
�������
��	���
������

AN702
High level language support in XA

Author: Santanu Roy, Philips Semiconductors,
MCO Applications Group, Sunnyvale, California

1995 Jul 28

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN702High level language support in XA

Author: Santanu Roy, Philips Semiconductors, MCO Applications Group, Sunnyvale, California

21995 Jul 28

Introduction
High Level Language (HLL) support is becoming a key feature in
modern day microcontroller architecture. The reason is highly
visible. It is easier to code a processor in a high-level platform than
in conventional assembly because it is portable, i.e., it is not tied to
any one machine. Also, the advantage of coding in a high-level
language is because it is modular and re-usable which speeds up
any code development process considerably.

In recent years, C has been “the language” of choice for all
engineers. Thus almost all modern day microcontrollers are
designed with C-language support in mind. This article highlights
some of the architectural features of Philips XA microcontroller that
has been designed to support such languages specifically C.

Supporting HLL
One of the tasks that an architect has to confront is the
determination of exactly what instructions should form the functional
instruction of a microcontroller to meet high-level language support.
An answer to this is to provide an operation code for each functional
operation in a high-level programming language. Thus operation
codes will exist for +, –, *, /, and so on. Special provision is made for
operation on arrays, and all operations that can be applied to data
types in a high-level language are directly supported in the
architecture. An instruction set ideally should contain only
instructions that are used in a HLL, and not implement any
non-functional instructions, i.e., instruction that is not expressed as a
verb or operator in a high-level language. Thus “LOAD”, “STORE”,
and so on which are not statements made in high-level languages
are redundant and only adds to architectural overheads.

An instruction word consists of a single op-code and an operand
address for each HLL variable involved in the operation. Op-codes
are symmetric in that they are applicable to any type of addressing
and any data type.

Some general criteria for an ideal architecture could be:
1. Only one instruction should be executed for most common HLL

operators.

2. There should be only one memory reference for each referenced
operand.

3. There should be explicit addressing only for operands whose
location cannot be inferred by recent processing activity, and
address should be short.

4. Instructions should be compact, and densely coded.

The XA Architecture
The XA is a register based machine. Hence most variables could be
stored in these fast storage registers for high code density and fast
execution. However, the beauty of the XA architecture is that, it is
optimized for internal memory as well for high throughput and code
density, e.g., a register-register ALU operation takes 2 bytes and 3
clocks and the same ALU operation between register-memory
(indirectly addressed) is 2 bytes and 4 clocks. So, a large set of
variables could be stored in memory with very little loss in
performance. Additionally, hooks like “burst mode”, etc., are
provided to speed up external memory access as well.

Data Types and Sizes
XA directly supports the following basic data types as used in C:

character (char) – signed and unsigned bytes
integer (int) – signed and unsigned words

Constants – Supported as byte/word (char/int) immediate data in the
instructions, e.g., ADD R0, #1234 etc. The range is +32,767 to

–32,768 for signed and 0 to 65,536 for unsigned word/integer
constants, +127 to –128 for signed or 0 to 255 for unsigned
bytes/char.

For “short” qualifier, the range is +7 to –8 as used with instructions
MOVS and ADDS.

A “long” qualifier to integer is implemented by the compiler by
extending (signed/unsigned) the word to the next higher
address(+1). In addition to the above,

Bit – This special data type is also supported to access the different
bit addressable space in the machine.

Note: All signed data are represented in 2’s complement form in the
XA.

Type conversion
All operations are performed under natural data sizes, e.g., MULU.b
does a 8x8 unsigned multiply of 2 bytes, MULU.w does the same
but with 2 word-size operands. So when operands of different types
appear in an expression, they are converted to a common type by
the compiler, e.g., operation between a char (byte) and an integer
(word) is promoted to integer-integer, etc.

Arrays
XA supports addressing byte and word arrays in memory as
required by C or any HLL. Offset and auto-increment addressing
modes in XA allow easy access and manipulation of array elements.
Offsets are signed values of 8 or 16 bits and are used depending on
the size of the array.

