
�������
��	���
������

AN701
SP floating point math with XA

Author: Santanu Roy 1995 Jul 28

MICROCONTROLLER PRODUCTS

Philips Semiconductors Application note

AN701SP floating point math with XA

Author: Santanu Roy, MCO Applications Group, Sunnyvale, California

21995 Jul 28

IEEE SINGLE PRECISION FLOATING POINT
ARITHMETIC WITH XA

Introduction
This application note is intended to implement Single Precision
Floating Point Arithmetic package using the new Philips
Semiconductors XA microcontroller. The goal is to have this
package as a part of the run-time math library for the XA when the
cross-compiler is developed. The package is based upon the IEEE
Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985).
This package, however, is not a conforming implementation of the
said standard. The differences between the XA implementation and
the standard are listed later in this report. Also, this package does
not include routines for conversion between Integers to Floating
Point and vice versa.

The following four standard Single Precision (SP) arithmetic
operations have been implemented in this package:

1. FPADD Addition of two SP floating point numbers.

2. FPSUB Subtraction of two SP floating point numbers.

3. FPMUL Multiplication of two SP floating point numbers.

4. FPDIV Division of two SP floating point numbers.

The following section discusses the representation of FLP numbers.
Then the differences between the XA implementation and the IEEE
standard are described. This is followed by a description of the
algorithms used in the computations. Appendix A is a user reference
section for converting a floating point number into IEEE format and
Appendix B is a listing of the code.

Note that this application note assumes that the reader is familiar
with the IEEE Binary Floating-Point standard.

IEEE Floating Point Formats
The basic format sizes for floating-point numbers, 32 bits and 64
bits, were selected for efficient calculation of array elements in
byte-addressable memories. For the 32-bit format, precision was
deemed the most important criterion, hence the choice of radix 2
instead of octal or hexadecimal. Other characteristics include not
representing the leading significand bit in normalized numbers, a
minimally acceptable exponent range which uses 8 bits, and
exponent bias which allows the reciprocal of all normalized numbers
to be represented without overflow. For the 64-bit format, the main
consideration was range.

Representation of FLP Number
The IEEE binary floating point number is represented in the
following format:

FP = ± Significand × BaseCharacteristic

The specification of a binary FP number involves two parts:
A Significand or Mantissa
and a Characteristic or Exponent.

The Mantissa is signed fixed point number and the Exponent is a
signed integer. Mantissa or Significand is that component of a binary
FLP number which consists of an explicit or implicit leading bit to the
left of its binary point and a fraction field to the right of the binary
point. Exponent signifies the power to which 2 is raised in
determining the value of the represented number. Occasionally the
exponent is called the signed or unbiased exponent. The IEEE
standard specifies that a single precision Floating Point number
should be represented in 32 bits as shown in Figure 1.

SIGN
1-bit

EXPONENT
8-bits

MANTISSA
23-bits

Figure 1.

The significance of each of these fields is as follows:

1. SIGN — This 1–bit field is the sign of the Mantissa. ‘0’ indicates
a positive and ‘1’ indicates a negative number.

2. EXPONENT — This is a 8–bit field. The width of this field
determines the range of the FP number. The exponent is
represented as a biased value with a bias of 127 decimal. The
bias value is added to exponents in order to keep them always
positive and is represented by

2n–1 – 1,

where n = number of bits in the binary exponent.

3. MANTISSA — This is a 23-bit field representing the fractional
part. The width of this field determines the precision for the FP
number. For normalized FP numbers (see below), a MSB of ‘1’ is
assumed and not represented. Thus, for normalized numbers,
the value of the mantissa is 1.Mantissa. This provides an
effective precision of 24–bits for the mantissa.

If dealt with normalized numbers only (as the XA implementation
does), then the MSB of the Mantissa need not be explicitly
represented as per IEEE standard specification.The normalized
significand lies in the range shown below.

1.0 < Normalized Mantissa < 2.0

Given the values of Sign, Exponent, and Mantissa, the value of
the FP number is obtained as follows:

(i) If 0 < Exp < 255, then

FP = (–1)SIGN × 2EXP – 127 × 1.MANTISSA

(ii) If Exp = 0, then FP = 0

(iii) If Exp = 255, and Mantissa =/= 0, then FP = Invalid Number
(NaN or Not a Number).

