
�������
��	���
������

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

Author: Lane Hauck; with permission from WaferScale Incorporated.
 Copyright 1996 WaferScale Incorporated. This is a duplicate of WaferScale application note 045.

21996 Nov 04

Introduction
The Philips Semiconductors P51XA-G3 is the first of a new breed of
fast, inexpensive 16-bit processors designed for high performance,
high integration, and family growth. Although the P51XA (XA) family
is promoted as a modern version of the venerable 8-bit 8051, it
actually outperforms most of today’s 16-bit embedded processors by
a wide margin.

The XA is available in the usual array of OTP, ROMless and mask
ROM versions so the cost/performance benefit that has made
WSI PSD3XX chips attractive to embedded system designers
applies the to XA. A typical system can be built using the ROMless
version of the XA and a PSD311 for less cost than the OTP version
of the XA.

Connection of a PSD3XX to the XA is not straightforward, due to the
fact that the XA address and data lines are multiplexed in a manner
unlike all other CPU chips that the PSD family is designed to
support. This application note identifies the interface issues and
solves them one by one to achieve an efficient XA–PSD interface.

The WSI PSD3XX devices can be used either with multiplexed
address/data buses or with separate address and data buses.
Multiplexed buses have the advantage that fewer PSD pins are
required for the CPU interface, leaving more PSD pins available for
general purpose system use. This application note addresses
multiplexed bus connection of the XA and the PSD311.

The XA-PSD Marriage: Almost Perfect
The Philips XA designers took a radical departure from the 8051 bus
architecture by bringing out the address lines A0–A2 on dedicated
pins. These addresses are not multiplexed, which means that they
do not require an ALE pulse to separate the address information
from the data information. This allows up to 16 byte fetches on an
8-bit external bus with only one ALE pulse – the address is latched,
the first byte is read or written, and then A0–A3 are incremented and
the subsequent bytes are accessed.

This non-multiplexing of A0–A3 also allows very quick access of
16-bit operands on an 8-bit bus, because the time required to fetch
the second byte can be as low as 20% of the normal ALE-R/W cycle
time. This innovative timing allows external 8-bit bus systems to run
nearly as fast as external 16-bit bus systems.

The XA gives very precise control (via internal programmable
registers) of its bus timing. You can set the width of the ALE signal,

and the positions and widths of the RD and WR signals. Given the
inherent speed of the XA and the capability to fine-tune its bus
timing, a word fetch using an 8-bit external bus can be significantly
faster than other 16-bit CPUs that use a 16-bit external bus.

But...
For all the reasons it makes sense to buy the “ROMless” version of
a CPU like the 8031 and attach a PSD chip for a lower system cost,
it likewise makes sense to use a PSD chip with the ROMless XA.
But there’s a hitch. PSD3XX chips expect to see the low 8 bits of
address and data multiplexed together, i.e., AD7–AD0. But the XA
uses a different multiplexing arrangement, as shown in Table 1.

Table 1. Address-Data Multiplexing Schemes
CONVENTIONAL XA

A15 A15

A14 A14

A13 A13

A12 A12

A11 A11 D7

A10 A10 D6

A9 A9 D5

A8 A8 D4

A7 D7 A7 D3

A6 D6 A6 D2

A5 D5 A5 D1

A4 D4 A4 D0

A3 D3 A3

A2 D2 A2

A1 D1 A1

A0 D0 A0

As illustrated in Table 1, data lines D0 – D7 are multiplexed with
A4 – A11 on the XA, not with A0–A7 as the PSD devices expect.

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 3

Basic Strategy
Given Table 1, how should the XA buses be connected to a PSD? In
principle, it is possible to scramble address and data lines, as long
as the scrambling is accounted for in the system design. For
example, if you scramble address lines connected to a RAM, the
scramble occurs for both writes and reads, so the effect is
transparent to the system. However, address scrambling is not
transparent in a device like a ROM that stores data at predetermined
locations. When a CPU sends out an address to fetch an interrupt
vector or execute one step of a program, it expects the data to be at
that absolute address, not somewhere else due to scrambled
address lines.