Static Variables
Static variables unlike automatic provide permanent storage in a
function. This means these variables are stored in memory rather
than being a part of run-time stack. A wide variety of memory
addressing modes are supported in the XA to provide easy access
to static variables in memory. In addition to several indirect
addressing modes (auto-increment offset) the XA supports direct
access to the first 1K of the memory space in each segment. This is
ideal for addressing static variables, and has found to generate
extremely dense code. A listing of operations to access static
variables is given below for reference:

Table 1. Access to Static Variables

ADDRESSING MODES

Rd, direct

direct, Rd

Rd, [Rs+]

[Rs+], Rd

Rd, [Rs+]

Rd, [Rs+Offset8/16]

[Rs+Offset8/16], Rd

direct, direct

[Rd], #immediate

direct, #immediate

[Rd+], #immediate

[Rd+], [Rs+]

Philips Semiconductors Application note

AN702High level language support in XA

1995 Jul 28 3

Automatic/Dynamic Variables
Within a function, a typical compiler maintains a Frame Pointer (FP),
which is used to access function arguments and local automatic
variables. To call a function, a compiler pushes arguments onto the
stack in reverse order, (the PUSH instruction decrements the SP by
2 each time it is executed, calls the function, then increments the SP
by the number of bytes pushed. For instance, to call a function with
two one-word arguments, the XA-compiler generates code to do the
following:

PUSH arg2 ; (SP –=2)
PUSH arg1 ; (SP –=2)
CALL (subroutine) ;
ADDS SP,4 ; (SP +=4)

arg2

arg1

00.PC23–16

PC15–0

FPold

local #1

local #n

FPnew

SP

LOCAL/AUTOMATIC
VARIABLES

SU00596

The CALL instruction pushes the current PC onto the stack.
Because all stack pushes are 16-bits in XA, any 8-bit function
argument is automatically promoted to word.

Upon function entry, the compiler creates new stack and frame
pointers by computing:

PUSH FP (old)
FP (new) = SP
SP = SP – Framesize;

where “Framesize” is the space required for all local automatic
variables. If the frame size is odd, the compiler always rounds it up
to the next even number. If there are 2 arguments and 2 local
variables, then the frame size is 4 and the stack looks like this:

FP+8 second argument
FP+6 first argument
FP+4 return address
FP+2 old FP
FP–0 first local variables
FP–2 second local variable
FP–4 next free stack location (same as SP)

If a function argument is defined to be an 8-bit type, then only the
lower 8-bits of the value pushed by the caller are to inside the called
function.

Upon function exit, the compiler restores the SP and FP to their
original value by executing the following:

SP = FP
POP FP
RET

The return instruction RET sets the new PC by popping the saved
PC off the stack.

Because there are so many registers in XA (unlike 8051), any of
them could be assigned to hold the FP. Access to variables in the
stack space is easily achieved through the indirect-offset addressing
modes (signed 8 or 16) with respect to the stack pointer. In almost
all the cases the variables pushed onto the stack could be accessed
using only a signed 8-bit offset present in XA. The function
arguments and variables could be moved in and out of the stack in a
single PUSH/POP multiple instructions permitted in XA. In fact up to
8 words or 16 bytes of such information could be moved in and out
of the XA stack with one instruction, which increases code density to
a large extent during procedure calls and context switching. For
example, if register variables are in R1,R2,R3, and R4, a single
“PUSH R1,R2,R3,R4” instruction will be generated by the
XA-compiler. A corresponding function exit will have a “POP
R1,R2,R3,R4” for restoring the variables.

All automatic class of variables will be allocated on run-time stack.
The XA has full complement of addressing modes on SP to handle
dynamic variables in the stack. Table 2 shows some of the XA
addressing modes that could be used for such access.

Table 2.

