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BACKGROUND

A computer benchmark is a “program” that is used to determine
relative computer core performance by evaluating benchmark
execution time of the core. In a brainstorm sessionon
microcontrollers for automotive applications, an assembler functional
benchmark for engine management, which is a typical example of
embedded high-end microcontrol was created. This report
summarizes the functions implemented in assembler language of
the compared controllers: Intel MCS251, and Philips XA. The total
execution times of a program “engine cycle” (engine stroke) are

BENCHMARK RESULTS AND CONCLUSIONS

Relative performance on a line

The table below presents the most important result of the assembler
benchmark evaluation. It pictures the relative performance of the
compared core instruction set on a scale where XA=1.0. Also
appended is the performance charts—execution and code density of
all the processors.

Total exec.times/core(us) for all routines (with *occurrences)

. i ; 938.75 359.86
calculated and the required program code is estimated for each
controller. Performance MCS251 XA
ratio
Evaluation of performance in a High Level Language (HLL) like C
would be preferable, but it is difficult to realize as “the best” MCS251 1.0 2.61
compilers for all cores involved then should be used. XA 0.383 1.0
This document outlines code density and execution times of the XA,
based on the most recent information. The execution times are
given in terms of both clock cycles and time units. Although the XA
can run at a much higher speed than the MCS251, for the sake of
fairness, both cores are evaluated running at 16.00 MHz. This is a
reasonable assumption for comparing the cores at the same level of
technology.
Because of the pipeline architectures of the MCS251 and the XA,
the benchmarks are run on actual silicon.
Table 1. XA instruction set execution times and bytes/function
XA
IFUNCT.(us) *TIME/FUNCT.
MPY 12 0.75 9 2
FDIV 4 3.0 12 18
ADD/SUB 50 0.375 18.75 4
CMP 24b 13 1.25 16.25 9
CAN 16b 80 0.562 44.96 5
INTPLIN 20 2.04 40.8 42
BRANCH 1 158.13
XA totals 299.89 ps
including 20% statistics 359.86 ps
Table 2. MCS251 instruction set execution times and bytes/function
MCS251
/FUNCT.(us) *TIME/FUNCT.
MPY 12 1.53 18.36 2
FDIV 4 30.125 120.6 25
ADD/SUB 50 0.641 32.05 2
CMP 24b 13 3.375 43.88 12
CAN 16b 80 1.625 130 6
INTPLIN 20 6.12 122.4 60
BRANCH 1 315.0
MCS251 totals 782.29 ps
including 20% statistics 938.75 ps
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Table 3. Total benchmark execution time results

MICROCONTROLLER EXECUTION TIME
CORE (us)

Philips XA-G3 359.86

Intel MCS251 938.75

Benchmark limitations

Like all benchmarks, the automotive engine management assembler

functional benchmark has some weakness that limit validity of its

results.

1. Control in a special (automotive, engine) environment is
evaluated.

Occurrences of operation overheads are based on estimations.
Occurrences of functions are based on estimations.
Functions are implemented in assembler, not in a HLL like C.

Routines may contain assembler implementation errors.

S e

Cores are evaluated at 16.0 MHz

Control in a special environment is evaluated
(automotive, engine)

The core performance evaluation is based on a single specialized
case. All benchmark implementations are fractions of the automotive
engine management PCB83C552 demonstration program.

It can be advocated that the automotive engine control task gives a
good example of a typical high demanding control environment,
where many >= 16 bit calculations have to be done.

Occurrences of overheads are based on

estimations

The assembler functional benchmark is not a full implementation of
a program. Arbitrary choosing location for storage of parameters in
register file or (external) memory, for instance, has for some
instruction set a considerable effect on the total execution time.

For the different core parameter storage is chosen where possible
using the core facilities to have minimum access overhead.

Occurrences of functions based on estimations
Occurrences is estimated on basis of experience of the automotive
group. In a real implementation of an engine controller accents may
shift. As most functions already include some “instruction mix”, the
effect of changes in occurrences is limited.