The first interface consideration is that the XA data lines must be
connected to the corresponding PSD311 data lines. This dictates
that XA A4/D0–A11/D7 must be connected to PSD311 AD0–AD7 as
shown in the highlighted portion of Table 2.

Table 2. XA–PSD311 Bus Connection
XA PSD311

A15 A15

A14 A14

A13 A13

A12 A12

A11/D7 AD7

A10/D6 AD6

A09/D5 AD5

A08/D4 AD4

A07/D3 AD3

A06/D2 AD2

A05/D1 AD1

A04/D0 AD0

A03 A11

A02 A10

A01 A09

A00 A08

As shown in Table 2, the upper four address lines A15–A12 are
connected straight across. Because the data lines D7–D0 must line
up, the CPU address lines A11–A4 must be connected to the PSD
A7–A0. Then the remaining CPU lines A3–A0 connect to PSD
A11–A8.

This address scramble must be accommodated for in the system
design. There are three areas to consider: the EPROM, the IO port
control registers, and the RAM.

EPROM
XA code is usually supplied to a device programmer using a file
format called “Intel HEX”, and files of this type generally have the
extension “HEX”. A HEX file is supplied to the WSI PSDsoft
software, which combines it with PSD configuration information and
writes out a new hex file with an “OBJ” extension.

A standard HEX file associates data with absolute addresses.
Because of the address line scrambling shown in Table 2, a

standard XA HEX file will not work. For example, if the XA sends out
the address 0x1234, the EPROM location accessed within the
PSD311 will actually be 0x1423. To account for this, we need a
program that reads the XA HEX file, stores the data in memory in
address–scrambled order, and then writes a new HEX file with the
data residing at the scrambled addresses.

Appendix A is the source code for a C program to accomplish this
address translation. It was compiled on the Borland C++ compiler
Version 3.1 using the LARGE memory model. The SCRAMBLE.CPP
and SCRAMBLE.EXE files are available on the WSI BBS. The
source code is included in case you have any trouble running the
program — you can freely adapt it to suit your purposes or cater to
the whims of your particular C compiler.

To use the utility, place your XA HEX file and the SCRAMBLE.EXE
file in the same directory, and type “SCRAMBLE myfile.hex” where
myfile.hex is the HEX file to be scrambled. The SCRAMBLE
program writes out a new file in address–scrambled order with the
same filename and the “HX2” extension — in this example,
myfile.HX2.

I/O Port Control Registers
The PSD311 port control registers appear at byte offset 2–7 from a
programmable base address. The base address is set by the
equation you write for the CSIOP output in the Programmable
Address Decoder (PAD). If this base address is positioned at a 4
Kilobyte boundary, only the address lines A15–A12 participate in the
decoding. These addresses are not scrambled, so there is a direct
mapping of the equation you write for CSIOP and the memory space
which the block of I/O Port Control Registers inhabit.

The address lines that participate in selection of the IO control
registers, CPU A2–A0, are scrambled: CPU A0 is PSD A8, CPU A1
is PSD A9, and CPU A2 is PSD A10 (Table 2). Therefore the
register offsets are translated as shown in Table 3.

Table 3. I/O Port Register Mapping
CPU REGISTER OFFSET ACTUAL PSD ADDRESS

2 (Port A Pin Register) 0x20

3 (Port B Pin Register) 0x30

4 (Port A Direction Register) 0x40

5 (Port B Direction Register) 0x50

6 (Port A Data Register) 0x60

7 (Port B Data Register) 0x70

Table 3 indicates that to access the Port A direction register, for
example, the byte at (BASE+0x40) must be accessed. This might be
accomplished with the following XA code fragment, which sets PA0
and PA1 to outputs, and PA2–PA7 to inputs:

Apins equ $20
Bpins equ $30
Adir equ $40
Bdir equ $50
PortA equ $60
PortB equ $70
BASE equ $C000

mov r0, #BASE
mov.b [r0+Adir], #00000011b ; 1=out, 0=in

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 4

A11/D7

A3BUSW

XA PSD311

AD7

1

0

Y

S

A15 & ALE

A11

SU00734

QS3257

Figure 1. How to Convert A11D7 to A3D7

RAM
At first glance, it might appear that the PSD RAM is the easiest
portion of the PSD to accommodate the scrambled address lines.
After all, if the CPU writes to address XYZ, and unbeknownst to the
CPU, it instead writes to address ABC, when the CPU tries to
retrieve the data at XYZ it (again unknowingly) retrieves the data at
ABC, which is the correct data. In other words, as long as the same
scrambling occurs on a read-write device for both reads and writes,
everything is copacetic.

