
�������
��	���
������

AN704
An upward migration path for the 80C51:
the Philips XA architecture

Author: Greg Goodhue 1995 Apr 27

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

Author: Greg Goodhue

21995 Apr 27

The 80C51 is arguably the most used 8-bit microcontroller
architecture in the world, and a vast amount of public and private
code exists for this processor. The “XA” (Extended Architecture)
microcontroller, developed by Philips Semiconductors, is a high
performance 16-bit processor that retains source code compatibility
with the original 80C51. By permitting simple translation of source
code, the XA allows existing 80C51 code to be re-used with a higher
performance 16-bit controller. This provides an upward mobility path
to a 16-bit controller for 80C51 users that has not previously existed,
while also bringing a low cost, high performance, general purpose
16-bit controller to the market. How can a modern 16-bit controller
provide compatibility with the venerable 80C51 without badly
compromising the architecture and performance?

DESIGN TRADEOFFS
Many tradeoffs must be made and considerations taken into account
when creating an upward compatible processor that must also be
high performance and low cost. Among the areas to be considered
are the processor’s memory map and means of accessing memory,
instruction set and methods of instruction execution, stack
operation, interrupts, and special features added to enhance
particular functions, such as multi-tasking, exception handling, and
debugging features.

The goal of source code compatibility, rather than object code
compatibility, was adopted for a number of reasons. First, absolute
upward compatibility with an existing processor is by definition
impossible if one of the goals of the new processor is to generally
improve performance. By doing the same things in less time, the
time related attributes of previously written code change.

Another consideration has to do with the fact that the 80C51 used all
but one of the 256 opcodes available with an 8-bit opcode field.
Adding more than a few new instructions or a new data type (such
as 16-bit operations) would result in a very inefficient instruction
encoding, and inefficient execution as well, for those new functions.

Creating a new instruction set that includes an exact copy of the
80C51 instruction set as a subset would also be very inefficient,
since some subset of many new operations would act as duplicates
of 80C51 instructions. For instance, a more powerful ADD
instruction that can add any byte or word register to any other

register is a superset of the 80C51 instruction to add a register to
the accumulator. In such a case, there is no good argument to
duplicate the original instruction precisely.

An 80C51 “mode” on an otherwise totally new (and therefore
incompatible) processor was also considered. However, this
approach would result in having in effect 2 processors on one chip,
which would be confusing and not very cost effective. Mixing new,
more efficient code with existing 80C51 code would require
switching modes often, which would be very cumbersome and
potentially hazardous. If a mode switch was skipped by accident in
some seldom executed code sequence, the processor could
suddenly find itself executing code using the wrong instruction set!

HOW IS IT DONE?
The team that created the XA architecture at Philips followed several
rules in order to insure that 80C51 compatibility goals were met.
First, translation for all (or nearly all) 80C51 instructions would be
one to one. Multi-instruction combinations that could result in
problems if split by an interrupt or otherwise compromise the
integrity of the translation would be avoided. This has the effect of
producing a simple, straightforward, and easily checkable
translation.

Second, most 80C51 instructions should be a subset of new XA
instructions. If that is not possible or doesn’t make sense in a
particular case, the original 80C51 instruction would be included
“as-is”, even though it might not fit the basic XA architecture’s
philosophy.

Third, XA register, code memory, data memory, and Special
Function Register addressing would be a superset of the 80C51
equivalents. The same idea applies to other features that are part of
the CPU.

Finally, some compromises to these compatibility rules are allowed
in cases where keeping absolute compatibility would adversely
affect system cost, high level language support, or performance.
The cost (in engineering time) of dealing with any incompatibilities
must be kept to a minimum. Preferably, the issue should not even be
noticeable to most customers.

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 3

MEMORY MAPPING
At the root of any potential compatibility between the XA and the
80C51 is the memory map. The XA takes a simple but effective
approach to this issue: its memory map is a superset of the 80C51
memory map. Modes of addressing memory likewise duplicate the
modes available on the 80C51, adds new modes, and enhances
some of the old ones.