The above format for single precision binary FP numbers provides
for the representation in the range –3.4 × 1038 to –1.75 x 10–38, 0,
and 1.75 × 10–38 to 3.4 × 1038. The accuracy is between 7 and 8
decimal digits.

Differences with the IEEE Standards
The IEEE standard specifies a comprehensive list of operations and
representations for FLP numbers. Since an implementation that fully
conforms to this standard would lead to an excessive amount of
overhead, a number of features in the standard were omitted. This
section describes the differences between the implemented package
and the standard.

1. Omission of –0 — The IEEE standard requires that both + and
– 0 be represented, and arithmetic carried out using both. The
implementation does not represent –0.

2. Omission of infinity arithmetic — The IEEE standard provides
for the representation of + and – infinity, and requires that valid
arithmetic operations be carried out on infinity.

3. Omission of Quiet NaN — The IEEE standard provides for both
Quiet and Signalling NaNs. A signalling NaN can be produced as

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 3

the result of overflow during an arithmetic operation. If the NaN is
passed as input to further FLP routines, then these routines
would produce another NaN as output. The routines will also set
the Invalid Operation Flag, and call the user FLP error trap
routine at address FPTRAP.

4. Omission of denormalized numbers — These are FLP
numbers with a biased exponent, E of zero and non-zero
mantissa F. Such denormalized numbers are useful in providing
gradual underflow to 0. These are not represented in the XA
implementation. Instead, if the result of a computation cannot be
represented as a normalized number within the allowable
exponent range, then an underflow is signalled, the result is set
to 0, and the user FLP error trap routine at address FPTRAP is
called.

5. Omission of Inexact Result Exponent — The IEEE standard
requires that an Inexact Result Exception be signalled when the
round result of an operation is not exact, or it overflows without
an overflow trap. This feature is not provided.

6. Biased Rounding to Nearest — The IEEE standard requires
that rounding to the nearest be provided as the default rounding
mode. Further, the rounding is required to be unbiased. The XA
implementation provides biased rounding to nearest only, e.g.,
suppose the result of an operation is .b1b2b3nnn and needs to
be rounded to 3 binary digits. Then if nnn is 0YY, the round to
nearest result is .b1b2b3. If nnn is 1YY, with at least one of the
Y’s being 1, then the result is .b1b2b3 + 0.001. Finally, if nnn is
100, it is a tie situation. In such a case, the IEEE standard
requires that the rounded result be such that its LSB is 0. The XA
implementation, on the other hand, will round the result in such a
case to .b1b2b3 + 0.001.

DESCRIPTION OF ALGORITHMS

General Considerations
The XA implementation of the SP floating point package consists of
a series of subroutines. The subroutines have been written and
tested using Microsoft C however, not been tested with the XA C
cross-compiler and also not optimized for code efficiency. The
executable could be run under DOS in any IBM compatible PC. It is
a menu driven routine that enables the user to select any of the 4
Floating Point routines. The menu also includes a “HELP” item
designed to provide some standard SP floating point numbers, their
operations and results as a quick reference.

The Arithmetic subroutines that compute F1 (Op) F2, where Op is +,
–, *, or / expect that F1 and F2 are in IEEE format. Each of F1 and
F2 consists of two 16-bit words organized as follows:

Fn–HI : Sign(1) Biased exponent(7) MSB of Mantissa(8)

Fn–LO : Least Significant word of Mantissa(16)

Exception Handling
The following types of exception can occur during the course of
computation.

Invalid Operand— This exception occurs if one of the input is a
NaN.

Exponent Overflow— This occurs if the result of a computation is
such that its rounded result is finite and not an invalid result but its
exponent is too large to represent in the floating point format,
i.e., exponent has a biased value of 255 or more.

Exponent Underflow— This occurs if the result of a computation is
such that its exponent is 0 or less.

Divide-by-zero— This exception occurs if the FLP divide routine is
called with F2 being 0.

The package signals exceptions in 2 ways. First, a word at address
ERRFLG is maintained that registers the history of the exception
conditions. Bits 0–3 of this word are used for the same.