A problem arises, however, because the connection shown in
Table 2 connects CPU A3 to PSD A11, and CPU A11 (actually
A11/D7) to PSD AD7. Why is this a problem? The RAM size in the
PSD is 2 kilobytes, requiring eleven CPU address lines A0–A10. But
look where CPU A03 is connected — it’s to PSD A11, which is not
used in the RAM addressing. Therefore, as far as the PSD311 RAM
is concerned, it is missing CPU A03. Furthermore, the signal
connected to the PSD311 A7 pin, CPU A11, is superfluous for RAM
access.

The net result is that if the connections are made exactly as shown
in Table 2, only half of the RAM would be addressable, and every
eight bytes would repeat! This would tend to make the software
people very unhappy, especially if they put data like the system
stack in the PSD RAM.

The solution is to change the CPU “A11/D7” signal to “A3/D7”. This
change connects all eleven active CPU address lines A0–A10 to all
eleven active PSD RAM address lines A0–A10, albeit in scrambled
order (which is OK for a RAM). This is accomplished by the circuit
shown in Figure 1. A15 is used as a RAM select signal to tell the
circuit when to do the A11–A3 swap. The Address swap should be
done for RAM accesses only, because A11 is required for EPROM
addressing. In order to swap only the address and not the data
portion of the multiplexed A11/D7 signal, the ALE signal is used as a
qualifier.

The QS3257 is a quad bi-directional multiplexor made by Quality
Semiconductor and others. In this circuit, A15 is used as the RAM
chip select. When A15 goes HI to select the RAM, the MUX
connects XA A3 to PSD311 AD7, but only for the ALE (address)
portion of the cycle. When ALE de-asserts, the MUX re-connects XA
A11/D7 to the PSD311 AD7 to connect the D7 signals together. The
mux must be bi-directional to allow read-write access on D7. Note

that the XA BUSW pin is tied low to support an 8-bit bus system at
power-on.

How do we develop the logic for driving the MUX select (S) signal?
Using the PSD311 PAD, of course. If the RAM is to be positioned
within an 8K block, rather than the 32K block decoded by A15 alone,
the other address lines A14–A12 may be used in the mux control
equations. Appendix B is a PSDabel listing showing the mux select
signal as ‘mux’, which uses PB0. Appendix C is the PSDsoft
configuration file for the design.

Figure 2 is a scope photo of ALE, WRITE, READ and address line
A0. Figure 3 shows the timing for the MUX select signal. The
measurements for Figures 2 and 3 were taken using a 30 MHz XA
system, with the following bus timing parameters:

ALEW 1 [1.5 clock ALE pulse]
WM1 1 [long write pulse]
WM0 1 [1 clock data hold time for write]
DWA 3 [5 clock ALE–WR cycle]
DW 3 [4 clock WR cycle]
DRA 2 [4 clock ALE–RD cycle]
DR 3 [4 clock RD cycle]
CRA 2 [4 clock ALE–PSEN cycle]
CR 3 [4 clock PSEN cycle]

The XA listing in Appendix D gives the startup code that establishes
the above bus timing plus other chip configuration data, and then
runs a continuous loop to produce the waveforms shown in
Figures 2 and 3.

Figure 2 illustrates two consecutive XA bus cycles. In the first cycle,
the XA writes a 16-bit word by issuing two consecutive byte writes.
Notice that address A0 changes from an odd address to an even
address midway through the cycle (between write pulses) and a
single ALE pulse is issued for both byte writes. The PSD3XX family
devices work properly with the single ALE pulse because the
addresses A8–A11, which are connected to XA addresses A0–A3,
are not latched in the PSD3XX. PSD devices (PSD4XX/5XX) that
latch all of the address lines would not work in this application, since
they would not pick up the address change on A0 without a second
ALE pulse.

Figure 3 shows the timing for the multiplexor select signal.

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 5

Because the first cycle writes data to memory outside the PSD311
RAM (A15=0), the mux select signal is high throughout the write
cycle. The second ALE pulse corresponds to a read operation from
RAM (A15=1). In this cycle the mux-S signal switches low, feeding
A3 into the AD7 pin in place of A11. A3 is latched by the falling edge
of ALE, the mux switches back to normal operation, and CPU D7 is
connected to PSD AD7 for the remainder of the read operation.

The RD and A0 traces in Figure 2 illustrate the basic bus timing for
the PSD311. The PSD311 access time can be determined by
examining the read cycle which starts at the center division of the
scope diagram. The XA reads the first byte by issuing the address of
the first byte (A0=LO) and an ALE pulse. The RAM address is valid
about 10 nanoseconds after the mux-S signal switches LO (to
account for the 3257 mux switching time), and this address is

latched inside the PSD311 by the falling edge of ALE. The XA reads
the byte just before A0 switches from LO to HI, which starts the
second RAM access cycle. (Remember that “A0” is actually A8 in
the PSD311, which is not latched). The access time required for the
first byte read (mux-S LO to A0 LO-HI transition) is about 100 nsec,
and the access time required for the second byte read (A0 HI to RD
going HI) is about 120 nsec. Thus a PSD311-90 is a good choice for
this design.

Performance
As the bus timing waveforms of Figures 2 and 3 demonstrate, an
8-bit bus connection of the Philips Semiconductors XA CPU and the
WSI PSD311 gives a very high performance system. Using fairly
conservative timing, a word (double byte) read or write takes
400 nanoseconds using the PSD311-30.

SU00735

Figure 2. MUX Timing

SU00736

Figure 3. Multiplexor Select Signal (MUX-S)

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 6

Appendix A:
C Listing for SCRAMBLE Program

Scramble.cpp 9–12–95 Lane Hauck

This program is used to modify a standard Intel Hex file (.hex) so that it can be used to load a WaferScale PSD311 that is connected to a
Philips Semiconductors XA microprocessor. Because the XA does not multiplex AD7–AD0, but instead multiplexes A11D7–A4D0, the
addresses to the PSD311 must be scrambled for the data stored in the PSD311 ROM.

Typically the input hex file will be the output of a 51XA linker.

The program reads an Intel hex file, scrambles addresses, and writes a new Intel hex file with an “hx2” extension.

Invoke with: scram <infile.hex>.
Outputs file: “infile.hx2”.

Scramble order:

A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00
A15 A14 A13 A12 A07 A06 A05 A04 A03 A02 A01 A00 A11 A10 A09 A08

Hex ABCD becomes ADBC

Intel hex format:
(A) Data Record
: cc aaaa 00 [data] cs CR LF

: Colon
cc # data bytes (2 chars)
aaaa load addr (4 chars)
00 record type=data record
data 2 times cc chars
cs 2’s compl of checksum (binary values, not ASCII codes) includes cc,aaaa,00,data
CR carriage ret
LF line feed

(B) End Record
: 00 aaaa 01 cs CR LF

: Colon
00 no data bytes
aaaa program start address
01 indicates an END record
cs checksum of 00,aaaa,01

***/

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <string.h>
#include <stdlib.h>
#include <dir.h>
#define ROMSIZE 32768L // PSD311 ROM size

// function prototypes
int a2d(int a);
int scramble(int inaddr) ;

// global variables
int huge inarray[ROMSIZE];
FILE *out;

int main(int argc, char *argv[])
{

FILE *in;
unsigned int pos,j,k,a,b,c,d,e,f,m,data;
char outfilename[12];
char *ptr;
int ch;
unsigned int count,addr,scradd,csum;
char string[16];

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 7

// check for two command line items: “scramble”, outfilename

if (argc ! = 2)
{
printf(“\nERROR: Usage: SCRAMBLE outfile\n”);
sound(100); /* a little razz sound */
delay(200);
nosound();
return 1;
}

/* open the file given in the command line */

if ((in=fopen(argv[1],”rt”)) == NULL)
{
printf(“Cannot open input file..%s\n”,argv[1]);
return 1;
}

printf(“File-%s-opened!\n”,argv[1]);

// open a file with input file name plus ‘.hx2’ extension

strcpy(outfilename,argv[1]); // make a copy of filename
ptr=strchr(outfilename,’.’); // ptr –> ‘.’
pos=ptr–outfilename; // position of period
outfilename[++pos]=’h’; // replace extension
outfilename[++pos]=’x’;
outfilename[++pos]=’2’;

if ((out=fopen(outfilename,”wt”)) == NULL)
{
printf(“Cannot open output file..%s\n”,outfilename);
return 1;
}

printf(“File-%s-opened!\n”,outfilename);

for (j=0; j<ROMSIZE; j++)
{
inarray[j]=0xFF;
}

while (!feof(in))
{
ch=fgetc(in);
if (ch==’:’)

{
csum=0;
a=fgetc(in);
b=fgetc(in);
count=16*a2d(a)+a2d(b);
if (count!=0) // ignore end record

{
csum+=count;
c=fgetc(in);
d=fgetc(in);
e=fgetc(in);
f=fgetc(in);
addr=4096*a2d(c)+256*a2d(d)+16*a2d(e)+a2d(f);
csum+=addr;
a=fgetc(in); // should be two zero bytes
b=fgetc(in);
data=16*a2d(a)+a2d(b);
csum+=data; // (checks for 00 byte)
for (j=0; j<count; j++)

{
a=fgetc(in); // data byte first digit
b=fgetc(in); // data byte second digit
data=16*a2d(a)+a2d(b);
scradd=scramble(addr);
inarray[scradd]=data;

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 8

csum+=data; // NOTE: csum not checked
addr++; // here for debug/checkout only
}

csum=255–(csum&0x00FF); // 8–bit, 2’s complement
}

}
else;
}

// Write the new hex file

addr=0;
for (j=0; j<=1023; j++) // 1024 lines of 32 bytes each

{
csum=0;
fputs(“:20”,out);
csum+=addr;
sprintf(string,”%04X”,addr);
fputs(string,out);
fputs(“00”,out);
for (k=0; k<=15; k++)

{
for (m=0; m<=1; m++)

{
data=inarray[addr];
csum+=data;
sprintf(string,”%02X”,data);
fputs(string,out);
addr++;
}

}
csum=255–(csum&0x00FF); // 8–bit, 2’s complement
sprintf(string,”%02X”,csum); // 2 chars in checksum
fputs(string,out);
fputs(“\n”,out);
}
fputs(“:00000001FF\n”,out);

sound(1000); // a pleasant little sound...
delay(20);
sound(500);
delay(20);
nosound();
fclose(in);
fclose(out);
return 0;
}

// Scramble routine: Change address ABCD to ADBC

int scramble(int inaddr)
{
int outaddr=0;

outaddr = inaddr & 0xF000 // A
I (inaddr <<8) & 0x0F00 // D
I (inaddr >>4) & 0x00FF; // BC

return(outaddr);
}

// ASCII to hex digit conversion
// converts ASCII char to integer 0–15

int a2d(int x)
{
if (x>=65 && x<=70) // A to F

x–=55; // –65 makes it 0–5, –55 makes it 10–15
else

x–=48; // “0” is ascii 48
return(x);
}

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 9

Appendix B:
PSDAbel File for MUX Control Signal

module xa311
title ‘xa311’;

mux pin 11; “ PB0
nA000 pin 40; “ PC0–/CS8
ale,nRD,nWR pin 13,22,2;
a15,a14,a13,a12,a11 pin 39,38,37,36,35;
es0,es1,es2,es3 node 140,141,142,143;
es4,es5,es6,es7 node 144,145,146,147;
rs0,csiop node 124,125;

equations

es0 = !a15 & !a14 & !a13 & !a12 ; “ EPROM address map
es1 = !a15 & !a14 & !a13 & a12 ;
es2 = !a15 & !a14 & a13 & !a12 ;
es3 = !a15 & !a14 & a13 & a12 ;
es4 = !a15 & a14 & !a13 & !a12 ;
es5 = !a15 & a14 & !a13 & a12 ;
es6 = !a15 & a14 & a13 & !a12 ;
es7 = !a15 & a14 & a13 & a12 ;
rs0 = a15 & !a14 & !a13 & !a12 ; “ RAM select
csiop = !a15 & !a14 & a13 & !a12 ; “ IOCTL select

mux = !(a15 & ale); “ a11–a3 mux control
!nA000 = a15 & !a14 & a13 & !a12; “ FPGA chip select

test_vectors

([a15,a14,a13,a12] –> [rs0,csiop,nA000])