In translating 80C51 source code to the XA, particular registers are
used to represent the accumulator (A) and the data pointer (DPTR).
Although the XA can use any of the 14 general purpose byte
registers int he register file as an accumulator, the 80C51 has some
features that require the accumulator to be a specific byte register.
These are primarily the parity flag and a few special instructions that
intrinsically reference the accumulator in a way that could not be
generalized in the XA. The latter are, specifically, instructions like:
JZ, JNZ, MOVC A,@A+DPTR, MOVC @A+PC, and JMP @A+DPTR.
Figure 1 shows the register file of the first XA derivative (the XA
architecture can support some additional registers not implemented
in the first part) and the registers used for 80C51 translation.

R7H

R6H

R5H

R4H

SYSTEM STACK POINTER

R7L

R6L

R5L

R4L

R7

R6

R5

R4

R3H

R2H

R1H

R0H

R3L

R2L

R1L

R0L

R3

R2

R1

R0

GLOBAL
REGISTERS

BANKED
REGISTERS

SU00592

USER STACK
POINTER

(80C51 DATA
POINTER)

(80C51 B REGISTER) (80C51 ACC)

– R0 THROUGH R7 ARE WORD REGISTERS.
EACH IS MADE UP OF 2 BYTE REGISTERS,
R0L THROUGH R7H.

Figure 1. XA Register File

An alternate program status word (PSW) was created on the XA to
duplicate the 80C51 PSW and contains the P (parity) flag as well as
the F1 and F0 user defined flags that are not found in the native XA
PSW. The XA PSW, on the other hand, adds some new status flags
and system controls to expand its capabilities.

The XA register file duplicates the 4 banks of 8 bytes that are found
in the 80C51. An 80C51 compatibility mode determines whether
these locations appear both as registers and as the lower 32 bytes
of data memory as they do on the 80C51. The more standard
scheme of keeping the register file separate from the data memory
is the default on the XA. Besides being “cleaner”, the separation of
the register file from data memory allows for a higher performance

implementation of the XA processor core at some point in the future
if and when 80C51 compatibility is no longer required. Figure 2
shows the overlap of data memory and the register file in
compatibility mode. This shows only this one aspect of the XA
memory map, not a general view of the memory.

R3H R3L1E

REGISTER BANK 3

R2H R2L1C

R1H R1L1A

R0H R0L18

R3H R3L16

REGISTER BANK 2

R2H R2L14

R1H R1L12

R0H R0L10

R3H R3LE

REGISTER BANK 1

R2H R2LC

R1H R1LA

R0H R0L8

R3H R3L6

REGISTER BANK 0

R2H R2L4

R1H R1L2

R0H R0L0

FFFF

20

NOTES:
1) The addresses shown are the data memory addresses that

correspond to the register appearance in the XA data memory when
80C51 compatibility mode is activated.

2) This drawing represents a single XA data memory segment.

SU00593

Figure 2. XA Register File and Data Memory Overlap

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 4

A second aspect of XA memory addressing is also controlled by the
aforementioned 80C51 compatibility mode. In the XA, indirect
memory accesses normally make use of a 16-bit pointer register,
which may be any of the word registers in the register file. The
80C51, however, allows only the 2 single-byte registers R0 and R1
to used for indirect references. The XA is forced use the first 2
single-byte registers in the currently selected bank as byte pointers
rather than word pointers when the 80C51 compatibility mode is
activated. Thus, translated 80C51 code typically must be run with
the compatibility mode activated.

The data memory map for a single XA data segment looks just like
the entire data memory map for an 80C51. This leads to the
possibility of using a single XA to perform the function of several
80C51s, with a separate data segment and code area allocated to a
task that was originally performed by one 80C51. The XA includes
hardware support for multi-tasking operation in order to allow for this
and other interesting possibilities.

The XA retains the direct and indirect addressing modes of the
80C51, although both are greatly expanded in capability, as shown
in figure 3. The direct data addressing has been increased to use up
to 1K bytes of data memory. Indirect addressing is done in 64K byte
segments, for a total of up to 16 megabytes. Both types of
addressing seamlessly switch from internal to external data memory
wherever the boundary exists between the two for a particular chip.
In this manner, the processor stack may also be extended off-chip
up to nearly 64K bytes if necessary. Because of the seamless
internal to external memory transition, the XA would not normally
attempt off-chip data accesses at the low memory addresses that
correspond to the on-chip data RAM. For that reason, the 80C51
MOVX instruction is included on the XA in order to allow translated
code to run without changes in the external memory address map.
This works because MOVX always forces data to be read from
off-chip memory.