Bit 0 – Exponent overflow detect

Bit 1 – Exponent Underflow detect ERRFLG

Bit 2 – Illegal Operand detect

Bit 3 – Divide–by–0 detect

ERRFLG

* * * * DBZ IOP EUF EOV

This bits are never cleared by the FLP package, and can be
examined by the user software to determine the exception
conditions that occurred during the course of a computation. If it is
the responsibility of the user software to initialize this word before
calling any of the floating point routines.

The second method that the package uses to signal exceptions is to
call a user floating point exception handler whenever such
conditions occurs. The corresponding exception bit in ERRFLG is
set before calling the handler. The starting address of the handler
should be defined by the symbol FPTRAP.

Unpacked FLP Format
The IEEE standard FLP format described earlier is very
cumbersome to deal with during computation. This is primarily
because of splitting of the mantissa between the 2 words. The
subroutine in the package unpack the input IEEE FLP numbers into
an internal representation, do the computations using this
representation, and finally pack the result into the IEEE format
before returning to the calling program. The unpacking is done by
the subroutine FUNPAK and the packing by the subroutine FPAK.
The unpacked format consists of 3 words and is organized as
follows:

Unpacked FLP

Fn-Exponent (8-bit biased) Fn-Sign (extended to 8-bits)

MS 16-bits of Mantissa (implicit 1 is present as MSB)

LS 8-bits of Mantissa Eight 0’s

Since all computations are carried out in this format, note that the
result is actually known to 32 bits. This 32-bit mantissa is rounded to
24 bits before packed to the IEEE format.

Algorithms
All the arithmetic algorithms first check for easy cases when either
F1 or F2 is zero or a NaN. The result in these cases is immediately
available. The description of the algorithms below is for those cases
when neither F1 or F2 is 0 or a NaN. Also, in order to keep the
algorithm description simple, the check for underflow/overflow at the
various stages is not shown. The documentation in the program, the
flowcharts given below, and the theory as described in the
references should allow these programs to be easily maintained.

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 4

FPADD AND FPSUB
Before a floating point add/subtract instruction is executed, the 2
operands in normalized form

The processing steps are as follows:

1. Compare the 2 exponents.

2. Align the mantissas by equalizing their exponents.

3. Compute result sign as the XOR of the signs of the 2 numbers.

4. Add/Subtract the mantissas.

For subtract, FP2 is complemented and added with FP1,
i.e., FSUB = FP1 + (–FP2).

5. Normalize the resulting sum/difference.

6. Pack the exponent, sign and mantissa in IEEE format and return.

FMULT = FP1 * FP2
Floating-point multiplication is accomplished by multiplying the
mantissas of the 2 operands and adding their corresponding
exponents. Exponent overflow or underflow may occur when true
addition is performed on 2 exponents of the same sign.

The processing steps are as follows:

1. Add the 2 exponents and subtract 7FH (IEE bias of 12710) to
yield the result exponent.

Result Exponent = FP1_EXP + FP2_EXP – 127

2. XOR the sign bits to get the result sign.

Result Sign = FP1_SIGN XOR FP2_SIGN

3. Compute FP1_HI x FP2_HI = C1_HI.C1_LO.

4. Compute FP1_HI x FP2_LO = C0_HI.C0_LO.

5. Add C0_HI + C1_LO = C2_LO.
If more than 16-bits, then C1_HI += 1.

6. Compute FP1_LO x FP2_HI = C3_HI.C3_LO.

7. Add C3_HI + C2_LO = C4_LO.
If more than 16-bits, then C1_HI += 1.

8. Normalize mantissa. If MSB of C1_HI =/= 1,
then result exponent += 1 else left shift C1_HI.C4_LO.

9. Round C1_HI.C4_LO to get result mantissa.

10.Pack the exponent, sign and mantissa in IEEE format and return.

FPDIV = FP1/FP2
The way a floating-point DIVIDE instruction is executed is analogous
to that of a Floating Point Multiply, except that mantissa
multiplication is replaced by mantissa division and the exponent
addition by exponent subtraction. Exponent overflow or underflow
may occur when true addition is performed on the 2 exponents of
opposite signs. The scheme must avoid the situation of having a
divisor which is smaller than dividend mantissa, including the special
case of a 0 divisor. With this constraint, the post normalization is
unnecessary in FLP division as long as pre-normalization was
conducted to avoid quotient overflow.