ANSI-C XA Comments

SP–>Offset R+Offset8/16

*SP [R]

SP+ [R+] Pop

Operators for HLL support
The structure for op-codes of an ideal architecture should be stated
in terms of number of operands required and the relationship
between the operands. The structure should be oriented toward
efficient coding of an instruction that will support programs written in
a HLL with minimum compilation. The XA instruction set is designed
to handle such efficiency as reflected in Table 3. The set of
instructions that supports the general/basic addressing modes are
used to describe HLL support in this table.

Table 3. Mapping of XA ALU Operations
to C Operators

ANSI C Operator (op) XA Op-codes

+= , += + C() ADD, ADDC

–= , –= – C() SUB, SUBB

< , <= , == , >= , > , != (s/u) CMP

&= , |= , ^= AND , OR , XOR

Data movement in C is given by “=” which is the “MOV” instruction in
XA. The MOV instruction not only has the general/basic addressing
modes, it also has some additional addressing modes for C-code
optimization for memory transfer operations like direct-direct,
direct-indirect, indirect-autoincrement – indirect-autoincrement.

Philips Semiconductors Application note

AN702High level language support in XA

1995 Jul 28 4

Table 4 of two operand case A = A op B or B = A op B is shown
below.

Table 4.

ANSI C XA

C-operations Equivalent XA-operations

R op = R R, R

R op= *R R, [R]

R op= *R++ R, [R+]

R op= direct R, direct

R op= R–>offset R, [R+offset]

*R op= R [R], R

*R++ op= R [R++], R

direct op= R direct, R

R–>offset op= R [R+offset], R

R op= constant R, #constant

*R op= constant [R], #constant

*R++ op= constant [R++], #constant

direct op= constant direct, #constant

R–>offset op= constant [R+offset], #constant

The three operand cases A = B op C may regularly be translated as:
A = B;
A op= C;

exception to above is
*R++ = B op C is equivalent to
*R = B;
*R++ op = C;

Typical/Frequently used C-code A = B op C involves operations that
will fetch operands from memory, register, and as immediate data
which is embedded in the instruction. The XA has the following
choices for operand placements for such three operand operations.

Case 1:
If A = register,

then B and C in A = B and A op= C could have the following choices

(i) Register i.e., R = R and R op= R

(ii) Memory i.e., R = Memory and R op= Memory

where Memory = [R] , direct, [R+], [R+Offset]

(iii) Immediate i.e., R = Immediate and R op= Immediate

Case 2:
If A = Memory

where Memory = [R], direct, [R+], [R+Offset]

then B and C in A = B and A op= C could have the following
choices:

(i) Register i.e., Memory = Register and Memory op= Register

(ii) Immediate i.e., Memory = Immediate and Memory op=
Immediate.

(iii) Memory i.e., Memory = Memory ([R+], and direct modes only)
for B

The above indicates that virtually all C operations involving two and
three operands could be very efficiently translated in XA assembly
code (in two operand cases, it is one-to-one) using a cross-compiler.

NULL DETECT/STRING TERMINATOR
Checking for “0” at the end of a string is natural in XA with the MOV
instruction. The Z flag is set whenever such a condition occurs. This
is especially important in string copy operations where the loop ends
whenever a end of string or ‘\0’ occurs which is reflected in the
status flag “Z” in XA. The following lists such C-code and equivalent
XA instructions.

while ((c=getch()) != ‘\0’) Label: MOV [R+], memory
buffer[i++] = c; BNE Label

Coding Relational Operations
Performing relational evaluation between two operands A and B in
C-language involves fetching operands (a) in memory (b) in register
or (c) an immediate value, evaluating the condition and then taking
appropriate actions which typically involves a branch-if-true or
branch-if-false operations

The operand(s) in memory again could be addressed as direct,
indirect, indirect-autoincrement, indirect-offset, etc. The XA provides
one-to-one translations of such operations.