FFFF (64K)

0

ON-CHIP
DATA MEMORY

OFF-CHIP
DATA MEMORY

THE ENTIRE MEMORY IS
 ADDRESSABLE

IN THE INDIRECT AND
THE INDIRECT WITH OFFSET

 MODES

THE DIRECT ADDRESSABLE
MODE LIMIT IS AT 1K (3FFh)

THE ON-CHIP/OFF-CHIP
DATA MEMORY BOUNDARY

VARIES FOR
DIFFERENT XA DERIVATIVES

SU00576A

Figure 3. XA Memory Addressing

On the 80C51, the special function registers (SFRs) were mapped
into the direct address space starting at location 128, through the
end of that space at location 255. Since the 80C51 only allowed
SFR access by direct addresses, where the entire address is

encoded into the instruction, the XA does not need to duplicate its
SFRs in exactly the same area or at the same specific addresses. In
order to simplify the memory map, expand the SFR space, and
expand the directly addressed data space, the XA defines a totally
separate SFR space that is not logically related to the rest of data
memory. To translate 80C51 source code, the original SFR name is
kept in the translated code, unless the name was changed for some
reason. In any case, as long as the reference is by name, a code
translator need not try to determine which SFR it is, or where it
belongs on a particular XA derivative. If 80C51 source code for
some reason references an SFR by its address, a code translator
might attempt to look it up in an SFR map for the 80C51 derivative
to which the code was targeted.

A second mode control in the XA applies to 80C51 translated code,
although it may be used in pure XA applications as well. This is the
Page Zero, or PZ, mode. This mode forces the XA to only allow 64K
of address space in both the data and code memories. The purpose
is to reduce the overhead required to support the extra address
space if it is not needed, such as in “single-chip” systems that do not
use any off-chip data or program. Besides saving stack space for
24-bit subroutine and interrupt return addresses (reduced to 16 bits
in PZ mode), overall XA operation is faster by having smaller stack
pushes and pops. Since the 80C51 supported only 64K of code and
data space, translated 80C51 code will likely fit into the same
category.

There are other changes in the processor stack on the XA, besides
the need to save 24 bits of return address when not running in the
Page Zero mode. First, a great deal of extra hardware in the
processor would be required to allow both byte and word pushes
and pops on the stack, especially since word operations could then
sometimes be mis-aligned from word address boundaries in the data
memory, so stack operations on the XA are always done in word
increments. Mis-aligned word operations, aside from being difficult
to implement, would be very inefficient, since they would have to be
split up into multiple byte operations. This means that translated
80C51 code run on the XA will tend to use somewhat more stack
space than it did originally. The automatic save of the PSW during
interrupts on the XA might also increase stack usage in some cases,
since a few 80C51 programs may have been able to omit saving the
PSW during interrupt processing.

Secondly, the XA stack has been altered so that the direction of
growth is downward, conforming to the industry standard for stack
operation on 16-bit processors. There is also a necessary
relationship between the stack growth direction and the order in
which the bytes of a word are stored in memory for a processor that
is capable of stack relative addressing, as can be done with the XA.
This relationship required that the stack grow downward since data
on the XA is stored in memory with the low order byte of a word at
the lower address (sometimes referred to as Little Endian storage
order).

These differences in stack operation may require some changes to
be made by the user for any 80C51 source code translated to the
XA. In most cases, the change would be limited to choosing a
different starting address for the stack.

A look at interrupt processing presents some other issues for 80C51
compatibility. In order to allow more powerful handling of interrupts,
the XA has to make some compromises. Besides the previously
mentioned fact that the PSW is automatically saved on the stack,
which would have been done explicitly in 80C51 interrupt service
code, the return address on the stack is also different if Page Zero
mode is not active. So, any code written for the 80C51 which relied

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 5

in some manner on manipulating the return address on the stack, or
on the PSW not being saved and restored automatically, will require
modification. Both of these situations should be very rare. The
standard (non-Page Zero mode) XA interrupt stack frame is shown
in Figure 4.

CPU FEATURES
Another difference in interrupt processing is that the XA uses a more
efficient and flexible vector table for interrupts and exceptions
instead of the fixed vector scheme of the 80C51. The vector table
must reside at the bottom of the code memory, since this is the only
region that is guaranteed to always exist in a system that uses
on-chip ROM or EPROM for the program. Thus, during 80C51 code
translation, code found at the 80C51 interrupt service locations must
be moved to another location. Of course, an interrupt vector table

must be added to any translated 80C51 program that makes use of
interrupts, and a reset vector entry must be created for all XA
programs.

A major enhancement to the XA is the addition of a general purpose
interrupt priority scheme that can support up to 15 levels, compared
to only 2 on standard 80C51 parts, and up to 4 on enhanced parts.
This addition, however, requires some changes in the way interrupt
priorities are handled. Two-priority interrupt systems on 80C51
derivatives used a single bit in a priority register to select the two
levels. Four-priority systems extended this to two bits, but in 2
different registers for each interrupt source. Extending that approach
to 15 levels would entail 4 bits in 4 different registers for each
interrupt source, which is getting a bit ridiculous. For the XA, a more
reasonable approach was taken: 4 bits in a single register control
the priority of each interrupt source. Priorities for 2 separate
interrupts are contained in each 8-bit priority register.

(RESERVED) HIGH BYTE OF PC

LOWER 16-BITS OF PC

(PREVIOUSLY STORED STACK DATA)

SAVED PSW VALUE

LOWER MEMORY ADDRESSES

HIGHER MEMORY ADDRESSES

6 BYTES OF DATA MEMORY

STACK POINTER PRIOR TO INTERRUPT

STACK POINTER AFTER INTERRUPT

SU00594

Figure 4. Standard Interrupt Stack Frame on the XA

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 6

PERIPHERALS, ON AND OFF-CHIP
Another subject to look at is hardware compatibility. While complete
hardware compatibility with the 80C51 was not a primary goal during
the XA architecture development, hardware compatibility was
retained whenever possible and practical. This particularly concerns
peripheral devices such as UARTs, Timers, etc., and the processor’s
external bus system.

In the case of peripherals that are the same as those customarily
found on the 80C51, these have been made to function as close as
possible to the original, with some transparent enhancements such
as framing error detection, overrun detection, and break detection in
the UARTs. One exception to this general compatibility is that timer
mode 0 of the standard timers 0 and 1, which is the rarely used
8048 compatible timer mode, has been replaced with a much more
useful 16-bit auto-reload mode. In the future, further enhanced
peripheral functions will likely lead eventually to completely new
implementations that are not backward compatible with the 80C51.

Since there is no supposed relationship between the original
oscillator frequency of an 80C51 system and a similar XA system
using translated code, the exact relationship of peripheral speeds to
the oscillator need not be preserved. For more flexibility in timer
rates and therefore UART baud rates, the XA timers and some other
peripherals are operated from a special clock whose rate is user
programmable. The choices are the CPU clock divided by 4, 16, or
64, giving a wide range of uses. This function, like anything else in
an application that is time critical, will need to be visited by the user
when translated 80C51 code is used to drive XA peripherals.

The standard XA external bus interface includes all of the familiar
80C51 bus signals: ALE, PSEN, RD, WR, EA, the multiplexed
address and data bus, and address-only lines. However, some
additional signals have been added and changes have been made
in some of the details. For instance, the XA supports both 8-bit and
16-bit bus widths, using a second write signal to distinguish byte
writes on a 16-bit bus. A WAIT line allows external circuitry to insert
wait states into bus cycles for slow peripherals or program
memories.

The largest change in the XA bus from the 80C51 is in the mapping
of the multiplexed address and data lines. The 80C51 has a
somewhat inefficient mapping that requires an ALE (Address Latch
Enable) cycle in order to latch the least significant bits of an address
for all external bus cycles. This was not a concern for the 80C51
due to its machine cycle timing, which allowed plenty of time for an
ALE pulse. For the XA, which has no extra cycles during instruction
execution, any extra strobes required on the bus during code
fetches will likely take away time that could be used to execute
instructions. As a result, the XA drives the 4 lower address lines
directly, and does not require them to be latched. This means that

the XA can fetch as many as 16 bytes of code between ALE cycles.
The multiplexed address and data bus begins with the fifth address
line (A4), paired with the first data line (D0), and continues to the
width of the bus, either 8 or 16 bits. Above that will be more
always-driven address lines, if more are needed by the application.
Since the XA allows programming the number of address lines,
those above the multiplexed portion of the bus need not be driven by
the XA if they are not needed, leaving them free for other functions.

These changes mean that an XA device may be made pin
compatible with a similar 80C51 derivative if the external bus is not
used. Small changes to the external hardware must be made if the
external bus is in use. Internally programmable bus cycle timing
control on the XA allows programming the duration of all of the bus
cycles, allowing nearly all memory and peripheral devices to be
used on the XA bus without the need for an external WAIT state
generator or any other additional circuitry.

INSTRUCTIONS REVISITED
The earlier mentioned goal of the XA to map nearly every 80C51
instruction to a single XA instruction was met. Just one 80C51
instruction cannot be replaced by single XA instruction. That
instruction is XCHD (exchange digit), a seldom used 80C51
instruction. This unusual instruction exchanges the lower nibble of
the 80C51 accumulator with a nibble at an internal RAM address
pointed to by byte register R0 or R1. The XA would have required
additional special circuitry in order to support this operation. As a
result, it was decided to allow a multi-instruction sequence in this
case, since the instruction is rarely used. The sequence used to
replace XCHD is:

PUSH R4H ; save temporary register.

MOV R4H, (Ri) ; get second operand.

RR R4H, #4 ; swap one byte.

RR R4L, #4 ; swap second byte (the “A” register).

RL R4, #4 ; swap word, result is swapped nibbles in A
 and R4H.

MOV (Ri), R4H ; store result.

POP R4H ; restore temporary register.

Some additional code may be needed if an application requires this
sequence to be un-interruptable for some reason. All other 80C51
instructions translate one-to-one to XA instructions. Since the XA
instruction set and memory model are a superset of the 80C51, and
since most mnemonics and names were kept the same, 80C51
code translated for the XA looks nearly the same as the original.
Some examples are shown below.

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 7

Table 1. Examples of 80C51 to XA Source Code TranslationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTYPE OF OPERATION

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ80C51 SOURCE CODE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁXA SOURCE CODEÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMove immediate to SFR.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁMOV TCON,#00h

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁMOV.B TCON,#00hÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMove direct address to accumulator.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁMOV A,TstDat

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁMOV.B R4L,TstDatÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMove register to register.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁMOV R5,A

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arithmetic with 2 registers.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ADD A,R1

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ADD.B R4L,R0H

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arithmetic with register and immediate. ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

SUBB A,#’0’ ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

SUBB.B R4L,#’0’

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Increment a register. ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

INC R0 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ADDS.B R0L,#1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test a register. ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CJNE A,#’0’,Cmd1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

CJNE.B R4L,#’0’,Cmd1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁClear a bit.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁCLR RxFlag

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁCLR RxFlagÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSet a bit.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁSETB EX1

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁSETB EX1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTest a bit.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁJNB RcvRdy,Wait

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁJNB RcvRdy,WaitÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Subroutine call.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ACALL Test

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

CALL Test

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Subroutine return ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

RET ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Push register onto stack.

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PUSH ACC

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PUSH.B R4L

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pop register from stack. ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

POP ACC ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

POP.B R4L

Details of instruction translation for the entire 80C51 instruction set
are available in the Philips XA User Guide.

One side effect of source code compatibility of the XA with the
80C51 is that the number of bytes required to encode some
instructions changes between the two processors. In most cases,
this is not a major concern, however it does raise issues with the
translated code for some situations. A simple example of this is that
a conditional branch could have the target address move out of
range when translated code is re-assembled. This should be a rare
occurrence since the range of short relative branches on the XA has
been doubled to 256 bytes forward or backward. The same issue
does not exist for farther jumps and calls since the XA extends that
range to beyond the entire 80C51 address range.

The precise length of a branch instruction is of concern in certain
cases, such as a table of jump instructions entered using the JMP
@A+DPTR instruction of the 80C51. The XA instruction set includes
this jump, but does not include a 2-byte replacement for the 80C51
AJMP instruction which is often used in jump tables. The user will
have to make small changes to the indexing into such a table if it is
translated to run on the XA.

A similar issue can arise for a translation of the 80C51 instruction
MOVC A,@A+PC, since the distance from this instruction to the

lookup table that it is accessing may change. The solution is the
same as for JMP @A+DPTR: some user intervention to adjust the
table index.

User intervention will also be needed in any case where the timing
of instructions in the original 80C51 code is of importance. The XA
reduces the execution time of each instruction to the minimum
possible with its internal hardware implementation. Also, instructions
are normally fetched into a small queue prior to being needed to
continue execution, which can lend additional uncertainty to
execution times. The execution time of loops or the time between
particular instructions can be calculated and adjusted by the use of
NOPs, delay loops, or other means of matching timing. Also, any
variable execution timing of the same code due to it being entered in
different ways can be handled with certain coding techniques. An
example would be a loop that is entered by “falling through” the
preceding code on the first instance and branching back to be
repeated on subsequent occasions. The branch back takes extra
time not seen on the first entrance to the code due to the necessity
of “flushing” the queue on a branch. The solution in this case is to
add a branch instruction prior to the loop branching to the first
instruction of the loop. Then, each cycle through the loop acquires
the same timing. Of course, a simple source code translator cannot
sense such cases and attempt to deal with them automatically.

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 8

AN EXAMPLE
As an example of translating 80C51 source code into XA source
code, an actual piece of 80C51 code from a working application was
taken and translated using the rules that were presented above. The
results of the simple one-to-one translation are shown below.

Table 2. Sample 80C51 Routines Translated for the XA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Original 80C51 source code: ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Translated XA source code:
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; Sets up UART and Timer (for baud rate generation), prints a string,
; and prints a hexadecimal value.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Start: MOV SCON,#42h ; Set UART for 8-bit variable rate.
MOV TMOD,#20h ; Set Timer1 for 8-bit auto-reload.
MOV TCON,#00h ; Stop timer 1 and clear flag.
MOV TL1,#0FDh ; Set timer for 9600 baud @ 11.0592 MHz.
MOV TH1,#0FDh ; Set reload register for same rate.
MOV A,PCON ; Make sure SMOD bit in PCON is
CLR ACC.7 ; cleared for this baud rate.
MOV PCON,A
SETB TR1 ; Start timer

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Start: MOV.B SCON,#42h
MOV.B TMOD,#20h
MOV.B TCON,#00h
MOV.B TL1,#0FDh
MOV.B TH1,#0FDh
MOV.B R4L,PCON
CLR R4L.7
MOV.B PCON,R4L
SETB TR1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOV DPTR,#Msg1 ; Send a stored message.
ACALL Msg

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOV.W R6,#Msg1
CALL Msg

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOV A,P1 ; Send Port 1 value as hexadecimal.
ACALL PrByte
 . .
 . .
 . .

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

MOV.B R4L,P1
CALL PrByte
 . .
 . .
 . .

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

;***
; Subroutines
;***

; Print byte routine: print ACC contents as ASCII
; hexadecimal.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PrByte: PUSH ACC
SWAP A
ACALL HexAsc
ACALL XmtByte
POP ACC
ACALL HexAsc ; Print nibble in ACC as ASCII hex.
ACALL XmtByte
RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PrByte: PUSH.B ACC
RL.B R4L,#4
CALL HexAsc
CALL XmtByte
POP.B ACC
CALL HexAsc
CALL XmtByte
RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; Hexadecimal to ASCII conversion routine.
; Converts a nibble to ASCII hex.

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

HexAsc: ANL A,#0FH
JNB ACC.3,NoAdj
JB ACC.2,Adj
JNB ACC.1,NoAdj

Adj: ADD A,#07H
NoAdj: ADD A,#30H

RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

HexAsc: AND.B R4L,#0FH
JNB R4L.3,NoAdj
JB R4L.2,Adj
JNB R4L.1,NoAdj

Adj: ADD.B R4L,#07H
NoAdj: ADD.B R4L,#30H

RET

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

1995 Apr 27 9

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Translated XA source code:ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Original 80C51 source code:

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; Message string transmit routine.
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Msg: PUSH ACC
MOV R0,#0 ; R0 is character pointer (string

MsgL: MOV A,R0 ; length is limited to 256 bytes).
MOVC A,@A+DPTR ; Get byte to send.
CJNE A,#0,Send ; End of string is indicated by a 0.
POP ACC
RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Msg: PUSH.B ACC
MOV.B R0L,#0

MsgL: MOV.B R4L,R0L
MOVC.B A,[A+DPTR]
CJNE.B R4L,#0,Send
POP.B ACC
RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send: ACALL XmtByte ; Send a character.
INC R0 ; Next character.
SJMP MsgL

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Send: CALL XmtByte
ADDS.B R0L,#1
BR MsgL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Msg1: DB 0Dh,0Ah,0Dh,0Ah
DB ’Port 1 value = ’, 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Msg1: DB 0Dh,0Ah,0Dh,0Ah
DB ’Port 1 value = ’,0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; Wait for UART ready, then send a byte.
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XmtByte: JNB TI,$
CLR TI
MOV SBUF,A
RET

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

XmtByte: JNB TI,$
CLR TI
MOV.B SBUF,R4L
RET

The translated XA code looks very much like the 80C51 source
code and can easily be read by anyone familiar with the original
program. Statistics for this example are shown in the following table.

Table 3. Statistics on Sample 80C51 to XA Code Translation

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STATISTIC ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

80C51 CODE ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

XA TRANSLATIONÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

COMMENTS

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Bytes to encode ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

107 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

151 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

– Includes NOPs added for branch alignment on XA.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Clocks to execute ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

840 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

212 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

– Raw execution time for instructions in code, without flow analysis.
Conditional branch times calculated as if half taken, half not
taken.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Time to execute @ 20 MHzÁÁÁÁÁÁ
ÁÁÁÁÁÁ

42 sec ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

10.6 sec ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

– A 4x speed improvement for a simple translation with no
optimization.

SOME XA ENHANCEMENTS
The subject of this article has been how the new Philips XA
microcontroller architecture supports upward compatibility with the
80C51. The XA adds quite a bit to the equation beyond mere 80C51
compatibility, which has barely been touched upon here. In addition
to high performance and very compact instruction encoding, the XA
is specifically designed for high level language support for compilers
such as C, has many features to support multi-tasking, with
protected features and separate memory spaces, many 32-bit
operations in addition to general 16-bit arithmetic, and greatly
enhanced interrupt processing, to name a few. A complete
description of all of these features and many more may be found in
the XA User Guide and data sheets for specific parts.

THE UPWARD SPIRAL
Many openings have been left in the XA architecture for even more
enhancements in the future, such as full pipelining, complete 32-bit
operation support, or a faster peripheral bus. The XA is the
foundation of a new microcontroller derivative family in a manner
similar to the very popular 80C51 family. Many other advanced
microcontroller architectures have been brought to market since the
80C51 was designed years ago. But until now, none has allowed the
enormous quantities of 80C51 code that users have on file to be
re-used with minimal effort on a state-of-the-art 16-bit processor.
With the Philips XA, that is now possible, while getting the benefit of
a modern 16-bit processor with few compromises.

Philips Semiconductors Application note

AN704
An upward migration path for the 80C51:
the Philips XA architecture

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1995
All rights reserved. Printed in U.S.A.

	DESIGN TRADEOFFS
	HOW IS IT DONE?
	MEMORY MAPPING
	CPU FEATURES
	PERIPHERALS, ON AND OFF-CHIP
	INSTRUCTIONS REVISITED
	AN EXAMPLE
	SOME XA ENHANCEMENTS
	THE UPWARD SPIRAL