 [0, 0, 0, 0] –> [0, 0, 1]; “ nothing selected

 [0, 0, 1, 0] –> [0, 1, 1]; “ IO at 2000
 [1, 0, 0, 0] –> [1, 0, 1]; “ RAM at 8000
 [1, 0, 1, 0] –> [0, 0, 0]; “ FPGA at A000

test_vectors

([a15,ale] –> [mux])

 [0, 0] –> [1];
 [0, 1] –> [1];
 [1, 0] –> [1];
 [1, 1] –> [0]; “ mux low only for address (ALE) time

end xa311

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 10

Appendix C:
PSDSoft Configuration File

**
WSI – PSDsoft Version 2.10
Output of PSD Configurations
**
 PROJECT: xa311 DATE : 10/24/1995
 DEVICE: PSD311 TIME : 18:31:39
**

==== Bus Interface ====

Data bus width = 8–Bits
Address/Data Mode = Multiplexed
ALE/AS signal = Active High
Read/Write signals = /WR,/RD,/PSEN
Memory space setting for EPROM = Program space only (/PSEN)
Security bit = OFF
Power–down capability = OFF
EPROM low power mode = OFF
Active–level of RESET signal = LOW

==== Other Configurations ====

 Port A : ADDRESS/IO Mode
 Pin IO/Address CMOS/OD Output
 PA0 IO CMOS
 PA1 IO CMOS
 PA2 IO CMOS
 PA3 IO CMOS
 PA4 IO CMOS
 PA5 IO CMOS
 PA6 IO CMOS
 PA7 IO CMOS

 Port B :
 Pin CMOS/OD Output
 PB0 CMOS
 PB1 CMOS
 PB2 CMOS
 PB3 CMOS
 PB4 CMOS
 PB5 CMOS
 PB6 CMOS
 PB7 CMOS

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 11

Appendix D:
XA Listing for Figures 2 and 3

; RAMTEST.ASM
$include xa–g3.equ
$pagewidth 132t
;
; PSD311 control registers
;
DDRA equ $40
DDRB equ $50
PortA equ $60
PortB equ $70
PinsA equ $20
PinsB equ $30
;
;

org 0 ; System exceptions:
dw $8f00, Start ; Reset PSW, Reset vector

; ===========================
; Begin initialization code.
; ===========================

org 100
;
Start:

mov R7, #$100 ; initialize stack pointer
;––––––––––––––––––––––––––––––––
; SCR, System Configuration Register
;––––––––––––––––––––––––––––––––
; 76543210
; 0000 ; reserved
; 00 ; PT1:PT0 = 00 for periph osc/4
; 0 ; XA mode
; 1 ; Page 0 mode, uses 16–bit addresses
SCRval equ 00000001q
;––––––––––––––––––––––––––––––––
; WDCON, Watch Dog Timer Control Register
;––––––––––––––––––––––––––––––––
; 76543210
; 000 ; Prescaler divisor is TCLK*32*2
; 00 ; reserved
; 0 ; WDRUN is OFF
; 0 ; input bit WDTOF
; 0 ; reserved
WDCONval equ 00000000q
;––––––––––––––––––––––––––––––––
; BCR, Bus Control Register
;––––––––––––––––––––––––––––––––
; 76543210
; 000 ; reserved
; 1 ; WAITD: disable EA/WAIT pin
; 0 ; Bus Disable OFF (bus enabled)
; 001 ; bc2:0 –> 8–bit data bus, 16–bit address bus
BCRval equ 00010001q
;––––––––––––––––––––––––––––––––

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 12

; Bus Timing Registers
;––––––––––––––––––––––––––––––––
; BTRH
;––––––––––––––––––––––––––––––––
; 76543210
; 11 ; DW=3 for 4 clock write–w/o–ALE cycle
; 11 ; DWA=3 for 5 clock ALE–write cycle
; 11 ; DR=3 for 4 clock read–w/o–ALE cycle
; 10 ; DRA=2 for 4 clock ALE–read cycle
BTRHval equ 11111110q
;––––––––––––––––––––––––––––––––
; BTRL
;––––––––––––––––––––––––––––––––
; 76543210
; 1 ; WM1=1 for 2 clock write pulse
; 1 ; WM0=1 for 1 clock write hold time
; 1 ; ALEW=1 for 1.5 clock ALE width
; 0 ; (reserved)
; 11 ; CR=3 for 4 clock PSEN cycle
; 10 ; CRA=2 for 4 clock ALE–PSEN cycle
BTRLval equ 11101110q
;

mov.b scr,#SCRval ; (see above for bit assignments)
mov.b wdcon,#WDCONval ; (see above for bit assignments)

; mov.b wfeed1,#$a5 ; Feed watchdog so new config takes effect.
; mov.b wfeed2,#$5a

mov.b bcr,#BCRval ; (see above for bit assignments)
mov.b btrh,#BTRHval ; (see above for bit assignments)
mov.b btrl,#BTRLval ; (see above for bit assignments)

;––––––––––––––––––––––––––––––––
; Configure the IO port drivers
;––––––––––––––––––––––––––––––––

mov.b p0cfga,#11111111q ; Configure port0 for bus(11)
mov.b p0cfgb,#11111111q
mov.b p1cfga,#11111111q ; Configure p14–p17 for quasi–bidirec(10),
mov.b p1cfgb,#00001111q ; A3–A0 for push–pull (11).
mov.b p2cfga,#11111111q ; Configure port2 for push–pull (11)
mov.b p2cfgb,#11111111q
mov.b p3cfga,#11111111q ; Configure p35–p30 for quasi–bidirec(10),
mov.b p3cfgb,#11000000q ; WR(p36), RD(p37) for push–pull (11).

;
; End of initialization, begin user code.
;

mov r1,#$8000; RAM
mov r2,#$7000; not RAM
mov r3,#$00FF

wr1: mov.w [r2],r3 ; word write to outside RAM
mov.w r3,[r1] ; word read from RAM
br wr1

END

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 13

NOTES

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 14

NOTES

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 15

NOTES

Philips Semiconductors Application note

AN707
Programmable peripherals
using the PSD311 with the Philips XA

1996 Nov 04 16

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips
Semiconductors reserves the right to make changes at any time without notice in order to improve design
and supply the best possible product.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

DEFINITIONS

Data Sheet Identification Product Status Definition

Objective Specification

Preliminary Specification

Product Specification

Formative or in Design

Preproduction Product

Full Production

This data sheet contains the design target or goal specifications for product development. Specifications
may change in any manner without notice.

This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes
at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

�������
��	���
������

�������
��	���
������

Philips Semiconductors — a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 615 80920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraβe 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 1 4894 339/911, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd., Shivsagar Estate, A Block, Dr. Annie Besant
Rd.,
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 926 5361, Fax +7 095 564 8323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th Floor, Suite 51,
04552-903 São Paulo, SÃO PAULO-SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100,
Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 825 344, Fax. +381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing and Sales Communications, Internet: http://www.semiconductors.philips.com
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax . +31 40 27 24825

 Philips Electronics N.V. 1996 SCA51

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under
patent- or industrial or intellectual property rights.

Printed in the USA Date of release: 11–96

	Introduction
	The XA-PSD Marriage: Almost Perfect
	But...
	Basic Strategy
	EPROM
	I/O Port Control Registers
	RAM
	Performance
	Appendix A: C Listing for SCRAMBLE Program
	Appendix B: PSDAbel File for MUX Control Signal
	Appendix C: PSDSoft Configuration File
	Appendix D: XA Listing for Figures 2 and 3
	DEFINITIONS