The processing steps are as follows:

1. Compare FP1_HI and FP2_HI.
If FP2_HI > FP1_HI, then go to step 3, else go to step 2.

2. Shift right FP1 and FP1_EXP += 1.

3. Compute FP1_EXP – FP2_EXP + 127 to get C_EXP.

4. Compute FP1_SIGN XOR FP2_SIGN to get result sign,
i.e., C_SIGN

5. Compute FP1_HI x FP2_LO = M1_HI.M1_LO.

6. Divide M1_HI.M1_LO / FP2_HI = M2_HI (Quotient)

7. Do a true subtract FP1_LO – M2_HI = M3_LO.
If result –ve then go to step 8 else FP1_HI –= 1 and go to step 8.

8. Divide FP1_HI.M3_LO / FP2_HI = C1_HI (Quotient) + R1
(remainder)

9. Divide R1.0000 / FP2_HI = C1_LO (Quotient)

10. If MSB of C1_HI = 1, then go to step 11, else shift left
C1_HI.C1_LO, C_EXP –= 1, and go to step 11.

11. Round C1_HI.C1_LO to get C_HI.C_LO, go to step 12

12.Pack the exponent, sign and mantissa in IEEE format and return.

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 5

FPADD AND FPSUB

START

ADD?

CHANGE FP2 SIGN

NO

YES

DE = FP1_EXP – FP2_EXP

DE = +VE? YESNO

2’S COMPLEMENT DE

DE > 23?YES NO

F1MANT = 0 RIGHT SHIFT F1MANT BY DE

DE > 23?NO YES

CAN’T SHIFT > 23 BITS

RIGHT SHIFT F2MANT BY DE

EQUALIZING
EXPONENTS

F2MANT = 0

FP1_SIGN ⊕ FP2_SIGN
0 = SAME SIGN
1 = OPP. SIGN

SAME
SIGN?

YESNO

RESULT MANTISSA = FP1MANT – FP2MANT

F2 > F1? YESNO

2’S COMPLEMENT OF
RESULT’S MANTISSA

RESULT SIGN = FP2_SIGN

SHIFT LEFT RESULT MANTISSA
UNTIL MSB = 1 & KEEP
DECREMENTING RESULT EXPONENT

RESULT SIGN = FP1_SIGN

RESULT MANTISSA = FP1MANT + FP2MANT

RESULT > 24 BITS? YESNO

SHIFT RIGHT MANTISSA BY 1
AND RESULT EXPONENT +=1

ROUND RESULT,
PACK IN IEEE FORMAT

AND EXIT

SU00508A

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 6

FPMULT

START

C2_LO = C0_HI + C1_LO

RES_EXP = FP1_EXP + FP2_EXP – 127

RESULT > 16 BITS? YESNO

RES_SIGN = FP1_SIGN ⊕ FP2_SIGN

C1_HI.C1_LO = FP1_HI * FP2_HI

C0_HI.C0_LO = FP1_HI * FP2_LO

C1_HI = C1_HI + 1

C3_HI.C3_LO = FP1_LO * FP2_HI

C4_LO = C3_HI + C2_LO

RESULT > 16 BITS? YES C1_HI = C1_HI + 1

NO

C1_HI.MSB = 1? YESNO

C1_HI.C4_LO << 1 NORMALIZE MANTISSA
RES_EXP = RES_EXP + 1

ROUND RESULT,
PACK IN IEEE FORMAT &

EXIT

SU00509

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 7

FPDIV

START

FP2_HI > FP1_HI? YESNO

RES_SIGN = FP1_SIGN ⊕ FP2_SIGN

M1_HI.M1_LO = FP1_HI × FP2_LO

FP1 >> 1 AND
FP1_EXP = FP1_EXP +1

RES_EXP = FP1_EXP – FP2_EXP + 127

SU00510

M2_HI (QUOTIENT) = M1_HI.M1_LO / FP2_HI

M3_LO = FP1_LO – M2_HI

RESULT = –VE? NO

FP1_HI = FP1_HI –1

YES

C1_HI (QUOTIENT) + R1 (REMAINDER) = FP1_HI.M3_LO / FP2_HI

C1_LO (QUOTIENT) = R1.0000 / FP2_HI

C1_HI.MSB = 1? YES

C1_HI.C1_LO << 1
AND RES_EXP = RES_EXP – 1NO

ROUND RESULT,
PACK IN IEEE FORMAT &

EXIT

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 8

APPENDIX A

Conversion of Floating Point Numbers
In general IEEE FP = +– mantissa X 2 exponent

Format = Sign bit (1). Biased Exponent bits (8). Normalized
Mantissa bits (23), e.g., convert 1.0 to a 32–bit IEEE Floating Point:

1 = 1.0 X 20;
Biased Exponent = 0 + 127 = 127 = 7F Hex
The 24-bit normalized mantissa = 100000000000000000000000;
Sign = positive = 0;

So, IEEE 1.0 = 0 0111 1111 00000000000000000000000

which is 3f80 0000 hex & so on.

Some Floating Point Numbers are given below for
user reference:

–1.0 = BF80 0000;
+1.0 = 3F80 0000

–0.25 = BE80 0000;
+0.25 = 3E80 0000

–0.50 = BF00 0000;
+0.50 = 3F00 0000

6.250 = 40C8 0000;
1.625 = 3FD0 0000;

12.0 = 4140 0000

References
1. IEEE Draft 8.0 on A Proposed Standard for Binary Floating-point

Arithmetic, 1981

2. K.Hwang, Computer Arithmetic, John–Wiley and Sons, 1979

3. Microprocessor System Design Concepts, Nikitas A.
Alexandridis, Computer Sc.Press, 1984

4. Microprocessors and Digital Systems, Douglas V. Hall,
McGraw-Hill, 1980

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 9

APPENDIX B
#include <stdio.h>
#include ”fpp.h”

void main(void)

{

unsigned int fprtn;
unsigned short j;
FILE *fp;

start:
 while(1) // clear RAM
 {

 for(j=0; j<6;j++)
 {
 tmp1[j] = 0;
 tmp2[j] = 0;
 }

 // Menu

 printf(”\n\n\n\n”);
 printf(” XA FLOATING POINT ARITHMETIC FUNCTION MENU\n”);
 printf(” –––\n”);
 printf(”\n”);
 printf(” AFloating Point Add\n”);
 printf(” BFloating Point Subtract\n”);
 printf(” CFloating Point Multiply\n”);
 printf(” DFloating Point Divide\n”);
 printf(” HHelp File\n”);
 printf(” JError Register Status\n”);
 printf(” QExit Menu\n\n\n\n\n”);
 printf(” ==>”);

 fprtn = getche(); /* wait for user i/p */

 getch(); // wait for <CR>
 printf(”\n\n”);

 /* Select Floating Point Routine */

 switch(fprtn)
 {
 case ’A’ :
 case ’a’ :
 printf(”Floating Point Addition in Progrss....\n\n\n”);
 getnum();
 fpadd();
 break;

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 10

 case ’B’ :
 case ’b’ :
 printf(”Floating Point Subtraction in Progrss....\n\n\n”);
 printf(”\n\n\n\n”);
 getnum();
 fpsub();
 break;

 case ’C’:
 case ’c’:
 printf(”Floating Point Multiplication in Progress....\n\n\n”);
 printf(”\n\n\n\n”);
 getnum();
 fpmult();
 break;

 case ’D’:
 case ’d’:
 printf(”Floating Point Divide in Progress....\n\n\n”);
 printf(”\n\n\n\n”);
 getnum();
 fpdiv();
 break;

 case ’H’:
 case ’h’:
 if((fp = fopen(”help”,”r”)) == NULL)
 printf(”can’t open flpdat for read\n”);

 fcopy(fp,stdout);
 fclose(fp);
 printf(”Hit any key to continue ...”);
 getch();
 goto start;

 case ’J’:
 case ’j’:
 show_err_reg();
 printf(”Hit any key to continue ...”);
 getch();
 goto start;
 case ’Q’:
 case ’q’:
 printf(”******Hit Ctrl+C to exit!!!!*******\n”);
 getch();

 default:
 printf(” ***\n”);
 printf(” * UNKNOWN COMMAND, GOODBYE!! *\n”);
 printf(” ***\n”);
 goto start;

 }

 }

}

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 11

/* Exception Handling Routines */

void divbyz (void)

{
 ERRFLG |= 8; /* set the DIVBY0 bit (#3) */
 fp_lo = 0; /* Return NaN */
 fp_hi = NANH;
 fptrap(); /* exception handler */
 return;
}

/* Illegal Operand – one of the numbers is a INVALID. */

void fnan(void)

{

 ERRFLG |= 4; /* set the NAN operand bit */
 fp_lo = NANL;
 fp_hi = NANH; /* return NAN in fp_lo and fp_hi */
 fptrap();
 return;
}

void undflw(void) /* exponent underflow */

{
 ERRFLG |= 2; /* set the exponent underflow bit */
 fp_lo = 0; /* clear FP */
 fp_hi = 0;
 fptrap();
 return;
}

void ovflw(void) /* exponent overflow */

{
 ERRFLG |= 1; /* set the exponent overflow bit */
 fp_lo = 0;
 fp_hi = NANH;
 fptrap();
 return;
}

/* Subroutine to check if a single precision FLP # stored in the
 IEEE flp format in registers fp_lo and fp_hi is ’INVALID’
 Returns 0 if number != INVALID and
 Returns 1 if Number == INVALID
*/

unsigned int fnanchk()

/* Subroutine to check if a SP floating point number is a NaN
 Returns 1, if YES, and 0 if NOT */

{
 long tmp;

 tmp = fp_hi;
 tmp = tmp >> 1; /* Shift left fp_hi by 1 */
 if(tmp > 0xfeff) /* feff + 1 = ff00 */
 return 1; /* biased exp >= 255 & f =/= 0 */
 return /* OK */

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 12

}
/* Subroutine to check if a single precision FLP # stored in the
 IEEE flp format in registers fp_lo and fp_hi is ’ZERO’
 Returns 0 if number != and
 Returns 1 if Number == 0
 Note : fp ”0” = 1.0 x 2 e –127 i.e if biased exp = 0, fp = 0
*/

char zchk(void)

{
 unsigned long tmp;
 tmp = fp_hi;

 tmp = tmp << 1; /* Shift left fp_hi by 1 */

 if(tmp > 0x00ff)
 return 0;
 return 1;
}

/* subroutine to unpack a SP IEEE formatted FP # and held in regs.fp_hi
 and fp_lo. The unpacked format occupies 3 words & is organized as
 follows:

 WORD2 : eeeeeeee ssssssss –> biased–exp.sign
 WORD1 : 1mmmmmmm mmmmmmmm –> 16 MSB of Mantissa (m23 : m16)
 WORD0 : mmmmmmmm 00000000 –> 8 LSB of Mantissa.zeros

 e7:0 – 8–bit exponent in excess–127 format
 s7:0 – sign bit –> 0x00 = +ve, 0xff = –ve ;
 m23:0 – normalized mantissa i.e 1.0000...
*/

char* funpak(fparray) // returns ptr. to a character array to fpadd
int *fparray; //pointer to the flp. array passed by fpadd

{

 char sign;
 unsigned short i= 0,j = 0;

 if(k=2) k=0;
 else
 k ++;
 flpar[i] = 0; // clear lo–byte of fp0

 flpar[++i] = fparray[j] & 0x00ff; /* fp0_hi = m0:m7 */
 flpar[++i] = (fparray[j++] & 0xff00) >> 8; /* fp1_lo = m8:m15 */

 flpar[++i] = fparray[j] & 0x007f; /* m16:m22 */

 flpar[i] |= 0x80; /* set bit7 –> normlz. bit */

 sign = (fparray[j] & 0x8000) >> 15; /* check sign bit */
 /* fp2_lo = 8 sign bits */

 if (sign) /* –ve number ? */

 flpar[++i] = 0xff;
 else /* yes */
 flpar[++i] = 0x00; /* no */

 flpar[++i] = (fparray[j] & 0x7f80) >> 7; /**/
 return (flpar); /* return the ptr to the array */
}

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 13

/* subroutine to pack a SP held in 3 words flpar0:3 into IEEE format.
 The packed format is stored in fp_hi & fp_lo as follows:
 fp_hi : seeeeee emmmmmmm –> sign.biased–exp.7 MSBs of mantissa
 fp_lo : mmmmmmmm mmmmmmmm –> 16 LSBs of Mantissa

 Result Stored in tmp2[i]; i=0:5
 tmp2[0] = 0x00; tmp[1] = m0:m7; tmp[2] = m8:m15;
 tmp[3] = 1.m16:m22; tmp[4] = sign7:0; tmp[5] = exp7:0
*/

void fpak(void)

{
 int i=1;
 unsigned int sign,tmpc;
 long ltmp1,ltmp2;

 fp_lo = tmp2[i++]; /* get m0:m7 */
 tmpc = tmp2[i++];
 fp_lo = fp_lo | (tmpc << 8); /* get m8:m15 */

 fp_hi = tmp2[i++]; /* get 1.m22:m16 */
 ltmp1 = (fp_hi & 0x007f);
 ltmp1 = ltmp1 << 16; /* mask & shift */

 sign = tmp2[i++]; /* save sign–bit(s) */
 ltmp2 = tmp2[i]; /* exponent */
 ltmp2 = ltmp2 << 23;
 ltmp2 = ltmp2 | ltmp1;

 if(sign)
 ltmp2 = ltmp2 | 0x80000000;

 printf(”\n\nThe IEEE packed result is:”);
 printf(”%lx\n”,ltmp2);
}

/* This routine rounds up the 32–bit mantissa resulted from FP operations
 to a 24–bit number */

void fround(void)
{

 unsigned int i=3, ctmp;
 long tmpl;

 tmpl = tmp2[i––]; /* 1.m22:16 */
 tmpl = tmpl << 8;
 ctmp = tmp2[i––]; /* m15:8 */
 tmpl = tmpl|ctmp;
 tmpl = tmpl << 8;
 ctmp = tmp2[i––]; /* m7:0 */
 ctmp = tmp2[i];

 if(ctmp & 0x80) /* if bit 7 i not set in the LSB */

 tmpl += 0x0100; /* Increase next byte by 1 */

 ctmp = tmp2[5];

 if(tmpl & 0x1000000) /* carry out of MSB? */
 {
 tmpl = tmpl >> 1;
 ctmp++; /* exp = exp+1 */

 if(ctmp > 255)

 tmp2[5] = 0xff;

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 14

 }

 tmp2[1] = (tmpl & 0x000000ff);
 tmp2[2] = (tmpl & 0x0000ff00) >> 8;
 tmp2[3] = (tmpl & 0x00ff0000) >> 16;
}

/* User supplied FLP Trap Routine */

void fptrap(void)

{
 printf(”\n\nException Occurance !!!\n\n”);

 printf(”Error Flag Register = %x”,ERRFLG);
 /* User exception handler

 */

}

void show_err_reg(void)

{
 printf(”\n The Error Flag Register Bit Map is as follows :”);
 printf(”\n ––––––––––––––––––––––––––––––––––––––\n\n”);
 printf(” –––––––––––––––––––––––––––––––––––––––\n”);
 printf(” | – | – | – | – | DBZ | IOP | EUF | EOV |\n”);
 printf(” –––––––––––––––––––––––––––––––––––––––\n\n\n”);
 printf(” where DBZ = Divide by Zero exception\n”);
 printf(” IOP = NaN or Invlaid operand\n”);
 printf(” EUF = Exponent Underflow\n”);
 printf(” and EOV = Exponent Overflow\n\n\n”);

 printf(”The status of the register after the operation is :”);
 printf(”0x%x\n\n”,ERRFLG);
 }
/* FPADD – Floating Point Add
 It is assumed two floating point numbers F1 & F2 are in IEEE format
 Format :
 Fn = fpnh (s.e7:0.m22:16) + fpnl (m15:0) –> In registers
*/

int fpadd()

{ // 1

long dmant, flpm1, flpm2, lnfp, tlong;
int *flpn, temp1, temp2;
char dexp, i=0,j=0,k=5,t=0, exp1, exp2;

 exp1 = tmp1[k]; /* get exponent of 1st */

 exp2 = tmp2[k]; /* get exponent of 2nd */

 dexp = (exp1 – exp2); /* difference in exponent */

 printf(”\n\n”);
 printf (”DEXP = %x\n”, dexp);

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 15

/* CASE 1: */
 if(dexp > 0 && dexp < 23) /* f1exp > f2exp */
 { //2

 tmp = dexp;