Functions are implemented in assembler, not in a

HLL like C.

Control programs for embedded systems get larger, have to provide
more facilities and have to be realized in shorter development times.
The only way to do this is to program in a HLL like C. Efficient
C-language program implementation requires different features
from microcontrollers than assembly programs. Results of this
assembler benchmark evaluation therefore have a restricted value
for ranking microcontroller performances for future HLL applications.

Benchmark ranking on basis of HLL like C requires good
C-compilers of all the devices involved are needed. The quality of
the C—compilers really has to be the best there is : HLL
benchmarking measures not only the micro characteristics, but even
more the compiler ability to use these qualities. As these are not
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available for all the micros evaluated, all routines are worked out
only in assembly.

All cores are evaluated at 16.0 MHz
A 16.0 MHz internal clock frequency seems a reasonable choice for
comparing the cores at the same level of technology:

Assembler functional benchmark for automotive

engine management

This benchmark is a functional benchmark: it is a collection of
functions to be executed in an automotive engine management
program. To implement the assembly functional benchmark for
automotive engine management correctly the “rules and details”
described in this section have to be followed carefully.

The assembler functional benchmark embraces all activity to be
completed in 1 program cycle that corresponds with 1 engine stroke
of 2 ms. The benchmark execution time will be calculated as the
sum of the products of functions and their occurrence rates in 1
calculation cycle.

Branches are evaluated separately as “branch penalties” have
considerable effect of program execution efficiency. Estimated
(branch count)*(average branch time) is added to the function
execution times.

The relative estimated overhead for statistics does not contribute to
the evaluation of speed performance ratios, but they have to be
considered when looking at the total execution time required /
engine stroke cycle. therefore the real total execution time is
multiplied with the statistics overhead factor (1.2*).

NO. FUNCTION DESCRIPTION OCCURRENCES
1 16x16 Multiply 12
2 Floating Point divide (16:16) 4
3 Add/Subtract (24) 50
4 Compare (24) 13
5 CAN cmp/mov  10*8 80
6 Linear Interpolation (8*8) 20
7 Program control branches 500
8 Statistics (20%) 1.2+

Function Parameter Allocation

Most functions are very short in exec. time, so that the function
parameter data access method has great effect on the total time.
Thus it is to be considered carefully. Both XA and MCS251SB have
register files in which variables can be stored.

For the XA and 251SB processors, data is stored in the lower part of
register file, or in sfrs for I/O, can be accessed using
“direct’addressing, but table data, used e.g. for 3 byte compare, is
stored in “external memory”. For more complex functions 16*16
multiply, Floating point division and interpolation, data is assumed to
be already in registers.

16x16 Signed Multiply
Parameters are assumed to be in registers, and the 32—bit result
written into a register pair.
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Divide (16:16) “floating point”

The floating point division is entered with parameters in registers:

a divisor, a dividend and an “exponent” that determines the
position of the fraction point in the result.

Floating point binary 16/16 division is a function that is normally not
included in HLL compilers as it requires separate algorithms for
exponent control and accuracy is limited. For assembler control
algorithms, floating point division can be quite efficient as it is much
faster than normal “real” number calculations (where no “floating
point accelerator” hardware is available).

Compare 24-bit variables

Note that 24—bit compare is very efficient for “real” 16—bit and 8-bit)
controllers, but for automotive engine timers, 24—bit seems a good
solution. Compare must give possibility to decide >, < or =. An
average branch is included in the function.

CAN move and compares

For service of the CAN serial interface, it is estimated that 40* (2
byte compares + branch) have to be done. Devices with 16-bit bus
assumes word access. An average branch is included in the CAN
compare function.

Linear Interpolation (8*8)
The interpolation routine is entered with 3 register parameters:
1. Table position address

2. Xfraction

3. Y fraction

The routine first interpolates using the X fraction the values of

F(x.x, y) between F(x,y) ....V(x+1, y) and of F(x.x, y+1) between
F(x, y+1) .... F(x+1, y+1). From F(x.x, y) and F(x.x, y+1) the value of
F(x.x, y.y) is interpolated using the fraction of y.