Typically such C-statements are as follows:

if (A cmp_op B) CMP A, B
{ body} /* true */ Bxx LABEL; branch if false

body
LABEL:

if (A cmp_op B) CMP A, B
{ body 1 } Bxx L1 ; branch if false
else body 1
{ body 2 } JMP L2

L1: body 2
L2:

while (A cmp_op B) L1: CMP A, B
{ body } Bxx L2 ; branch if false

body
JMP L1
L2:

Philips Semiconductors Application note

AN702High level language support in XA

1995 Jul 28 5

Coding Bitwise Operations
C provides 6 operators for bit manipulation. These are & (Logical
AND), | (Logical OR), ^ (Logical-XOR), << (Logical Shift-Left),
>> (Logical Shift-right), and ~ (one’s complement). There is
one-to-one equivalence in XA for such operation class:

(a) & – AND,
(b) | – OR, ^ – XOR,
(c) << – ASL,
(d) >> – LSR, and
(e) ~ – CPL.

Compiler Optimization
Some special cases of Multiply and Divide where the multiplier and
divisor could be assumed to a power of 2, following translation could
be expected from the compiler during optimization which speeds up
code execution and make code denser.

Language extensions to XA could be written as the pre-processor
macros of the XA C-compiler as shown in Table 5.

Table 5.
C-code XA code

R *= R R <<= R

R *= Constant R <<= Constant

R /= R R >>= R

R /= Constant R >>= Constant

ROLC(R,R) – for rotate left through carry, ROL (R,R) and
ROL (R, constant) – for rotate lefts, etc. Same holds for ADDC and
SUBB also.

Reentrancy
In a multi-tasking or nested interrupt environment, some system or
library subroutines may be activated dynamically. These subroutines
require duplication of the variable area of the subroutine per each
active copy, utilizing essentially dynamic memory allocation.

The allocation of the dynamic area is done by a system service call.
The dynamic area is allocated either out of the reserved system
memory, when large memory exists in the system, or on the stack,
when memory is very limited. In the latter case, the stack pointer is
adjusted, to reflect the extra bytes reserved. It will be readjusted just
prior to returning from the subroutine.

The subroutine code accesses variables using [R+offset] addressing
mode. The register is referred to as a Static Base Register or Frame
Pointer.

Since the application stack is separate from the interrupt stack,
there’s no problem with interrupting the dynamic
allocation/de-allocation and application stack pointer adjustments.

Floating Point Support
Although the XA does not have a floating point unit, it has special
instructions to provide an extensive support for floating point
operations. Instructions like NORM (normalize), SEXT (sign extend),
ASL, ASR (Arithmetic shifts) and status flag like “N” (sign), all aid in
floating point support. Floating point library routines implementing
(IEEE or ANSI) floating point provided with compilers could
extensively use such instructions for increased code density and
throughput in XA.

Dynamic Code Link/Relocability
The XA allows for dynamic code linking through extensive use of
FCALL (Far Call 24-bit addressing). This makes code developed for
XA highly portable/relocatable in memory.

Simple relocatable code however could use CALL rel16 and CALL
[R] addressing modes which is limited to 64K address.

System Interface
When used for RTOS, system mode with its protected features
could be extensively used for system management
routines/operating System service e.g., printf etc and application
task switching. This could be easily done in XA through a TRAP #
instruction set up by the compiler requesting system service by the
application task. In the event of task switching, a system service call
sets up the environment for the new task via the resource access
privileges of the task, application stack etc.

Author’s Acknowledgement
The author recognizes the following Philips Semiconductor XA team
members for their review and inputs on this article:

Ata Khan, Ori Mizrahi-Shalom, and Frank Lee

References:
XA User Guide – Philips Semiconductors

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1995
All rights reserved. Printed in U.S.A.

	Introduction
	Supporting HLL
	The XA Architecture
	Data Types and Sizes
	Type conversion
	Arrays
	Static Variables
	Automatic/Dynamic Variables
	Operators for HLL support
	NULL DETECT/STRING TERMINATOR
	Coding Relational Operations
	Coding Bitwise Operations
	Reentrancy
	Floating Point Support
	Dynamic Code Link/Relocability
	System Interface
	Author’s Acknowledgement
	References:

