will it take to translate an 8051 application?
That depends on the application and the code. We’ve seen code
from experienced 8051 programmers who’ve used every
conceivable 8051 coding trick to squeeze out the last drop of
functionality. We expect this kind of 8051 code will be the most
difficult, especially when the code uses target hardware-specific
tricks. On the other hand, some 8051 code, especially small
applications designed to be easily maintainable, aren’t particularly

difficult and you may be able to do a complete translation in a matter
of a few hours.

Is translation automatic?
Not completely. While the XA does have an equivalent for every
8051 instruction, some code cannot be automatically translated.
You’ll have to intervene manually.

Is translation a single-pass process?
If you are really expert and you spend enough time, you can
probably translate simple to moderately complex applications in a
single pass. We don’t generally recommend this approach, however,
especially when you are starting out. It’s probably more productive
to iterate several times, using all the development tools available to
produce the most robust translation.

Will XA code be bigger?
In all likelyhood, it will be somewhat to significantly larger than the
original 8051 code. However, you’ll be well-compensated by a
significant increase in generality and functionality –the XA
instructions are bigger, but they do more– so your XA code will be
much easier to maintain and expand.

Will XA code be faster?
Based on the same clock rate, XA code will execute significantly
faster than the 80C51 code.

What about 8051 and XA derivatives?
This application note is about translating “general” 8051 code to a
“generalized” XA. We’ll look briefly at the essential peripheral
devices, like the UART and timers, but we’re not going to look at
other subsystem-specific programs.

What about memory and I/O expansion?
We won’t deal with specific memory and I/O issues, but we will
comment that the XA is flexible enough to deal with almost any kind
of memory and I/O interfaces. The only exception to this rule is
some very 8051-specific external interfacing which you’ll very likely
need to re-engineer anyway.

What’s the standard for 8051 code syntax?
The code translater expects the MetaLink ASM51 assembler syntax.
This assembler is available for free on the Philips BBS, and it has
become the de-facto standard for 8051 and derivatives. If your 8051
source code is based on a different standard, we’ll have some
suggestions.

What’s special about translating your own 8051 code?
As you’ll see below, we generally recommend that you deal with
mechanical translation issues first and worry about structural
changes later. If you’re translating 8051 code that’s very familiar to
you, it is very easy to get distracted by making structural changes
too early: you know the constraints of the original design and you’ll
likely be eager to overcome them by using the significantly greater
freedom of the XA architecture.

What is the biggest difference between 8051 and XA afffecting
the translation process?
Most 8051 programmers building complex applications spend a
significant amount of time reconciling application requirements to
8051 architectural capabilities. When you translate this code to the
XA, you’ll find many familiar architectural concepts but far fewer
constraints on them.

.Windows is a tradmard of Microsoft, Inc.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 4

8051 SOURCE XA SOURCE

1 2

XA SOURCE

3

XA SOURCE

4

SU00786

Figure 2. Translation Process

1.2 Overview of the translation process
Let’s take a more detailed look at the overall translation process
(Figure 2). There are four distinct source versions:

1. The working 8051 source (a copy, not your original source, which
you must preserve).

2. A tentative translation of the original 8051 source into XA
assembly.

3. The structurally correct XA source.

4. The debugged XA source.

The method of producing each of these source versions is similar to
the standard program development cycle, with a single additional
step, as shown in Figure 3:

CHANGE
SOURCE

TRANSLATE,
OR ASSEMBLE,

OR EXECUTE
ERRORS?

NO

YES

COMPLETE

SU00787

Figure 3.

We recommend that you first make a copy of your original 8051
source. We’ll call this the “working” 8051 source. In some cases
we’ve found it convenient to make changes to this source, in
particular, when we’ve found ourselves re-running the translator
multiple times for particularly difficult source programs. Be sure to
protect your original 8051 source carefully; this is so important we’ll
remind you to do so several times.

You can see that the edit-assemble cycle and the
edit-assemble-execute is preceded by an edit-translate cycle. As we
will show below, this extra step is easy. After you complete your

work with the translator, you’ll have tentative XA source. You’ll edit
and assemble the tentative XA source, you’ll have structurally
correct XA source code. You’ll run the simulator or emulator and edit
and reassemble until your application is proven.

In a few cases, especially with complex applications, you may find it
useful to return to an earlier source version. For example, you may
encounter some translation issues while debugging your XA source
that are best handled by returning to the working 8051 source and
repeating the intervening steps. Because of the number of source
versions in this process and the potential for returning to an earlier
step, we’ve found that careful organization of the translation process
can be very helpful.

1.3 What you’ll need
Here’s a checklist of what you need to get started translating your
8051 application to XA:

� The XA Data Handbook (IC25 or its successor); especially
Section 2, Chapter 9 and AN704.

� An 8051 reference, preferably one that’s familiar to you.

� A Windows-based computer

� The Macraigor XA Development Environment, which includes a
translator, an assembler, a simulator, and an optional single-chip
XA emulator.

� The MetaLink ASM51 8051 assembler and its manual, both
available on the Philips BBS

� Macraigor Development hardware is helpful, but optional

� Your favorite word processor and text utilities.

� Any and all documentation about the original application. An
as-implemented memory map is invaluable. (If you don’t have
one, we recommend you immediately prepare one by examining
the original source code).

� Design specs for your XA target, particularly the memory map.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 5

1.4 Preparation
Read this application note thoroughly. Section 3, “Special Topics”
describes some specific problems you may encounter, and you
should have these in mind from the start. Then scan through your
original 80C51 source to see how many potential translation issues
you can identify.

We recommend that you prepare by choosing a file labeling system
to distinguish among the original 8051 source, intermediate
translations, and the final XA source file. We have found the
following scheme to be useful:

app.asm the original 80C51source file (Not to be modified!)

tapp.asm the working 80C51 source, which may be modified

tapp.1 an intermediate translation

tapp.2 ...

tapp.xa the current XA assembler source

Note that the translator identifies 80C51 source files and activates
the 8051 to XA Translator option in the LANGUAGES menu
whenever you use a file with a “.asm” extension. The default
extension for translated files is “.xa”. You may want to keep copies
of intermediate translations or originals.

Choose a method that is comfortable for you and that’s consistent
with the size of the job. This seems like a trivial matter, but we’ve
found that a little extra bookkeeping care can make the translating
job much easier.

Second, we recommend that you make sure that all your tools are
installed and are functional before attempting translation:

1. Assemble your original source file with the Metalink assembler;
note its assembled size.

2. Assemble and simulate one of the examples that accompany the
XA tools.

3. Translate one of the example 8051 files.

In other words, we suggest you are comfortable with, and sure of,
your tools before you start actual translation work.

1.5 About the original application
Note what we haven’t suggested: a detailed examination of the
original application.

We’re not sure this is necessary!

Intense study of someone else’s code can be so incredibly boring or
discouraging that you might balk at going through with the
translation. You’ll have to determine in each case exactly how much
detailed knowledge of the application is actually necessary to do a
translation. As we’ve already mentioned, it almost all cases you
should start with a memory map of the original application, but it isn’t
always necessary to have everything documented.

For example, we’ve been successful translating a moderately
complex application, TinyBASIC, without really attempting to
understand how the code works, rather, by just attending to the
mechanical translation details.

Ultimately, of course, it is up to you how much you need to know
about the original application before doing the translation. In the
ideal case, you already have full and clear documentation of your
application’s algorithm (what it does) and the implementation (how it
does it). In practice, unfortunately, you may have to re-develop this
documentation or translate without it.

1.6 Translation decisions you must make
Although the translator does a good job, there will be some grey
areas where you will have to decide about specific issues, and
possibly make manual changes to the translated code. Here are the
issues:

Retaining or Replacing 80C51-like instructions
The XA instruction set includes a number of instructions for
compatibility with 80C51, even though the XA architecture provides
improved alternatives.

Instructions like “JMP [A+DPTR]”, for example, are supported in the
XA, but the full functionality may not translate directly. The translator
leaves a warning to mark each use of one of these instructions.
You’ll either have to check each case carefully and make
adjustments to make sure the translated code will function correctly,
or replace the entire construction with one or more native XA
instructions.

In general, we recommend you replace these 80C51-style
instructions with native XA instructions whenever it is practical. We’ll
give you more information about this issue in following sections.

Recoding obscure but functional 80C51-style coding
There is an additional class of 80C51 instructions and constructions
that translate directly into XA instructions. These instructions
generate no warning messages from the translator because the
resulting XA code, while often obscure, will function correctly. One
example is a common 80C51 compare-tree construction.

We can’t make a general recommendation in this case, but we’ll
admit our bias towards recoding into native XA code whenever
possible. The following sections will give you more information on
this issue.

Using Native versus Compatibility Mode on the XA
The XA System Configuration Register (SCR) CM bit controls the
8051 Compatibility Mode. At reset, SCR.CM is set to zero and the
XA operates in “native” XA mode. Setting SCR.CM to “1” makes the
XA register model and indirect register addressing mirrors the
80C51 model.

The effects of the CM bit setting are given in Table 1.

Table 1.

FEATURE IN NATIVE MODE:
CM=0

IN COMPATIBILITY MODE:
CM=1

registers (R0, R1 ...) Accessible only as registers Accessible as registers or as the first 32 bytes of data memory.

R0, R1 indirect addressing uses 16-bit pointers: R0, R1 Uses 8-bit pointers: R0L, R0H

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 6

In other words, if you do nothing, the XA will operate in native mode.
The first 32 bytes of data memory will be accessible only as such
and won’t be overlaid by registers. You’ll be able to use r0 and r1
(and any other register) as a 16-bit pointer.

If you insert an instruction that sets SCR.CM=1, translated code that
depends on the overlaid memory and register mapping shown in
Table 2 will continue to work, and both r0 and r1 will function as 8 bit
indirect pointers. This maintains “pure” code compatibility for
translation but effectively wastes 32 bytes of internal RAM data
memory.

Table 2.

ORIGINAL
8051

REFERENCE

TRANSLATED
XA

REFERENCE

OVERLAID
DATA MEMORY

ADDRESS

R0 (RB0) R0l (RB0) 0

R1 (RB0) R0h (RB0) 1

R2 (RB0) R1l (RB0) 2

R3 (RB0) R1h (RB0) 3

...

R7 (RB0) R3h (RB0) 7

R0 (RB1) R0l (RB1) 8

...

R5 (RB3) R2h (RB3) 29

R6 (RB3) R3l (RB3) 30

R7 (RB3) R3h (RB3) 31

* RB = Register Bank.

NOTE: The setting of SCR.CM has no effect on instructions
labeled “...included for 80C51 compatibility”, e.g., “JMP [A+DPTR]”
These instructions function as described in the XA User Guide no
matter what the setting of SCR.CM.

What are the pros and cons of compatability mode versus
native mode?
By design, enabling compatability mode produces the greatest
chance of translated code working with the least necessity of
manual intervention.

In practice, the deciding factor for choosing is, in our experience, the
degree of memory map rearrangement you do and the resulting
effects on indirect addressing in the application. Specifically: if your
XA memory map requires the use of 16-bit pointers, you’ll need to
use native mode.

Here’s a list of factors to consider:

• Using compatability mode....

– translated code is more likely to run correctly with minimal
manual intervention

– preserves register assignments

– preserves direct addressing to registers commonly used in
8051 programs

• Using native mode...

– is sometimes necessary due to changes in the memory map

– supports cleaner, more efficient XA code

– generally requires more manual changes to the translated code

– frees up 32 bytes of on-chip RAM

Using 24-bit versus 16-bit (“Page 0”) addressing
You can save some data and hardware resources if you choose
16-bit addressing; clearly this option is available only to applications
with addressing requirements below 64K bytes.

The System Configuration Register (SCR) PZ bit controls the XA’s
Page 0 mode. At reset, SCR.PZ is set to “0” and the XA uses
standard 24-bit XA addressing. If SCR.PZ is set to “1”, the XA
maintains only 16 bits of address data throughout.

For XA targets implementing a memory space of 64K or less, using
Page 0 mode can result in some resource savings because the XA
will only PUSH and POP 16-bit values for subroutine calls and
returns, respectively, insread of 32-bits in standard operation. See
the XA User Guide sections 4.3.1 and 4.3.2 for more details

Your choice of 24-bit versus 16-bit addressing has no direct effect
on the translation process, but you should be generally aware of the
implications of each alternative. We’ve chosen to set Page 0 mode
in our start-up code example (Appendix 1).

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 7

2. THE TRANSLATION PROCESS

8051 SOURCE XA SOURCE XA SOURCE XA SOURCE

SU00788

Figure 4.

8051 SOURCE XA SOURCEXA SOURCE
SYSTEMATIC

CHANGES TRANSLATION

TEXT OR
STREAM
EDITOR TRANSLATOR

SYSTEMATIC CHANGES
REQUIRED?

NO

YES

RUN TRANSLATOR TRANSLATION
ERRORS?

NO

YES

TENTATIVE
XA SOURCE
COMPLETED

EDIT 8051
SOURCE

SU00789A

Figure 5.

2.1 Starting translation:
Producing tentative XA source

Let’s get started by looking at the process of turning 8051 source
into tentative XA source code. Figure 5 tells the story. You’ll edit,
translate, and repeat if necessary until the translator gives no error
messages. Don’t worry about warnings placed in the translated
source code just yet.

2.1.1 Systematic changes
We’ve chosen the term “systematic changes” to describe anything
you might do to change the 8051 source overall.

Do you need to make systematic changes at this stage? The answer
depends on the assembler you’ve been using, the complexity of the
code, and the degree to which special directives and other
assembler features are present in the source code.

At this point, we’ll give you an easy answer that will serve for most
purposes: “no”. Just go ahead and translate. You’ll find out in
subsequent steps if this answer was right.

We might as well remind you right now: Whatever you do, make
sure you keep a protected copy of your original 8051 source
code somewhere . It is all too easy to make modifications to the
original source file—as you will see, the working 8051 source file

may change during this process—and you’ll lose valuable
information.

2.1.2 Translating
Translating is the soul of simplicity: the XA Development
Environment recognizes any file with a “.asm” file as being possibly
8051 assembly source.

1. Open the source file (for example, “try.asm”)

2. Select “Languages --> 8051 to XA Translator.”

3. Respond “Yes” or “No” as you prefer to the query “Include 8051
Code in Output?”

4. The XA translator...
a. translates your file, leaving it unchanged,
b. makes a new XA source file with the same name and an

“.xa ” extension (“try.xa ”), and
c. automatically saves a copy of the XA source file.

If you choose to include 8051 code in the translator output you’ll see
the original 8051 instruction, commented out, adjacent to the
corresponding XA instruction. This can be very helpful in some
cases but the output file can be difficult to read.

We recommend standardizing on the “.xa” extension for all XA
assembly source files to distinguish them clearly.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 8

2.1.3 How the translator works
The translator looks at each input source line individually. The
translator looks at each source line and attempts to identify it as
either a) translatable 8051 code or b) anything else.

If the translator sees 80C51 code, it translates it according to the
rules described in Chapter 9 of the XA User Guide. The XA was
designed to have direct correspondences with 80C51 whenever
possible, and most of the translations are probably what you’d
expect. The register translations are so critical that we want to
restate them here (Figure 6).

All other source lines—that is, anything other than translatable 8051
code—are passed through the translator and appear in the output
file unchanged.

The translator doesn’t attempt to “understand” what the code is
doing; in specific, it doesn’t look at more than one source file line or
more than one actual instruction at a time. However, the translator
warns you when some specific multi-line constructs might go wrong
after translation.

R7H

R6H

R5H

R4H

R3H

R2H

R1H

R0H

R7L

R6L

R5L

R4L

R3L

R2L

R1L

R0L

SP R7

R6

R5

R4

R3

R2

R1

R0

DPH

B Reg

R7

R5

R3

R1

DPL

A Reg

R6

R4

R2

R0

xx = 80C51

SU00790

Figure 6.

2.1.4 Interpreting translator results
In most cases, the translator will run without error, and you’ll see an
open window with the translated source file. This file will contain
inserted lines and warnings.

The translator always inserts a line that controls the pagewidth, in
order to produce generally convenient displays within source and
listing windows:

$pagewidth 132t

If necessary, the translator inserts an “include” reference, as follows,

$include XA-G3.EQU

so that any XA register or other reference it produced in translated
code is correctly resolved. (If no such references are made, this
“include” directive is omitted.) The default location of this file is the
PROGRAM subdirectory of the XA Development Tools. You may
want to use a different file—for example, for a different XA
derivative—or use your own copy of this file.

The translator inserts warnings adjacent to source lines that are
translated correctly, but which might not produce the desired results
without further intervention. We will take a look at resolving these
warnings later in this document.

The translator displays any serious errors in a standard dialog box.

What produces translator errors? In general, when the translator
encounters a source line containing what looks like translatable
8051 code, it attempts to do the translation. If the translator finds
something about the code that’s not expected, it will flag an error for
this line.

Fortunately, translator errors are very rare and occur only if the
translator finds something entirely unexpected, like source code for
an entirely different processor. You’ll have to take a look at each
error message and decide what to do about them on a case-by-case
basis. A large number of errors probably means something very
basic is wrong.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 9

2.1.5 Systematic changes revisited
Let’s revisit the issue of systematic changes.

You’ll need to make systematic changes to your original 8051
source file whenever there are consistent differences between your
source and the expectations of the XA Development Tools,
especially the translator.

We have found that the easiest way to discover the need for
systematic changes is to proceed as if they are not necessary.

If you see significant numbers of similar translator warning
messages or XA assembler errors, consider changing your 8051
working source to avoid them.

NOTE: We are suggesting you change the 8051 source file to
avoid problems downstream in the translation process. It is for this
reason that we use the label “working 8051 source” and we remind
you to carefully preserve your original 8051 source file.

If systematic changes are necessary, you may want to work outside
the XA Development Environment in order to use the familar, and
likely more advanced, features of your favorite text editor. We’ve
found using a UNIX -style stream editor such as sed or awk can
be very useful, especially in the case of large-scale syntax changes
to big source files. It is well beyond the scope of this application note
to describe such programs.

We’ve found the following to require attention:

• 8051 Source code intended for some assembler other than
MetaLink

If you discover large numbers of translation warnings due to
unrecognized directives, consider scanning your 8051 working
source for directives. Compare them to the XA Development
Environment Assembler (see “Help” → “XA Assembler”→
“Directives”) and make indicated changes. Some directives
don’t have equivalents in the XA tools; comment these out or
remove them.

If you see large number of XA assembler errors due to syntax
errors, you may have to make significant changes to your

working source. Compare the syntax of your source to that
described in the XA Development environment (“Help” → “XA
Assembler).

• Include files

The translator doesn’t handle all forms of “include” and may or
may not pass through a given include file directive. It may be
practical in some cases to remove “include” instances and
insert the “include” file contents. Otherwise, you may change
the existing syntax in your working 8051 source file to one of
the alternatives accepted by the XA tools:

#include file.ext

or

$include file.ext

and translate the files individually.

Once more we will remind you to keep a protected copy of the
80C51 original source!

2.1.6 What you’ve got: “tentative XA source”
After you’ve taken care of translator warnings and any errors, the
output file you’ve got is “tentative” because:

• It doesn’t have the proper XA startup vector or any other XA
interrupt vector.

• It uses an 8051-style stack.

• It may contain warning messages.

• It might contain illegal or unrecognizable syntax with respect to
the XA assembler.

• No comments contain anything about XA implementation.

• If you chose to have 8051 instructions included in the output,
there are lots of lines you’ll probably want to remove.

We’ll see how to resolve these problems in the next section.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 10

8051 SOURCE XA SOURCE XA SOURCE XA SOURCE

SU00791

Figure 7.

XA SOURCE XA SOURCEXA SOURCE
MANUAL

TRANSLATION TRANSLATION

EDITOR XA ASSEMBLER

REQUIRED CHANGES;
TRANSLATOR WARNINGS

YES

RUN XA ASSEMBLER ASSEMBLY
ERRORS?

NO

YES

STRUCTURALLY
CORRECT

XA SOURCE
COMPLETED

EDIT
SOURCE

A

SU00792A

Figure 8.

2.2 Continuing translation:
Producing structurally correct XA code

The next step of translation, producing structurally correct XA code
from tentative XA code, is summarized in Figure 8.

The diagram item “required changes; translator warnings” denotes
the following:

• Installing an XA startup vector and any other required XA interrupt
vectors.

• Implementing an XA stack.

• Removing or resolving warning messages.

Later on in this section we will offer a few comments on the
remaining issues of tentative XA source: resolving illegal or
unrecognizable XA syntax, adding comments about the XA
implementation, and removing 8051 instruction comments optionally
included by the translator.

Although this application note is targeted to dealing with software
translation issues, we’ll also cover the key areas of hardware
preparation for real XA hardware. If you are just simulating for now,
please feel free to maintain code for real hardware; it won’t have any
effect on the simulator, and you’ll be prepared for eventual use on a
real XA.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 11

2.2.1 XA startup vector (simple case)
Practiced 8051 programmers usually have a standard program template readily available. In its essence—ignoring interrupts—it looks
something like this:

org 0

ljmp start ; first executed instruction

org 040h

start:

mov SP,#stack_bottom ; initialization code

...

If you’ve studied the XA, you know that the equivalent minimum startup looks like this:
org 0

dw 8F00H ; initial PSW

dw start ; reset interrupt vector

...

org 0120h

start:

mov SP,#stack_top ; initialization code

...

(See Appendix 2 for a complete listing of a standard XA initialization template.)

As you can see, the XA startup is based on a pair of word vectors at the beginning of code memory, the first taken as the initial Program Status
Word (PSW) value, and the second as the initial Program Counter (PC). There is no way for the XA Development Environment translator to
automatically translate the 80C51 startup to the XA form, so you’ll have to do it yourself: Replace the initial jump with two “dw” define words, the
first setting the initial PSW (8f00H is the recommended default) and the second containing the address of the first instruction to execute.

Use this code as a guide for simple cases, such as evaluating code using the XA Development Environment XA simulator. The next section
discusses more complex cases. We’ll take up the differences in stack initialization further below.

NOTE: It may be useful to make these changes to your working 8051 source file, especially if you return to the translation step more than once.

2.2.2 XA startup and interrupt vectors (more complex case)
Practiced 8051 programmers usually have a vector template for simple applications that looks like the following:

CSEG

org 0

ljmp start ; Reset Vector

org 03H

reti ; EXT 0 interrupt: not used

org 0BH

reti ; Timer 0 interrupt: not used

org 13H

reti ; EXT1 interrupt: not used

org 1BH

reti ; Timer 1 interrupt: not used

org 23H

ljmp SerialISR ; Serial port interrupt

org 40H

start:

mov SP,#stack_bottom ; initialization code

(This example includes all the interrupt vectors on the core 80C51; derivates differ.)

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 12

Drawing again on the complete startup template given in Appendix 2, here’s an expanded template that includes the key interrupt vectors for the
XA:

dw 08f00H, Start ; Reset PSW, vector

dw 08f00H, BreakVec ; breakpoint PSW, vector

dw 08f00H, TraceVec ; trace PSW, vector

dw 08f00H, StkOvfVec ; stack overflow PSW, vector

dw 08f00H, Div0Vec ; divide by 0 PSW, vector

dw 08f00H, URetiVec ; user reti PSW, vector

org 040H ; (TRAP 0–15 exceptions omitted)

org 080H ; Event interrupts:

dw 08900H, ExtInt0Vec ; external interrupt 0

dw 08900H, Timer0Vec ; timer 0 interrupt

dw 08900, ExtInt1Vec ; external interrupt 1

dw 08900H, Timer1Vec ; timer 1 interrupt

dw 08900H, Timer2Vec ; timer 2 interrupt

org 090H

dw 08900H, Rxd0Vec ; Serial port 0 receive

dw 08900H, Txd0Vec ; Serial port 0 transmit

dw 08900H, Rxd1Vec ; Serial port 1 receive

dw 08900H, Txd1Vec ; Serial port 1 transmit

org 0100H ; (Software interrupts omitted)

org 00120H ; Start of executable code area.

BreakVec:

TraceVec:

StkOvfVec:

Div0Vec:

URetiVec:

ExtInt0Vec:

Timer0Vec:

ExtInt1Vec:

Timer1Vec:

Timer2Vec:

Rxd0Vec:

Txd0Vec:

Rxd1Vec:

Txd1Vec:

reti ; Location to route interrupts/exceptions with no specific

; handler code. This could prevent lockup particularly due

; to an unexpected exception such as stack overflow if

; there was no vector or handler whatsoever.

; (labels for traps and software interrupts omitted)

;==

org 0 ; System exception interrupts:

; Beginning of initialization code.

Start:

mov R7, #0100H ; initialize stack pointer top

...

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 13

For brevity, we’ve omitted the traps and software interrupts and their
corresponding labels for the “reti tie-off” found in the original, but
we’d encourage you to include them in all code destined for
execution on an actual XA target.

The purpose of this comparison is to highlight the differences in
interrupt setup when translating an application between the 80C51
and the XA.

We want you to notice that the XA provides extensive support of
exception, trap, and event interrupt mechanisms. Tying off unused
interrupts takes a lot more “bookkeeping”, but you’ll recognize that
this cost is well worthwhile when you start using these.

2.2.3 The XA stack
We recommend that the first instruction executed in any XA
application be a stack initialization; even if this does no more than
duplicate the default initialization (completely sufficient for small test
programs).

Odds are that the translator will find an 80C51 stack initialization and
translate it, but you’ll have to manually locate any such code and
replace it with XA-specific initialization, if for no other reason that the
byte-sized 80C51 stack initialization will be translated to a byte
operation; the translator doesn’t handle SP as a special case.

Converting from an 8051-style stack to an XA stack is fairly easy if
you understand all the issues. Let’s take a look at them, in order of
increasing complexity:

Basics
In all but the most trivial 8051 applications you’ll most certainly see
an instruction like this

mov SP, #stackbottom

You should already know the differences between the 8051 and the
XA stacks:

• The 8051 stack grows upward, while the XA stack grows
downward.

• The 8051 stack contains bytes, while the XA stack contains
words.

• The 8051 has only one stack, the XA has a System and a
User Stack.

• The 8051 stack must be located in on-board memory, while the
XA System Stack must be in the first 64K of RAM, on-chip or off.

• The XA user stack may be located in any memory region.

Because 8051 stack space is generally at a premium, stack
allocation in 8051 applications is usually done with great care. With
any luck, your original 8051 application documentation will describe
the stack allocation in detail, including the expected “high-water
mark” of the maximum expected usage. If not, we encourage you to
spend a little time to study and characterize how the stack is
implemented.

Fortunately, stack allocation is much easier on the XA because
stack space and placement is much less restricted.

In simple cases—with simple subroutine calls/returns and no
interrupts—you’ll be able to transform the 8051 stack allocation to a
first approximation by using the following steps:

1. Use only the System Stack.

2. Declare the top of the stack in the XA at a specific RAM address.

3. Allocate as many words in the XA as the original application
allocates bytes.

In other words, it may be entirely sufficient to use code like this:
ENDRAM EQU 0FFFFh ; last cell

STACKSIZE EQU 200h ; in bytes

ISTACKPTR EQU ENDRAM–STACKSIZE – 1 ; initial value

...

mov SP,ISTACKPTR ; recommended 1st initialization

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 14

As the XA initializes the System Stack Pointer to 100H, that is,
within on-chip memory space for all XA devices, you may be able to
use the default setting for small applications. Even so, we
recommend that you explicitly document the stack allocation for the
translated application and explicitly set the stack pointer. Please
also note that the XA provides a stack overflow exception if the
stack reaches 80H. It’s often a good idea to add an interrupt handler
for this overflow exception so that your application can recover from
stack overflow.

That said, we’ll warn you that more complex 8051 applications may
require considerably more special handling with respect to stack
operation translation. We’ll take a look at the next more complex
case—handling interrupts—in a following section and then take a
look at special topics later on.

The System Stack
We’re going to assume that you’re translating a single-threaded
8051 application to the XA for the purposes of this application note;
translating a multitasked 8051 application is beyond the scope of
this application note.

In most cases, Philips recommends you operate the XA initially in
System Mode (see the XA User Guide, section 4.2.4, for example)
and we’ll extend that recommendation here to suggest that most
translated applications be operated entirely in System Mode.

You set System Mode by setting the SM bit in the initial PSW. If you
do this, your application will have full access to all XA registers,
instructions, and memory spaces. Further, you’ll have only one stack
and one stack pointer, and you can ignore any discussion of the
User Stack Pointer. R7 will always contain the System Stack
Pointer, which you can simply call “the stack pointer” or SP.
Throughout your code, you need to take care that no operation you
perform sets PSW.SM to zero.

Interrupts add another level of complexity to the picture. When
handling interrupts you must “confirm” the System Mode setting of
PSW.SM by making sure that the new PSW portion of each interrupt
vector contains a value that will result in PSW.SM = 1. In other
words, to preserve System Mode, make sure that all values of PSW
specified in interrupt vectors leave PSW.SM=0.

The System Stack and Interrupts
Let’s review how interrupts are serviced: As you can see in the XA
User Manual, the address of the next instruction and PSW in force
at the instant of the interrupt are saved on the System Stack.
(All interrupts—exception interrupts, event interrupts, software
interrupts, and trap interrupts—use the System Stack exclusively.)
The new value of the Program Counter (PC) and the new PSW are
taken from the code-memory vector associated with that interrupt.
Normally, you’ll use the RETI instruction at the conclusion of an
interrupt service routine to restore the interrupted program flow and
Program Status.

Unlike the 8051, the XA PSW value is automatically saved any time
an interrupt occurs, so it is unnecessary to save the PSW explicitly.
(This means you can save a few bytes in translated programs where
the original 8051 code did the save and restore by manually
removing the explicit PUSH PSW and POP PSW instructions.)

As described in the XA User Guide, section 4.3.2, the amount of
information processed on the stack during interrupts varies between
the default 24-bit XA operation mode and the optional 16-bit Page 0
mode.

The User Stack
What about the User Stack Pointer? We recommend that you don’t
worry about it for the purposes of the vast majority of translated
applications. Simply make sure that PSW.SM is always set. R7 will
always contain the System Stack Pointer.

Of course, the XA offers support for multitasking and, for this
purpose, you’ll need to know how to use User and Supervisor Mode
functionality. See Chapter 5 of the XA User Manual, and look for
forthcoming applications notes on general multiasking support and
running multiple virtual 8051’s on a single XA.

Advanced Stack Issues
Clever uses of the 8051 stack have been a key feature of that
architecture. We can think of a number of schemes you may have to
recognize and handle, as well as some XA-specific issues:

• Multiple 8051 Stacks

Some applications demand multiple stacks, and we’ve seen some
translation problems handling these. Fortunately, these generally
involve schemes in which registers other than the 8051 SP is
used for stack pointers—we have generally seen the “SP stack”
used only for interrupts in some applications—and so these can
be handled routinely.

• 16-bit 8051 Stacks

Likewise, some 8051 applications require 16 bit stacks, and the
ones we’ve seen also handle these outside the scope of the
hardware SP.

• Special PSW handling within interrupt service routines (ISRs)

When you are translating an 8051 ISR, it is almost certain you’ll
see a “PUSH PSW” somewhere near the beginning and a
matching “POP PSW”—or some equivalents—near the end.
Unlike the XA, 8051 interrupt processing doesn’t automatically
save and restore the PSW value, and the vast majority of
applications will require that the foreground’s PSW be unchanged
through interrupt service.

However, it is remotely possible that an 8051 application breaks
this general rule and depends on an altered value of PSW on
return from an ISR.

Here’s a somewhat contrived example: an application with no
arithmetic processing whatsoever and extreme storage
requirements might use the CY flag to indicate the completion of
some ISR-processed event to a foreground processing loop.

The translator can’t detect this special method and certainly can’t
defeat the standard interrupt processing peformed by the XA
hardware, saving and restoring the PSW, so you’ll have to modify
the code manually to make this algorithm work. Fortunately, XA
storage is likely to be much more plentiful and you’ll probably be
able to use a much more conventional technique.

By the way, you can manually remove the PUSH/POP pair from
the translated code if you want.

• Stacks extending over physical address boundaries

80C51 stacks necessarily reside within the IRAM memory space.
XA stacks may be in IRAM, in external RAM, or --as the stack
grows downward across the boundary-- in both. There is no
special consideration for the placement of the stack with respect
to the internal/external boundary, but you should be aware that
access speed may be different for the two types of memory.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 15

2.2.4 Feeding the Watchdog
There is one critical mechanism provided on the XA that has no equivalent in the basic 80C51 architecture (but is implemented in some 80C51
derivatives): the watchdog timer. If you fail to pay attention to the watchdog timer—which is activated automatically by a hardware reset—your
translated applications will crash mysteriously!

Fortunately, it is very easy to take care of the watchdog. For most developmental purposes, we recommend simply deactivating the entire
subsystem early in your XA initialization code. (Right after stack pointer initialization is a good place.) We will draw again from the complete
startup initialization template in Appendix 1. The watchdog timer uses a special “feeding” sequence to enable any changes to its configuration:

wdoff: equ $00 ; WDCON value to turn off WD

...

mov.b wdcon,#wdoff ; Turn off watchdog timer.

mov.b wfeed1,#$a5 ; Feed watchdog: use new config

mov.b wfeed2,#$5a

This code sequence deactivates the watchdog subsystem and places it in a known state.

The watchdog mechanism is not implemented in the XA Tools simulator, and these instructions will have no effect.

2.2.5 Obligatory Hardware Initialization
The XA contains a number of hardware initialization registers. (Namely, BCR, BTRH, BTRL, P0CFGA, P0CFGB, P1CFGA, P1CFGB, P2CFGA,
P2CFGB, P3CFGA, and P3CFGB.) The default power-up values of these are often sufficient to get your application running, but the defaults
won’t work in every case, and we recommend that you consider initializating these registers as obligatory among the first instructions after reset.

You’ll definitely need to use non-default values to speed up external memory access and to enable external RAM access when executing code
in internal code space.

Explaining how to set all these registers is well beyond the scope of this document, but we’ll give a common example, taken from Appendix 1:

mov.b bcr,#waitd+bus16+adr20 ; Set up bus configuration.

mov.b btrh,#dw5+dwa5+dr4+dra5 ; Config bus timing to longest

; bus cycles

mov.b btrl,#wrpuls2+holdmin+ale05+cr4+cra5 ; short ALE, min data

; hold.

mov.b p0cfga,#pcfga_pp ; Configure port0 types for bus.

mov.b p0cfgb,#pcfgb_pp

mov.b p1cfga,#p1cfga_bus ; Configure P1 for quasi–bidirec

mov.b p1cfgb,#p1cfgb_bus ; except A3 – A0 are push–pull.

mov.b p2cfga,#pcfgb_pp ; Configure P2 types for bus.

mov.b p2cfgb,#pcfgb_pp

mov.b p3cfga,#p3cfga_bus ; Configure P3 for quasi–bidirect

mov.b p3cfgb,#p3cfgb_bus ; except WR, RD are push–pull.

This won’t have any effect on the XA simulator. See section 7.3 in the XA User Guide for more details.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 16

2.2.6 Disposing of Warning Messages
Warnings are written as comments to the output file. We recommend
resolving all warning messages before proceeding with the
translation process.

The majority of warnings are usually due to 8051 instructions that
translate directly into XA “compatibility” instructions:

JZ/JNZ

JMP[A+DPTR]

MOVC A,[A+PC]

MOV A,[A+DPTR]

MOVC A,[A+DPTR]

The resulting XA code may be obscure or non-functional, and the
translator flags this usage to warn you to check each instance. You’ll
have to understand what the original code does to do this.

A second class of warning messages are generated for bit
references, since identities of bits—even those with identical
functions—are different on the 8051 and the XA. Some of these
problems will be identified in a later stage by the XA assembler, but
you’ll have to review all the bits referenced in the translated program
sooner or later. No matter what, we can’t over-emphasize the rule
that’s equally valid for 80C51 and XA coding:

“All SFR and bit references should be symbolic.”

The first reason for this rule is that identically named SFRs and bits
may appear at different places in different 80C51 and XA variants.
Secondly, symbolic references receive some error-checking by the
assembler that can’t be done with explicit numeric references.

Details of Compatibility Instructions
The XA “compatibility” instructions offer you the option of continuing
to use a number of highly-functional 80C51 instructions in your XA
code. To do so requires that you understand, in detail, any
differences that exist between the 80C51 and XA implementation of
the instructions, as well as the specifics of each implementation. You
may choose to adjust the code to continue to use these instructions,
or recode into native XA instructions. (We generally recommend
recoding whenever practical.)

Here are the details, along with alternatives for recoding into native
XA instructions:

• JZ/JNZ

JZ/JNZ in the 80C51 uses the current contents of ACC –not the
result of a prior ALU operation–to determine whether the jump is
taken or not. This function is duplicated in the XA using the
translated ACC, R4L. Check the program logic to make sure that
the the value in R4L is valid at the time the JZ/JNZ is executed.

XA native alternative: recode to use CMP followed by Bxx.

• JMP[]

The JMP[A+DPTR] instruction, used for implementing jump or call
tables, depends on the length of each entry in the jump table.
Because the lengths of translated instructions in the tables are
likely to differ, the translated algorithm probably won’t work without
further manual intervention.

XA native alternative: implement a vector table instead, do an
indexed fetch followed by a jump-thru-register.

• MOVC A,[A+PC]

The MOVC A,[A+PC] instruction fetches a constant byte out of
code memory. Since the algorithm depends on the length of this
instruction –one byte on the 80C51, and two bytes on the XA–
you’ll have to make an adjustment to make the translated code
work correctly.

XA native alternative: Use standard register-indirection or MOVC
to get bytes or words from data or code memory, respectively.

• MOV A,[A+DPTR] and MOVC A,[A+DPTR]

These instructions are used to fetch one of 256 bytes in a data- or
code-memory table, respectively. As long as the translated A,
R4L, and the translated DPTR, R6, contain the correct values,
algorithms implemented with this instruction should continue to
work in the XA.

XA native alternative: Use standard register-indirection or MOVC
to get bytes or words from data or code memory, respectively.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 17

8051 SOURCE XA SOURCE XA SOURCE XA SOURCE

SU00793

Figure 9.

XA SOURCE XA SOURCEXA SOURCE
DEBUGGING

CHANGES
EXECUTION

VERIFICATION

EDITOR XA ASSEMBLER

RUN XA
SIMULATOR/EMULATOR

EXECUTION
ERRORS?

NO

YES

DEBUGGED
XA SOURCE
COMPLETED

A

SU00794

Figure 10.

2.3 The final step:
Generating debugged XA code

There’s good news at the final step: Transforming structurally
correct XA code into debugged XA is almost identical to the
standard native code-development cycle. You’ll run the XA simulator
or XA emulator to verify your code, make corrections, re-assemble,
then re-verify, continuing until your program is proven. If you’ve been
careful during previous steps, you shouldn’t have any
translation-specific problems here.

Figure 10 describes the details.

The only difference for translated code is the very slight chance
you’ll need to return to an early translation step to correct an
unforeseen systematic error in your code. We don’t expect this to
happen except in extreme cases of specialized code.

As standard XA development techniques are covered by other
materials, we’ll cut this section short and turn to special topics.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 18

3. SPECIAL TOPICS
We’ve translated a good deal of 80C51 code, ranging from short
functional snippets to applications of considerable size. In the
process, we’re reminded of the wealth of programming tricks
developed over the years by 80C51 programmers to extract all
possible functionality from the architecture and to overcome
limitations of early tools.

We’ve also seen a few cases where the 80C51 to XA Translator
needs a little extra help.

We’ve kept notes of these, and we’ll share them with you—along
with our recommendations for fixes—in this section.

3.1 Trouble-making items
Here’s a list from our notes of some potential troublespots. You may
want to scan your 80C51 and translated source code for these. Most
of these issues are covered in detail in this Application Note.

• 80C51-specific comments in translated code.

• 80C51-style increments in XA that don’t affect condition codes,
but possibly should.

• Any occurence of the [...+DPTR] operand.

• Any operation on the 80C51 PSW register.

• Any explicit push or pop.

• Over-terse console messages (due to extremely limited ROM size
in many 8051 applications).

• Multiply/Divide algorithms, which may translate and run correctly,
but very slowly if not re-written for the XA.

• Indirect references (@R0, @R1) in 80C51 code.

3.2 Translating indirect references
Indirect addressing doesn’t always translate well from the 80C51 to
the XA since the 80C51 implements 8-bit indirection through R0 or
R1, while the XA can do 16-bit indirection through any of R0 thru R7.

For programs that are heavily dependent on the 80C51
implementation, you may consider setting SCR.CM to put the XA
into 80C51 “compatibility mode” in which XA R0 and R1 function as
8 bit index registers.

In general, we recommend that you examine the issues carefully
and recode if necessary to use native 16-bit addressing whenever
possible. The increased generality of your code will almost always
pay back the effort.

3.2.1 Indirect reference failure
In a few cases, the translator can produce XA code which won’t
function correctly.

For example, the XA translator translates the 8051 code sequence

MOV R1,PTR ; get a pointer from IRAM

MOV A,@R1 ; load @ptr to ACC

to

MOV.B R0H,PTR ; get a pointer from IRAM

MOV.B R4L,[R1] ; load @ptr to ACC

In the 80C51 version, the IRAM location “PTR” contains an 8-bit
pointer, which is fetched to R1, one of the two 80C51 index
registers. (The source of the pointer is not important; this example
would be equally valid if the value of R1 is loaded from any other

8-bit location.) The code uses the byte-size pointer in R1 to load
another 8-bit quantity to the accumulator.

In the XA version, an 8-bit pointer is fetched to the XA register
corresponding to 80C51 R1, namely R0H. For native mode, the
translation has already gone astray as no byte-length index registers
are implemented in the XA, and R0H isn’t a proper index register
anyway. The next instruct, an indirect load, fetches through R1,
which is completely uninitialized by this sequence, so the translation
fails.

In XA compatibility mode, byte-length pointers are available, but
they are defined as the least-significant byte of either R1 or R0, so
the 8-bit pointer should be loaded to either R0L or R1L. This
translated sequence effectively uses R1L, which is likewise
uninitialized, and the translation fails.

3.2.2 Recommendations for Indirect References
The most general solution is to search for all “@R0” and “@R1”
addressing in the 8051 code or all “[R0]” and “[R1]” references in
translated code. Note that translated code won’t contain any
references like “[R2]” through “[R7]” since no 8051 code generates
these. Although there are no useful changes you can make to the
8051 code prior to translating, you may be able to see better how
the code works in the original source, and it is a good idea to
consider how pointers might be converted to words from bytes at the
most convenient level. Make sure to distinguish between true
byte-sized pointers and word-size pointers used to access external
memory. Some 8051 programs keep word pointers in adjacent
registers or IRAM cells, but there’s no guarantee, since we’ve seem
some that don’t.

Don’t forget that pointers are sometimes checked against limits, and
you’ll need to convert the limit checking code as well. 8051 CJNE’s
are translated to CJNE.B’s. You may have to manually convert these
to CJNE.W’s. It’s probably a good idea to replace the CJNE tests
completely with CMP instruction followed by a conditional branch. In
the 8051, the CJNE was the only way to do a non-destructive test,
so it was overused—and possibly misused—in situations where a
limit might be reached or exceeded.

3.2.3 Picking a register for indirect references
If you are manually modifying translated code—following our
recommendation to recode certain 80C51-specific
constructions—you may need to pick a new register for indirect
addressing. Here are some pointers:

In the most general case, you can’t use XA registers R0 through R3
for indirect addressing because it is possible that 8051 registers R0
through R7, which translate into byte registers in R0 through R3,
namely: R0L, R0H, R1L, ...R3H, might contain useful data.

Of the group R4 through R7, R4 is best preserved for translated
code that assigns R4L as “ACC” and R7 is the Stack Pointer. The
chances are good that DPTR in the 8051 code was doing something
useful, so it’s XA twin, R6, is busy.

That leaves R5 as a good candidate. (If R5 is also busy, then you’ll
have to save a register temporarily; unless stack space is very
limited, the stack is as good as any place. Alternatively, you may
want to switch register banks if there are free registers in a different
bank.)

Remember to consider that it is a standard practice in 8051 coding
to assign symbolic names to registers, so you may need to take
extra care to track register usage.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 19

3.3 Translating “degenerate” 8051 source code
This section discusses some “degenerate” 8051 programming
practices in this section. We use this term for some constructs
because they are very 8051-specific, developed over time by
programmers to make the most of the available tools and the 8051
architecture.

Most of these don’t translate mechanically very well. You can
manually modify the code used in around this kind of code and get it
to work, but our experience indicates that it is often better to it
outright with maintainable, clear XA code. We’ll show you how.

3.3.1 “Here” relative addressing
Some typical 8051 source code includes branch instructions
resembling the following:

JB testbit1,$+3
JNB testbit2,somewhere
RET ; or whatever

Early 8051 assemblers had limited symbolic capacity and
encouraged such usage. This code should have been written

JB testbit1,xyz
JNB testbit2,somewhere

xyz:
RET

The translator cannot perform this replacement mechanically, and
the XA assembler will not accept “here” relative constructs except in
specific cases, so we recommend that you correct the original 8051
source code by adding labels. It is a good idea to search 8051
source code for “$-” and “$+” and resolve all these before attempting
translation.

Note: The translator will not translate operands like “.+3” and “.-6”.
The period operator does not mean “here” in the XA assembly
language, where it is reserved for bit addressing constructions,
e.g., “SCR.PZ”. The translator will emit an error message and leave
dot-based operands alone.

3.3.2 Branch to “Here”
A very typical 8051 source code construction looks like this:

JB eventbit1,$

Of course, at the cost of inventing a label name, this code could
have been written

wait:
JB eventbit1,wait

Unlike the 8051, the XA cannot branch (jump) to an odd address. If
an labeled instruction prospectively occurs at an odd address, the
assembler inserts a NOP before any jump target to place it at the
next even address. Without a label, however, the assembler can’t
distinguish this instruction as a jump target, so the translator
generates a label when this construction is found. The generated
label is not very informative, appearing, for example, as follows:

XA_ADJUST_0005:
JB eventbit1,$

This guarantees that the assembler will even-align the target
instruction. We recommend that you substitute a better label, at
minimum; even better, consider replacing the “$” reference with the
full label.

3.3.3 Branch to “here+offset” or “here-offset”
It’s a common 8051 practice to use knowledge of the the length of
instructions and the exact movement of the program counter during
instructions to use specify branches in conditionals to a place “so
many bytes from here”. Without careful documentation, the code is
often incomprehensible. For example, this 80C51 fragment maps
alpha characters in the accumulator to upper case:

CJNE A,#’a’,$+3
JC C_IN_1
CJNE A,#’z’+1,$+3
JNC C_IN_1
ANL A,#11011111B

C_IN_1:
RET

This code won’t translate. Even though it is obvious what this
segment does, it is not immediately obvious how it does it. (See also
“Compare Trees” in section 3.3.7.) To which instruction does the first
CJNE branch if the branch is not taken? If you keep this
construction, you’ll have to figure this out.

We recommended you recode this kind of construction in clear XA
code, for example as follows:

CMP.B R4L,#’a’
BL EXIT
CMP.B R4L,#’z’
BG C_IN_EXIT
AND.B R4L,#11011111B

EXIT:
RET

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 20

3.3.4 In-line strings
Some 8051 assembly programs follow the practice of embedding
strings within code sequences that use them. Often this is done
where a canned string is to be output to the console, but it may
occur in other contexts, for example in a Tiny BASIC interpreter,
where the BASIC commands are sought by successive code
routines and the compare strings are embedded in the code.