The table is organized as 16 linear arrays of 16 x—values, so that an
V(x,y) can be accessed with table origin address +x+16*y = “Table
Position Address”. In x—direction the interpolation can be done
between the “Table Position” value and next position (+1).
Interpolation in y—direction is done by looking at “Table Position” +
16.

For linear interpolation time the 2—dimensional interpolation time and
byte count are divided by 3 to include some “overhead” into linear
interpolation.
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Program Control Overheads

For a given algorithm, the “program control overhead” consisting of
a number of decisions (=branches) and subroutine calls is
independent of the instruction set used, except for cases where
functions can be replaced by complex instructions. The most
important exception cases, MPY words and Floating Point Division
are handled in this benchmark separately.

Most 16-bit cores use more pipeline stages so that taken branches
add branch time penalty for these CPU’s due to pipeline flush. This
effect can be found in the branch execution time tables.

More efficient data operations and pipeline penalty of the more
complex instruction set of 16—bit cores lead to considerable higher
relative time used for branch instructions.

To incorporate the influence of branches in the benchmark the
number of branches to be included must be estimated. For byte and
bit routines, branches occur more frequent. Average branch time of
25% may be a good guess. For the automotive engine management
benchmark that executes in approx. 5000/uS (on 8051) results in
+/— 1250 /uS or 625 branches. As a part of the branches already
taken account for in the compare functions the number of additional
program control branches is estimated 500 branches.

To estimate the average branch execution time, an estimated
relative occurrence of the branch types has to be made.

Table 4. Estimated relative occurrence of the
branch types

ABSOLUTE
TYPE RELATIVE OCCURRENCE
Absolute Jumps AIMP/IMP 20% 100
Subroutine calls ACALL/JSR 20% 100
Jump on o
condition (rel) Bccldce 40% 200
Jump on bit (rel) JB/JBN 20% 100

Statistic Routine Overheads

Statistic routines are estimated as relative program overheads, only
to get an indication of the required total processing time in a real
engine management application. “Statistics” are mainly arithmetic
routines to determine table corrections. They use about 20% of the
total time.
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XA BENCHMARK RESULTS
The following analysis assumes worst case operation. At any point in time, only 2 bytes are available in the instruction Queue. An instruction
longer than 2 bytes requires additional code read cycle.

APPENDIX 1

XA Function Implementations
XA reference: XA User’s Manual 1994

Al.1: 16x16 Signed Multiply

Parameters are assumed to be in registers, and the 32-bit result written into a register pair.

MUL.w RO, R1 ; result is in register pair R1:RO

2 Bytes, 12 clocks ==>0.75 us

Al.2: Floating Point 16x16 Divide:

;The floating point division is entered with parameters in registers:

;Arguments: R4 = Dividend (extend into R5 for 32 bits)
; R6 = Divisor Mantissa
; RO = Divisor Exponent

FPDIV:

ADDS R6,#0 ; Add short format

BEQ L1 ; divby O chk —if z=1, go to L1
SGNXTD_AND_SHFT:

SEXT.W R5 ; Sign extend into R5

ASL R4, ROL ; 13 position shifts (average)
DIV: ;

DIv.d R4, R6 ; Divide 32x16 signed

BOV L1 ; Branch on Overflow

RET ; Normal termination
L1:

MOVS R4, #-1 ; Overflow — Max Result

RET
18 Bytes, 48 clocks ==> 3.0 us

Al1.3: Extended 32-bit subtract
; R5:R4 = Minuend
; R3:R2 = Subtrahend

SUB.w R4, R2
SUBB.w R5, R3
4 Bytes, 6 clocks ==> 0.375 us

1996 Feb 15 4
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Al.4: Compare 24-bit Variables

An average branch is included after compare.

The table data, used for 3 byte compare, is stored in “memory”.

CMP:
CMP.B RI1L, R2L ;
BNE L1 ;
L1
CMP.W RO, meml ;
BGT LABEL1 ;
LABEL1:

XX —> GT or LT or EQ

9 Bytes, 20 clocks (average — branch always taken and not taken) ==> 1.25 us

Al.5: CAN Compare and Move
Application:  For service of CAN (Controller Area Network) serial Interface it is estimated that 80* (2 byte compares + branch) have to be

done. One parameter is in register, the other in internal memory.

CAN:

CMP RO, memO

BGT LABEL
LABEL:
5 Bytes, 9 clocks (average) ==> 0.563

Al.6: Linear Interpolation

Arguments:
RO = Table Base (assumed < 400 Hex)
R2 = Fraction 1
R4 = Fraction 2
R6 = Result

LIN_INT:
MOV R2, [R5+]
MOV RO, [R5]
SuB RO, R2
MULU.w R2, R6
MOV.b ROH, ROL
MOVS.b ROL,#0
ADD R2, R1
ADD R5, #15
MOV RO, [R5+]
MOV R4, [R5]
SuUB R4, RO
MULU.w R4, R6
MOV.b ROH, ROL
MOVS.b ROL,#0
ADD RO, R4
SuB RO, R2
MULU.w RO, R5
MOV.b ROH, ROL
MOVS.b ROL,#0
ADD R2, RO
RET

42 Bytes, 98 clocks ==> 6.125 us

Linear Interpolation (2 dim. time / 3) = 42 bytes, 2.04

1996 Feb 15

; memO = $10H
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A1.8: Program Overhead
Branches are assumed taken 70% of the time, all addresses are
external. Code is assumed a run—time trace, code size cannot be

calculated.
TYPE OCCURRENCE XA BYTES
JMP  rell6 100 6 600 3 300
CALL rell6 100 4 400 3 300
Bxx rel8 200 5.1 1020 2 400
JNB bit,rel8 100 51 510 2 200
total cylces 2,530 1,200
usec 158.13
A1.9: XA Totals
XA
FUNCTION ocC* EXEC. TIME OCCURRENCE BYTES/FUNCTION
/FUNCT.(ps) *TIME/FUNCT.
MPY 12 0.75 9 2
FDIV 4 3.0 12 18
ADD/SUB 50 0.375 18.75 4
CMP 24b 13 1.25 16.25 16
CAN 16b 80 0.562 44.96 8
INTPLIN 20 2.04 40.8 14
BRANCH 1 158.3 1200
XAtotall  ps: 299.89 pus
including 20% statistics: 359.86 us

Note:

An assumption is made that XA code is in first 64K (PZ), that is, only 64K address space is used.

1996 Feb 15
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APPENDIX 2
MCS251 Implementations

MCS251 reference: “MCS251SB Embedded microcontroller users manual”, February 1995.

All data are taken using the Kiel Development Board using a 251SB 16.0 MHz part.

A2.1: MCS251SB 16x16 Multiply

;The MCS251 can do only unsigned multiply. So, there will be some overhead for testing
;the sign of the result.

MUL RO,R1
;Total: 2 bytes, 24 clocks ==> 1.5 us

A2.2: Floating point division 16:16

; Arguments: WR4 = 16-bit Dividend
; WR6 = 16-bit Divisor Mantissa
; WRO = Divisor Exponent

FPDIV:
ADD WR2,#0 ; 4
JE L1 ; 2

SGNXTD_AND_SHFT:

MOVS WR6,R5 ; 2
SHFT_LOOP:

SLL WR4 ;NO ARITH SLL ? 2

DJINZ RO,SHFT_LOOP ;DOES 1 BIT AT A TIME 3
DIVISION:

DIV WR4,WR2 ; 2

JB ov,L1 ;IFOVFLW BIT ISSET 4

RET ;NORMAL TERMN. 1
L1: ;

MOV WR4, #-1 ; OVFL — MAX RESULT 4 (not exc)

RET ; 1
; Totals: 25 bytes, 482 clocks ==> 30.125 us

A2.3: Add/Sub

; DRO = Minuend
; DR4 = Subtrahend

SuB DRO,DR4
; Totals: 2 bytes, 10 clocks ==> 0.625 us

A2.4: Compares 24 (=32) bit

COMPARE:
MOV WRO0,60H ,memory 3
MOV WR2,50H ;memory 3
CMP DRO,DR4 ; 2
JE CMP_EQUALS ; 2
SIMP CMP_APPROX ; 2

CMP_EQUALS:

CMP_APPROX:

; Totals: 12 bytes, 54 clocks (branch average) ==>2.375 ps

1996 Feb 15 7
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A2.5: CAN move and compares (16-bit)

COMPARE:
CMP WRO0,memO ;mem0 = 40H 4 bytes, 6 clocks
JINE THERE ; 2 bytes 2t/8nt

THERE:

; Totals: 6 bytes, 10 clocks ==> 0.625 us

A2.6: 2-dimensional interpolation

;Arguments:

; XARO = Table Base (assumed < 400 Hex)

; XAR2 = Fraction 1

; XAR4 = Fraction 2

; XARG6 = Result

; XAR1 = temporaryl

; XARO = temporary2

; XARS5 = temporary3

; WRO = Table Base (assumed < 400 Hex)

WR2 = Fraction 1

; WR4 = Fraction 2

; WR6 = Result

; WRS8 = temporaryl = XAR1

; WR10 = temporary2 = XARO

; WR12 = temporary3 = XAR5

LIN_INT:
MOV WR6,@WR10 ;3 6
ADD WR10,#2 4 6
MOV WR8,@WR10 ;3 6
SUB WR8,WR6 ;2 4
MUL WR6,WR2 ;2 22
MOV R2,R1 ;2 2
MOV R1,#0 ;3 4
ADD WR6,WR8 ;2 4
ADD WR10,#15 14 6
MOV WR8,@WR10 ;3 6
ADD WR10,#2 4 6
MOV WR12,@WR10 ;3 6
SUB WR12,WR8 ;2 4
MUL WR12,WR2 2 22
MOV R2,R1 2 2
MOV R1,#0 ;3 4
ADD WR8,WR12 ;2 4
SuUB WR8,WR6 ;2 4
MUL WR8,WR4 ;2 22
MOV R2,R1 ;2 2
MOV R1,#0 ;3 4
ADD WR6,WR8 ;2 4
RET 01 12

; Totals: 58 bytes, 274 clocks ==> 17.125 us

; Linear Interpolation (2 dim. time / 3) = 60 bytes, 5.71 us

1996 Feb 15 8



Philips Semiconductors

Application note

XA benchmark vs. the MCS251

AN705

A2.7: MCS251 Program Overhead
TYPE OCCURRENCE MCS251 BYTES
LIMP  addrl6 100 8 800 4 400
LCALL addr16 100 18 1800 3 300
JLE rel 200 6.8 1360 2 400
JINB rel 100 10.8 1080 4 400
total cylces 5040 1500
usec 315.0
A2.8: MCS251 Totals
MCS251
FUNCTION ocC* EXEC. TIME OCCURRENCE BYTES/FUNCTION
/FUNCT.(ps) *TIME/FUNCT.
MPY 12 1.53 18.36 2
FDIV 4 30.125 120.6 25
ADD/SUB 50 0.641 32.05 2
CMP 24b 13 3.375 43.88 12
CAN 16b 80 1.625 130 6
INTPLN 20 6.12 122.4 60
BRANCH 1 315.0
MCS251 total/  ps: 782.29 s
including 20% statistics: 938.75 us
1996 Feb 15 9
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EXECUTION TIME PERFORMANCE

Actual execution times/function

FUNCTIONS XA 251SB
MULT 0.75 1.53*
FP DIV 3 30.125
SUB 0.375 0.641
CMP 24 bIT 1.25 3.375
CAN CMP 0.562 1.625
INTPLN 2.04 6.12

OVERHEAD 158.13 315

Normalized timings/function

*  Only for unsigned, extra overhead for sign needs to be added.

FUNCTIONS XA-G3 251SB
MULT 1 2.04
FP DIV 1 10.04
SUB 1 1.71
CMP 24 bIT 1 2.7
CAN CMP 1 2.89
INTPLN 1 3
OVERHEAD 1 1.99
EXECUTION BENCHMARK
12
10
8
=
6
E 251SB
4
2 . HHHH ]
MULT FP DIV SuUB CMP 24 bit CAN CMP INTPLN OVERHEAD
SU00690

1996 Feb 15
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BENCHMARK OF CODE DENSITY

Actual code density performance

FUNCTIONS XA-G3 251SB
MULT 2 2
FP DIV 18 25
SUB 4 2
CMP 24 bIT 9 12
CAN CMP 5 6
INTPLN 42 60

Normalized w.r.t. XA

FUNCTIONS XA-G3 251SB
MULT 1 1
FP DIV 1 1.39
SUB 1 0.5
CMP 24 bIT 1 1.33
CAN CMP 1 1.2
INTPLN 1 1.43

CODE DENSITY BENCHMARK

1.6

1.4

251SB

12

XA

1.0

0.8

E 251SB

0.6

0.4

0.2

MULT FP DIV SUB CMP 24 bit CAN CMP INTPLN

SU00691
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BM1.ASM

$include xa—g3.equ
$include bm.inc

;16x16 signed multiply

org $0
dw $8f00,start
org $200
start:
setp_15
MULw RO,R1 ; 2

rstp_15
br start

;Totals = 2 Bytes, 12 clocks (0.75 uS)

1996 Feb 15
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BM2.ASM

;$listing_min
$include xa—g3.equ
$include bm.inc

org $0
dw $8f00,start Bytes  Clocks

org $200
;6= divisor mantissa
;rO=divisor exponent
;r4=dividend (extended to r5 for 32-bits)

start:
movs.b r61,#2 ; some value >0
mov.b r01,#13 ;
mov.w r4,#$200 ;
mov.w r6,#$100
call FPDIV
br  start

FPDIV:
setp_15
ADDS R6,#0 ; Add short format 2
BEQ L1 ; divby 0 chk 2
—ifz=1,goto L1

SGNXTD_AND_SHFT: :

SEXT.W R5 ; Sign extend into R5 2
ASL R4, ROL ; 13 position shifts (average) 2
DIV: ;
DIV.d R4, R6 ; Divide 32x16 signed 2
BOV L1 ; Branch on Overflow 2
rstp_15 ;
RET ; 2
L1 )
MOVS R4, #-1 ; Overflow — Max Result 2
rstp_15
RET 2

;Totals = 18 Bytes, 48 clocks (averages for branches) i.e 3.0 uS at 16.0 MHz

1996 Feb 15
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BM3.ASM

;$listing_min
$include xa—g3.equ
$include bm.inc

org $0
dw $8f00,start
; Bytes  Clocks

org $200

start:
MOV R4 ,#$200
MOV R5,#$210
MOV R2,#$100
MOV R3,#$110
setp_15

:Extended 32-bit subtract

SUB R4,R2 ; 2
SUBB R5,R3 ; 2
rstp_15

br start

;Totals= 4 Bytes and 6 clocks (0.375 uS) at 16.00 MHz

1996 Feb 15
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BM4.ASM

$include xa—g3.equ
$include bm.inc

meml equ $20

org $0
dw $8f00,start
;;Compare 24-bit Variables Bytes  Clocks

org $200

start:
mov  R2L,#$40 ; one parameter is register
mov mem1,#$1000 ; and onein memory
mov  R1L,#$50 ;
mov  RO,#$5000 ;

CMP:
setp_15
CMP.B RI1L, R2L ; 2
BNE L1 ; 2

L1:
CMP.W RO, meml1 ; 3
BGT LABEL1 ; average 2

LABEL1:

;. XXx—>GTorLTor EQ
rstp_15
br start

;Totals= 9 Bytes and 20 clocks i.e 1.25 uS at 16.00 MHz

1996 Feb 15 15
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BM5.ASM

$include xa—g3.equ
$include bm.inc

;AL5
;CAN Move and Compare

;one parameter in register, the other in memory

memO0 equ $10

org $0
dw $8f00,start

Bytes Clocks

org $200

start:
mov  mem0,#$100
mov  RO,#$50

CMPR:
setp_15
CMP RO, memO ;
BGT LABEL ;

LABEL:

rstp_15
br  start

;Totals = 5 Bytes and 9 clocks (average for branches)

;or 0.563 uS at 16.00 MHz

1996 Feb 15
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BM6.ASM

$include xa—g3.equ
$include bm.inc

meml equ $20

org $0
dw $8f00,start

;Linear Interpolation

;Arguments:

; R4 = Table Base (assumed < 400 Hex)
; R6 = Fraction 1

; R5 = Fraction 2

; R2 = Result

org $200
start:
mov  r7,#$100 ;safe
movs scr,#1 ;page 0
mov  R5,#$120
mov  R2#$12F
mov  R4,#$80
mov.w $120,#%45
call LIN_INT
rstp_15
br  start

LIN_INT:
setp_15 ;
MOV  R2, [R5+] ; 2
MOV RO, [R5] ; 2
SUB RO, R2 ; 2
MULU.w R2, R6 ; 2
MOV.b ROH, ROL ; 2
MOVS.b ROL,#0 ; 2
ADD R2,R1 ; 2
ADD RS, #15 ; 2
MOV RO, [R5+] ; 2
MOV R4, [R5] ; 2
SUB R4,RO ; 2
MULU.w R4, R6 ; 2
MOV.b ROH, ROL ; 2
MOVS.b ROL,#0 ; 2
ADD RO, R4 ; 2
SUB RO, R2 ; 2
MULU.w RO, R5 ; 2
MOV.b ROH, ROL ; 2
MOVS.b ROL,#0 ; 2
ADD R2, RO ; 2
RET ; 2

;Totals = 42 bytes and 98 clocks i.e 6.125 us at 16.00 MHz

;For 2—dim interpolation, exec. time = 6.13/3 = 2.04 us

1996 Feb 15
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BM1.A51

$TITLE(bm1.a51)
$INCLUDE (reg251sb.inc)
$INCLUDE (bm.inc)

?PR?BM1 SEGMENT CODE
RSEG ?PR?BM1

; 16x16 '251 Multiply

test:
T_START
MUL WRO,WR2 ;2
T_END
;stall:
sjimp  test

;Totals: 2 bytes, 24.5 clocks ==> 1.53 uS

END

1996 Feb 15
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BM2.A51

$TITLE(bm2.a51)
$INCLUDE (reg251sb.inc)
$INCLUDE (bm.inc)

?PR?BM2 SEGMENT CODE
RSEG ?PR?BM2

; 251 Floating Point 16x16 Divide, 16:16

; Note: the '251 may have a shift-by—n, but | can;t seem to find it!

; If there is one, the '251 results would likely improve.

; Arguments:  WR4 = 16-bit Dividend
; WR?2 = 16-bit Divisor Mantissa
; WRO = Divisor Exponent

test:

mov r0,#13

mov wr4,#200H

mov wr2,#100H

call FPDIV

; return here

stall:

jmp test

FPDIV:
T_START
add wr2,#0 ; 4
e 11 ; 2

SGNXTD_AND_SHFT:

movs wr6,r5 ; 2
SHFT_LOOP:

sl wrd :No arith sll ? 2

djnz r0,SHFT_LOOP ;does 1 bit at a time

DIVISION:

div. wrd,wr2 ; 2

jb ov,L1 ;if ovflw bitis set 4
T_END

ret ; Normal termination 1
L1 ;

3

mov  wr4, #-1 ; Overflow — Max Result 4

T_END
ret

END

;Totals: 25 bytes, 482 clocks ==> 20.125 uS

:Note : The shift instructions are taking 10 clocks in the MCS251 part
;instead of 2 clocks as specified in the manual. No idea why !!!
;For sign divide in MCS 251, there will be a considerable overhead involved
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BM3.A51

$TITLE (BM3.A51)
$INCLUDE (reg251sb.inc)
$INCLUDE (bm.inc)

?PR?BM3 SEGMENT CODE
RSEG ?PR?BM3

;; Extended 32-hit subtract
Z=X-Y

; entry: DW(X) in DRO
DW(Y) in DR4
; exit: DW(Z) in DRO

SUBTR:

T_START

SUB DRO,DR4 ;2
T_END

sjimp SUBTR

END

; Totals: 2 bytes, 10.25 clocks ==> 0.641 uS at 16.00 MHz

BM4.A51

$TITLE (BM4.A51)
$INCLUDE (reg251sb.inc)
$INCLUDE (bm.inc)

?PR?BM4 SEGMENT CODE
RSEG ?PR?BM4

; Compare 24-bit Variables

; The '251 really uses fewer instruction for a 3 byte compare because it

test:
mov  wr4,#4000H
mov  wr6,#2000H
mov  60H,wr6
mov  50H,wr4

compare:
T_START
MOV  WRO,60H ; 3
MOV  WR2,50H : 3
CMP  DRO,DR4 ; 2
JE  CMP_EQUALS ; 2
SIMP CMP_APPROX ; 2

; Totals: 12 bytes, 54 clocks (average) ==> 3.375 uS
CMP_EQUALS:
CMP_APPROX:

T_END

sjimp compare

END
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BM5.A51

$INCLUDE (reg251sh.inc)
$INCLUDE (bm.inc)

?PR?BM5 SEGMENT CODE
RSEG ?PR?BM5

; CAN COMPARE
;1 parameter in register, the other in memory

test:
MOV  WRO0,#2000H
MOV  WR4,#3000H
MOV  40H,WR4
compare:
T_START
CMP  WRO0,40H ;4
JNE THERE ;2

THERE:
T_END
jmp test

end

; Totals: 6 bytes, 26 clocks (average branches) ==> 1.625 uS at 16 MHz
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BM6.A51

$INCLUDE (reg251sh.inc)
$INCLUDE (bm.inc)

?PR?BM6 SEGMENT CODE
RSEG ?PR?BM6

;;Linear Interpolation

;Arguments:

; XARO = Table Base (assumed < 400 Hex)
; XAR2 = Fraction 1

; XAR4 = Fraction 2

; XARG6 = Result

; XAR1 = temporaryl

; XARO = temporary2

; XARS5 = temporary3

; WRO = Table Base (assumed < 400 Hex)
; WR2 = Fraction 1

; WR4 = Fraction 2

; WR6 = Result

; WR8 = temporaryl = XAR1

; WR10 = temporary2 = XARO

; WR12 = temporary3 = XAR5

test:

call LIN_INT
T_END ; return here

stall:
jmp test

LIN_INT:
T_START
MOV WR6,@WR10 ; 3
ADD WR10,#2 ; 4
MOV WR8,@WR10 " 3
SUB WR8,WR6 " 2
MUL WR6,WR2 ; 2
MOV R2,R1 ; 2
MOV R1,#0 ; 3
ADD WR6,WR8 " 2
ADD WR10,#15 ; 4
MOV WR8,@WR10 " 3
ADD WR10,#2 ; 4
MOV WR12,@WR10 " 3
SUB WR12,WR8 " 2
MUL WR12,WR2 5 2
MOV R2,R1 ; 2
MOV R1,#0 ; 4
ADD WR8,WR12 " 2
SUB WR8,WR6 N 2
MUL WR8,WR4 I 2
MOV R2,R1 ; 2
MOV R1,#0 ; 4
ADD WR6,WR8 0 2
RET ;
END

; Totals: 60 bytes, 294 clocks ==>18.36 uS at 16.00 MHz
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