The print string case might look like the following:

CALL String_Out
DB “This string goes to the console”,0
NOP ; or whatever

The subroutine “String_Out” obtains the string address from the
stack and outputs the string, in the process adjusting the stack value
to that of the following instruction –here a RET. A trailing null is often
used as a string delimiter. (Other schemes that delimit the string are
possible, for example, a leading byte count, or setting the 80h bit of
the final character, but these have no effect on the basic method.)
The code at String_Out usually starts out as follows:

String_Out:
POP DPH
POP DPL
MOV a,#0
MOVC A,@A+DPTR
...

This method works on the 8051, and very efficiently, because it take
advantage of the fact that the CALL places a full 16-bit address on
the stack in a single instruction. Unfortunately, the 8051 has no
corresponding 16-bit pop to anywhere else but the Program Counter
(i.e., via the RET instruction). So the string pointer must be retrieved
and placed in DPTR, the most useful place for it, one byte at a time.

The translator transforms this code to

CALL String_Out
DB “This string goes to the console”,0
NOP

....

String_Out:
POP.B DPH
POP.B DPL
MOV.B R4L,#0
MOVC.B A,[A+dptr]
...

which looks almost the same, but operates very differently. First, the
XA CALL places a 16-bit return address on the stack in page 0
mode. In native XA mode, CALL generates a 24-bit return address
in two 16-bit stack cells.

When it comes to retrieving the string address, there are no 8-bit
stack operations on the XA, so an entire word is popped for each
byte POP. If the XA is in page 0 mode, this code will remove two
16-bit words from the stack, one more than was pushed by the
CALL, causing a likely fatal stack imbalance as well as incorrect
data in DPTR. In native mode, this code will remove the two words
pushed by the CALL, leaving the stack in balance, but DPTR will
contain an incorrect value. In other words, this code won’t work
when translated.

What to do? The answer depends on your application.

If you are certain to use page 0 mode, the two byte POPs can be
replaced by a single word POP. This will keep the stack balanced
and retrieve the pointer value correctly. The return will always be to
an even address, so assure that it is the correct one by placing a

label on the first instruction following the string. Eliminate the special
8051-equivalent “A+DPTR” form in favor of a straight indirect code
memory fetch, in the process eliminating the need to clear the
accumulator, and gaining an implicit autoincrement:

CALL String_Out
DB “This string goes to the console”,0

new_label:
NOP

....

String_Out:
POP.W R6
MOVC.B R4L,[R6+]

...

Don’t forget to remove the code that increments DPTR further below
in the output subroutine.

In XA native mode, on entry to String_Out, address bits 16 thru 23
will be in a word on the top of the stack. In some simple cases you
might be able to simply POP these and discard them, but resist the
temptation, since this won’t always work if your code moves.

In general, it is best to remove this construction entirely so there will
be no mode or address dependence:

msg1:
DB “This string goes to the console”,0

...
MOV R6,#msg1
CALL String_Out

...
String_Out:

MOVC.B R4L,[R6+]
...

When you make this conversion, you can forget about the alignment
issue, i.e. the need for a dummy label on the code following the
embedded string goes away. Of course, you’ll have to invent some
labels for the strings and place them somewhere out of the code flow.

3.3.5 General In-line args
We’ve seen strings placed in-line in 80C51 code in the previous
section and these at least have the somewhat redeeming value of
self-documentation. Imagine finding a code sequence like the
following:

STK_ER:
CALL AES_ER
DB 0FH

This is a bit mysterious, especially if the code following is of no
particular relevance. To make a long story short, the value ‘0FH’ is
an error number, and this routine handles stack errors in a Tiny
Basic interpreter. The routine AES_ER could retrieve the error
number by popping the presumptive return address into DPTR and
doing a MOVC.

This is a good example of the lengths to which 8051 programmers
have gone to squeeze optimum performance from the architecture.

Since there are many more registers available in the XA, your
translated code could simply move the error code into a free register
before calling AES_ER. The error code could even be pushed on
the stack:

ADDC R7,#–2
MOV.B [R7],#0FH

without involving any registers. Whatever you do, we advise you to
eliminate in-line arguments.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 21

3.3.6 Program Resets
It is not uncommon to see an 8051 program instruction:

JMP 0000H

This will translate, but the result won’t be correct since there’s not an
executable instruction at 0.

Better to use:

RESET

3.3.7 Compare trees
The 8051 construction

CJNE A,#’a’,$+3
JC C_IN_1
CJNE A,#’z’+1,$+3
JNC C_IN_1

...

works because the CJNE instruction performs a subtract and sets
the carry flag. This construction is the only way to “bin” numbers in
the 8051 using the accumulator only. But it is often very difficult to
understand.

We recommend recoding to use successive XA compares and
branches.

Note that XA CJNE’s don’t include a form that allows comparing two
register arguments, and in the XA you’ll likely have more working
values in registers.

3.3.8 Code Table Fetches
To do table look ups returning bytes, it’s common to see 8051 code
that does the following:

MOV A,#index ; or calculated
MOV DPTR,#TABLE_BASE
MOVC A,[A+DPTR] ; A <–– indexed byte value

This code sequence will work equally well on the XA, and may often
simply be retained after translation, assuming you can live with the
limitations:

1. The table is in the current code page

2. You must use the simulated DPTR (R6) and the simulated
accumulator, R4L

3. The table can only be 256 bytes long

4. You can only conveniently fetch bytes this way

5. This minimal form uses three register bytes

6. It’s not easy to expand to use multiple indexes

Using native XA code is the alternative. Let’s see what that looks
like in a similar case:

MOV.W Rn,#index ; or calculated
ADD.W Rn,#TABLE_BASE
MOVC.B RnL,[Rn+] ; RnL <–– indexed byte value

Note: we’re re-using the same register for the sake of illustration,
which you may not want to do in all cases. Using native code has
the following advantages:

• The table is in the current code page or through ES, which can
point anywhere in code space.

• You can use any registers for the index and table base.

• You can create tables up to 64K bytes long, maybe longer in
some situations.

• You can fetch bytes or words, and the autoincrement makes
longer fetches easy.

• This minimal form uses only two register bytes.

• It’s easy to expand to use multiple indexes.

3.3.9 Using the stack for vectored execution
A sequence of 2 pushes followed by a “ret” instruction in 80C51
source code means that a new execution address has been
calculated by some means; the only way to get it into the 80C51 PC
is through the stack, for example:

..
push DPL
push DPH
ret

This kind of construct is used when “JMP @A+DPTR” is insufficient,
for example, in the case of large or very sparse jump tables.
Although we’ve seen cases where the translated code works
correctly, it is both inefficient and obscure. We recommend recoding
to use jumps through an XA register.

Threaded code requiring double-indirect jumps demands use of the
single XA instruction to replace the mass of 80C51 code required to
do this function.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 22

3.4 Translating “untranslatable” 8051 source
Before you use the translator to mechanically translate 8051 code,
you should be aware of a number of 8051 constructions that may
translate without error, but will simply not work.

There are also some limitations on source code that the translator
can handle, and it is best to manually or automatically scan your
source code for these and eliminate them before attempting to use
the translator.

3.4.1 PSW bit addressing
Some 8051 code takes advantage of the fact that PSW bits are
bit-addressable.

None of these bits are addressable on the XA. This fact should be
mechanically demonstrated by the lack of BIT definitions in
“XA.EQU” (or its equivalent in your environment), but it is probably
better to take care of this kind of problem explicitly, since you’ll have
to make some code changes right off the bat if you’ve got PSW bit
dependence.

3.4.2 P2 addressing
On the 80C51 it was common for applications with external RAM
and ROM to use P2 addressing to address external RAM data
memory. This trick provides a second 16-bit memory pointer, albeit
an awkward one, for accessing external memory. Obviously, this
extremity is not necessary for the XA, which provides plenty of
memory pointer registers. We’ll describe how to recognize this trick
and what to do about it.

Here’s what you’ll see in the 80C51 source code:

A sixteen-bit pointer is divided into two bytes. The high-order byte is
written to port P2, while the low-order byte is written to or maintained
in R0 or R1. This is followed by a MOVX to read or write a data byte
through the 16-bit pointer.

(The trick: writes to the P2 SFR are gated to the external bus only
when this doesn’t interfere with P2 addessing external program
memory. When the 8051 fetches an instruction from external
program memory, the contents of SFR P2 are ignored –but
retained– and the most significant byte of the program counter is
written to the external P2 physical pins. At all other times, the SFR
contents are output to the physical pins.)

To translate these references into XA external data memory
references:

1. Chose a word pointer register, XA-Rn.

2. Write the value formerly written into P2 into RnH

3. Write the value formerly written into R0 or R1 into RnL

4. Perform a MOVX indexed by XA-Rn

To translate these references into plain old XA internal data
references—assuming there’s enough internal RAM available—
substitute a MOV for the MOVX. Note that the XA will do an external
memory access if the address exceeds the on-chip space.

3.4.3 R7 use
Just a reminder: the XA Stack Pointer is maintained in the XA
register R7; avoid the temptation to use R7 as a general register,
except in the unusual case that your application doesn’t use the XA
stack.

3.5 Wrap-up
We’ve designed the entire suite of XA Development Environment
tools—translator, assembler, simulator/debugger—to make the
process of translating 80C51 code to the XA to be as smooth as
possible.

With the exception in a few cases of the requirement to return to the
original source code and re-translate—which occurs only when
there’s some systematic differences between the original source and
the requirements of the tools—the job is little different from any other
native development and debugging job.

3.6 Trouble checklist
In trouble? Sometimes it is easy to lose perspective when you’re
immersed in the details of a translation. Here’s a checkist to help
you:

� Have you read the entire application note and studied the special
topics?

� Have you organized your files and file-naming system to the
necessary degree?

� Are you spending too much time understanding obscure 8051
constructs that would be better recoded into native XA code?

� Should your choice of Page 0 or compatability mode settings be
reconsidered?

� Are you using the simulator effectively?

� Are you using the correct (up-to-date, variant-specific) include
file (e.g., “XA–G3.equ”)?

� Are you attempting to access external memory on an
development tool that only supports single-chip operations?

� Are you using the symbolic register-naming capabilities of the
assembler to the best advantage to translate code, by translating
functionality, then assigning a specific register?

� Are you re-editing translated code too often?

� Are you making piecemeal changes when systematic changes
are required?

� Would you be better off re-writing the application from scratch?

� Do have a case so special you need help from Philips
Applications?

3.7 Final Comments
We’ve seen that 80C51 code varies enormously with respect to
quality, amount of documentation, dependence on architectural
“tricks”, and so on. Each translation will have its own flavor.
Ultimately, there’s no substitute for experience, so we encourage to
you start with simple cases, take them through the process to
completion, and then start again with more difficult translation
problems.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 23

APPENDIX 1: STARTUP+INTERRUPT PROTOTYPES
The following code is a complete template for software startup, interrupt vectors, and hardware initialization. Extracts from this code are used in
several places in the text. You may obtain this code from the Philips BBS as file “XA-SKEL.ASM”.

$pagewidth 132t

$listing_min

;==

; General purpose skeleton assembly file for the XA–G3

;==

; This file may be used as a starting point to develop XA assembly
; language applications. Many definitions are included to simplify XA
; system initialization and to make the code more readable. The user
; will need to adjust the initialization values to suit a specific
; application. Some things to look at are: stack starting location,
; system configuration (8051 compatibility mode; page 0 mode, and
; peripheral timing), watchdog timer setup, bus configuration
; and timing, and port configuration (especially as regards bus
; operation).

; The default setup shown gives an XA with 8051 compatibility turned
; off, page 0 mode on, peripheral timing set to clk/4, watchdog timer
; turned off, the external bus configured to a 16–bit data width with 20
; address lines, bus timing set to the longest cycles but a short ALE
; and minimum data hold, ports; configured for quasi–bidirectional
; mode except for the pins related to bus operation, which are set to
; push–pull.

;==

$include xa–g3.equ ; Model file for the XA–G3
 ; which defines all of the
 ; Special Function Registers
 ; and addressable bits.

$nolist

;==

; Equates to for XA initialization and make setup code self–documenting:

; System Configuration register (SCR):
cmoff: equ $00 ; SCR value to turn off 8051 compatibility mode.
cmon: equ $02 ; SCR value to turn on 8051 compatibility mode.
page0off: equ $00 ; SCR value to turn off Page Zero mode.
page0on: equ $01 ; SCR value to turn on Page Zero mode.
time4: equ $00 ; SCR value for timer rate = clk / 4.
time16: equ $04 ; SCR value for timer rate = clk / 16.
time64: equ $08 ; SCR value for timer rate = clk / 64.

; Watchdog timer configuration register (WDCON):
wdoff: equ $00 ; WDCON value to turn off watchdog timer.
wdon: equ $04 ; WDCON value to turn on watchdog timer.
wdpre64: equ $00 ; WDCON value for prescale = 64 * TCLK.
wdpre128: equ $20 ; WDCON value for prescale = 128 * TCLK.
wdpre256: equ $40 ; WDCON value for prescale = 256 * TCLK.
wdpre512: equ $60 ; WDCON value for prescale = 512 * TCLK.
wdpre1K: equ $80 ; WDCON value for prescale = 1024 * TCLK.
wdpre2K: equ $a0 ; WDCON value for prescale = 2048 * TCLK.
wdpre4K: equ $c0 ; WDCON value for prescale = 4096 * TCLK.
wdpre8K: equ $e0 ; WDCON value for prescale = 8192 * TCLK.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 24

; Bus Configuration Register (BCR)
waitd: equ $10 ; bcr value to activate Wait Disable.
busd: equ $08 ; bcr value to activate Bus Disable.
bus8: equ $00 ; bcr value to set 8–bit bus.
bus16: equ $04 ; bcr value to set 16–bit bus.
adr12: equ $00 ; bcr value to set 12 address lines.
adr16: equ $01 ; bcr value to set 16 address lines.
adr20: equ $02 ; bcr value to set 20 address lines.

; Bus Timing Register High (BTRH):
dw2: equ $00 ; data write cycle without ALE is 2 clocks.
dw3: equ $40 ; data write cycle without ALE is 3 clocks.
dw4: equ $80 ; data write cycle without ALE is 4 clocks.
dw5: equ $C0 ; data write cycle without ALE is 5 clocks.
dwa2: equ $00 ; data write cycle with ALE is 2 clocks.
dwa3: equ $10 ; data write cycle with ALE is 3 clocks.
dwa4: equ $20 ; data write cycle with ALE is 4 clocks.
dwa5: equ $30 ; data write cycle with ALE is 5 clocks.
dr1: equ $00 ; data read cycle without ALE is 1 clock.
dr2: equ $04 ; data read cycle without ALE is 2 clocks.
dr3: equ $08 ; data read cycle without ALE is 3 clocks.
dr4: equ $0C ; data read cycle without ALE is 4 clocks.
dra2: equ $00 ; data read cycle with ALE is 2 clocks.
dra3: equ $01 ; data read cycle with ALE is 3 clocks.
dra4: equ $02 ; data read cycle with ALE is 4 clocks.
dra5: equ $03 ; data read cycle with ALE is 5 clocks.

; Bus Timing Register Low (BTRL):
wrpuls1: equ $00 ; write pulse width is 1 clock.
wrpuls2: equ $80 ; write pulse width is 2 clocks.
holdmin: equ $00 ; data hold time is minimum.
holdlong: equ $40 ; data hold time is 1 clock.
ale05: equ $0 ; ALE width is 0.5 clocks.
ale15: equ $1 ; ALE width is 1.5 clocks.
cr1: equ $00 ; data read cycle without ALE is 1 clock.
cr2: equ $04 ; data read cycle without ALE is 2 clocks.
cr3: equ $08 ; data read cycle without ALE is 3 clocks.
cr4: equ $0C ; data read cycle without ALE is 4 clocks.
cra2: equ $00 ; data read cycle with ALE is 2 clocks.
cra3: equ $01 ; data read cycle with ALE is 3 clocks.
cra4: equ $02 ; data read cycle with ALE is 4 clocks.
cra5: equ $03 ; data read cycle with ALE is 5 clocks.

; Port configuration registers (PnCFGA, PnCFGB):
pcfga_pp: equ $ff ; port config reg a value for push–pull output.
pcfgb_pp: equ $ff ; port config reg b value for push–pull output.
pcfga_qb: equ $ff ; port config reg a value for quasi–bidirect
pcfgb_qb: equ $00 ; port config reg b value for quasi–bidirect
pcfga_od: equ $00 ; port config reg a value for open drain output.
pcfgb_od: equ $00 ; port config reg b value for open drain output.
pcfga_z: equ $00 ; port config reg a value for output off.
pcfgb_z: equ $ff ; port config reg b value for output off.

p1cfga_bus: equ $ff ; port1 config reg a=quasi, but A3–A0=push–pull.

p1cfgb_bus: equ $0f ; port1 config reg b=quasi, but A3–A0=push–pull.

p3cfga_bus: equ $ff ; port3 config reg a=quasi, but RD,WR=push–pull.

p3cfgb_bus: equ $c0 ; port3 config reg b=quasi, but RD,WR=push–pull.

$list

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 25

;==

; Start code space:

 org 0 ; System exception interrupts:
 dw $8f00, Start ; Reset PSW, vector.
 dw $8f00, BreakVec ; breakpoint PSW, vector.
 dw $8f00, TraceVec ; trace PSW, vector.
 dw $8f00, StkOvfVec ; stack overflow PSW, vector.
 dw $8f00, Div0Vec ; divide by 0 PSW, vector.
 dw $8f00, URetiVec ; user reti PSW, vector.

 org $40 ; TRAP 0 – 15 exceptions:
 dw $8800, Trap0Vec ; trap 0 PSW, vector.
 dw $8800, Trap1Vec ; trap 1 PSW, vector.
 dw $8800, Trap2Vec ; trap 2 PSW, vector.
 dw $8800, Trap3Vec ; trap 3 PSW, vector.
 dw $8800, Trap4Vec ; trap 4 PSW, vector.
 dw $8800, Trap5Vec ; trap 5 PSW, vector.
 dw $8800, Trap6Vec ; trap 6 PSW, vector.
 dw $8800, Trap7Vec ; trap 7 PSW, vector.
 dw $8800, Trap8Vec ; trap 8 PSW, vector.
 dw $8800, Trap9Vec ; trap 9 PSW, vector.
 dw $8800, Trap10Vec ; trap 10 PSW, vector.
 dw $8800, Trap11Vec ; trap 11 PSW, vector.
 dw $8800, Trap12Vec ; trap 12 PSW, vector.
 dw $8800, Trap13Vec ; trap 13 PSW, vector.
 dw $8800, Trap14Vec ; trap 14 PSW, vector.
 dw $8800, Trap15Vec ; trap 15 PSW, vector.

 org $80 ; Event interrupts:
 dw $8900, ExtInt0Vec ; external interrupt 0.
 dw $8900, Timer0Vec ; timer 0 interrupt.
 dw $8900, ExtInt1Vec ; external interrupt 1.
 dw $8900, Timer1Vec ; timer 1 interrupt.
 dw $8900, Timer2Vec ; timer 2 interrupt.

 org $90
 dw $8900, Rxd0Vec ; Serial port 0 receive.
 dw $8900, Txd0Vec ; Serial port 0 transmit.
 dw $8900, Rxd1Vec ; Serial port 1 receive.
 dw $8900, Txd1Vec ; Serial port 1 transmit.

 org $100 ; Software interrupts:
 dw $8100, SWI1Vec ; SWI1
 dw $8200, SWI2Vec ; SWI2
 dw $8300, SWI3Vec ; SWI3
 dw $8400, SWI4Vec ; SWI4
 dw $8500, SWI5Vec ; SWI5
 dw $8600, SWI6Vec ; SWI6
 dw $8700, SWI7Vec ; SWI7

 org $0120 ; Start of executable code area.

BreakVec:
TraceVec:
StkOvfVec:
Div0Vec:
URetiVec:
Trap0Vec:
Trap1Vec:
Trap2Vec:
Trap3Vec:
Trap4Vec:
Trap5Vec:
Trap6Vec:
Trap7Vec:
Trap8Vec:

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 26

Trap9Vec:
Trap10Vec:
Trap11Vec:
Trap12Vec:
Trap13Vec:
Trap14Vec:
Trap15Vec:
ExtInt0Vec:
Timer0Vec:
ExtInt1Vec:
Timer1Vec:
Timer2Vec:
Rxd0Vec:
Txd0Vec:
Rxd1Vec:
Txd1Vec:
SWI1Vec:
SWI2Vec:
SWI3Vec:
SWI4Vec:
SWI5Vec:
SWI6Vec:
SWI7Vec:

 reti ; Location to route interrupts/exceptions with no specific
 ; handler code. This could prevent lockup particularly due
 ; to an unexpected exception such as stack overflow if
 ; there was no vector or handler whatsoever.

;==
; Beginning of initialization code.

Start:
 mov R7, #$100 ; initialize stack pointer.

 mov.b scr,#cmoff+page0on+time4 ; Set up chip configuration.

 mov.b wdcon,#wdoff ; Turn off watchdog timer.
 mov.b wfeed1,#$a5 ; Feed watchdog: use new config
 mov.b wfeed2,#$5a

 mov.b bcr,#waitd+bus16+adr20 ; Set up bus configuration.
 mov.b btrh,#dw5+dwa5+dr4+dra5 ; Config bus timing to longest
 ; bus cycles
 mov.b btrl,#wrpuls2+holdmin+ale05+cr4+cra5 ; short ALE, min data
 ; hold.

 mov.b p0cfga,#pcfga_pp ; Configure port0 types for bus.
 mov.b p0cfgb,#pcfgb_pp
 mov.b p1cfga,#p1cfga_bus ; Configure P1 for quasi–bidirec
 mov.b p1cfgb,#p1cfgb_bus ; except A3 – A0 are push–pull.
 mov.b p2cfga,#pcfgb_pp ; Configure P2 types for bus.
 mov.b p2cfgb,#pcfgb_pp
 mov.b p3cfga,#p3cfga_bus ; Configure P3 for quasi–bidirect
 mov.b p3cfgb,#p3cfgb_bus ; except WR, RD are push–pull.

; End of initialization, begin user code.

end

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 27

APPENDIX 2: COMPARE/BRANCH SUMMARY
XA Compare/Branch Operations are summarized in the following tables:

Compare op: (destination – source)

Comparison: destination to source

op CONDITION(S) JUMP IF... ALTERNATE: JUMP IF...

BG (C OR Z) = 0 above, unsigned not below nor equal, unsigned
BL (C OR Z) = 1 below or equal, unsigned not above, unsigned
BCC C = 0 above or equal, unsigned not below, unsigned
BCS C = 1 below, unsigned not above nor equal, unsigned

BGT ((N XOR V) OR Z) = 0 greater, signed not less or equal, signed
BGE (N XOR V) = 0) greater or equal, signed not less, signed
BLT (N XOR V) = 1 less, signed not greater nor equal, signed
BLE ((N XOR V) OR Z) = 1 less or equal, signed not greater, signed

BCS C = 1 carry

BCC C = 0 not carry

BEQ Z = 1 zero equal

BNE Z = 0 not zero not equal

BOV V = 1 overflow

BNV V= 0 not overflow

BPL N = 0 not sign positive

BMI N = 1 sign negative

XA FLAG MEANING

“Z” Zero Flag

”C” Carry Flag

”V” Overflow Flag

”N” Sign Flag

NOTE: XA PSW51.P is a bit-testable flag that indicates parity (=1 indicates even parity).

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 28

Following are some parallel examples of compare trees done first with 8051 CJNE operations, then with XA CJNE operations (directly
translated), and XA CMP instructions followed by branches. These examples are illustrative and not intended to be exhaustive

EXAMPLE 1

8051 CJNE
CJNE dest,src,NOT_SAME ; branch if dest ≠ src

JMP SAME ; dest = source

NOT_SAME:

JC DEST_SMALLER ; dest ≠ src

SRC_SMALLER:

... ; dest > src

JMP DONE

DEST_SMALLER:

... ; dest < src

JMP DONE

SAME:

... ; dest = source

DONE:

...

XA CJNE
CJNE dest,src,NOT_SAME ; branch if dest ≠ src

JMP SAME ; dest = source

NOT_SAME:

BCS DEST_SMALLER ; dest ≠ src

SRC_SMALLER:

... ; dest > src

BR DONE

DEST_SMALLER: ; dest < src

...

BR DONE

SAME:

... ; dest = source

XA CMP/Bxx
CMP dest, src ; compare dest to src

BEQ SAME ; branch if dest = source

NOT_SAME:

BCS DEST_SMALLER ; branch if dest < src

SRC_SMALLER:

... ; dest > src

BR DONE

DEST_SMALLER: ; dest < src

...

BR DONE

SAME:

... ; dest = source

DONE:

...

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 29

EXAMPLE 2

8051 CJNE
CJNE dest,src,NOT_SAME ; branch if dest ≠ src

JMP SAME ; dest = source

NOT_SAME:

JNC SRC_SMALLER ; dest ≠ src

DEST_SMALLER:

... ; dest < src

JMP DONE

SRC_SMALLER:

... ; dest > src

JMP DONE

SAME:

... ; dest = source

DONE:

...

XA CJNE
CJNE dest,src,NOT_SAME ; branch if dest ≠ src

JMP SAME ; dest = source

NOT_SAME:

BCC SRC_SMALLER ; dest ≠ src

DEST_SMALLER:

... ; dest < src

BR DONE

SRC_SMALLER:

... ; dest > src

BR DONE

SAME:

... ; dest = source

DONE:

...

XA CMP/Bxx
CMP dest, src ; compare dest to src

BEQ SAME ; branch if dest = source

NOT_SAME:

BCC SRC_SMALLER ; branch if dest < src

DEST_SMALLER:

... ; dest < src

BR DONE

SRC_SMALLER:

... ; dest > src

BR DONE

SAME:

... ; dest = source

DONE:

...

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 30

EXAMPLE 3

8051 CJNE
CJNE dest,src,GTE ; branch if dest ≠ src

JC DEST_SMALLER ; dest ≠src; branch if dest < src

GTE:

... ; dest >= src

JMP DONE

DEST_SMALLER:

... ; dest < src

DONE:

...

XA CJNE
CJNE dest,src,NOT_SAME ; branch if dest ≠ src

BCS DEST_SMALLER ; dest ≠src; branch if dest < src

GTE:

... ; dest >= src

BR DONE

DEST_SMALLER:

... ; dest < src

DONE:

...

XA CMP/Bxx
CMP dest, src ; compare dest to src

BCS DEST_SMALLER ; branch if dest < src

GTE:

... ; dest >= src

BR DONE

DEST_SMALLER:

... ; dest < src

DONE:

...

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Dec 30 31

EXAMPLE 4

8051
CJNE dest,src,LTE ; branch if dest ≠ src

JNC SRC_SMALLER ; dest ≠src; branch if dest > src

LTE:

... ; dest <= src

JM DONE

SRC_SMALLER:

... ; dest > src

DONE:

...

XA CJNE
CJNE dest,src,LTE ; branch if dest ≠ src

BG SRC_SMALLER ; dest ≠src; branch if dest > src

LTE:

... ; dest <= src

BR DONE

SRC_SMALLER:

... ; dest >src

DONE:

...

XA CMP/Bxx
CMP dest, src ; compare dest to src

BG SRC_SMALLER ; branch if dest > src

LTE:

... ; dest <= src

BR DONE

SRC_SMALLER:

... ; dest > src

DONE:

...

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips
Semiconductors reserves the right to make changes at any time without notice in order to improve design
and supply the best possible product.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

DEFINITIONS

Data Sheet Identification Product Status Definition

Objective Specification

Preliminary Specification

Product Specification

Formative or in Design

Preproduction Product

Full Production

This data sheet contains the design target or goal specifications for product development. Specifications
may change in any manner without notice.

This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes
at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

Philips Semiconductors Application note

AN708Translating 8051 assembly code to XA

1996 Sep 20 32

�������
��	���
�����
�

	CONTENTS
	1. INTRODUCTION
	1.1 The questions you are probably asking right now
	1.2 Overview of the translation process
	1.3 What you’ll need
	1.4 Preparation
	1.5 About the original application
	1.6 Translation decisions you must make

	2. THE TRANSLATION PROCESS
	2.1 Starting translation: Producing tentative XA source
	2.2 Continuing translation: Producing structurally correct XA code
	2.3 The final step: Generating debugged XA code

	3. SPECIAL TOPICS
	3.1 Trouble-making items
	3.2 Translating indirect references
	3.3 Translating “degenerate” 8051 source code
	3.4 Translating “untranslatable” 8051 source
	3.5 Wrap-up
	3.6 Trouble checklist
	3.7 Final Comments

	APPENDIX 1: STARTUP+INTERRUPT PROTOTYPES
	APPENDIX 2: COMPARE/BRANCH SUMMARY
	DEFINITIONS