 /* if exp > 23, can’t shift mantissa
 more than 23–bits */

 while(tmp––)
 {
 for(i=0; i<=3; i++)
 {
 tmp2[i] = tmp2[i] >> 1;
 }
 }

 i = 4;
 temp1 = tmp1[i] & 0x00ff; /* get the fp1 sign byte */
 printf(”\nFP1 SIGN BITS = %x”, temp1);

 temp2 = tmp2[i] & 0x00ff; /* get the fp2 sign byte */
 printf(”\nFP2 SIGN BITS = %x”, temp2);

loop_here:
 i = 4;
 rsign = (tmp1[i] ^ tmp2[i]); /* ex–or sign bits */

 if(rsign != 0) /* if different sign */

 { //44
 printf(”\nFPs ARE OF DIFFERENT SIGNS!!\n”);

 flpm1 = getmant(0);
 flpm2 = getmant(1);

 dmant = flpm1 – flpm2;

 if (flpm1 > flpm2) /* F1man > F2man */

 { //22

 printf(”\n”);
 printf(”FP1 MANTISSA GREATER THAN FP2 MNATISSA\n”);
 printf(”\n\n”);

 tmp2[4] = tmp1[4]; /* result sign = sign of F1 */
 rsign = tmp1[4]; /* stored in FP2 sign byte */

 /* Shift left mantissa till MSB = 1 */

 for(k=0; k <= 23 && ((dmant & 0x00800000) == 0); k++)
 {
 dmant = dmant << 1;
 exp1 = exp1 – 1;
 }

 /* save result in tmp2[i] array */
 tmp2[5] = exp1;
 tmp2[4] = rsign;
 tmp2[3] = (dmant & 0x00ff0000) >> 16;
 tmp2[2] = (dmant & 0x0000ff00) >> 8;
 tmp2[1] = (dmant & 0x000000ff);

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 16

 printf(”RESULT EXPONENT : %x\n”, exp1);
 printf(”RESULT MANTISSA (NORMLZD) = %lx\n”, dmant);
 printf(”RESULT SIGN = %x\n”, rsign & 0x1);

 fround(); /* round the result */
 fpak(); /* Pak & leave */

 printf(”Hit any key to continue ...”);
 getch();
 return 0;

 } //22
 else if (flpm1<flpm2) /* F2man > F1man */

 { //23
 printf(” FP2 MANTISSA GREATER THAN FP1 MANTISSA \n”);

 dmant = ~dmant; /* 2’S COMPLEMENT */
 dmant++;
 exp2 = tmp2[5]; /* res.exp = F2.exp */
 rsign = tmp2[4];
 tlong = dmant;

 while(!(tlong & 0x800000))
 { dmant = dmant << 1;
 tlong = dmant;
 exp2––;
 }

 dmant = dmant & 0xffffff;

 /* save result in tmp2[i] array */
 tmp2[5] = rexp;
 tmp2[4] = rsign;
 tmp2[3] = (dmant & 0x00ff0000) >> 16;
 tmp2[2] = (dmant & 0x0000ff00) >> 8;
 tmp2[1] = (dmant & 0x000000ff);

 printf(”\n\n”);
 printf(”THE RESULT MANTISSA (NORMLZD) IS = %lx\n”,dmant);
 printf(”THE RESULT EXPONENT IS = %x\n”, exp2);
 printf(”THE RESULT SIGN IS = %x\n”, rsign & 0x1);

 fround();
 fpak();
 printf(”Hit any key to continue ...”);
 getch();
 return(0);
 } //23

 } // 44

 else if(rsign == 0) // same sign, so ex–OR is 0

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 17

 { //55
 printf(”\n”);
 printf(”FPs ARE OF SAME SIGN!!\n”);

 flpm1 = getmant(0);
 flpm2 = getmant(1);
 dmant = flpm1 + flpm2;
 rsign = tmp1[4];
 rexp = exp1;

 tlong = dmant;
 tlong = tlong & 0x01000000;// check if carry set

 if(tlong)
 {
 dmant = dmant >> 1;
 rexp = rexp + 1;
 }

 /* save result in tmp2[i] array */
 tmp2[5] = rexp;
 tmp2[4] = rsign;
 tmp2[3] = (dmant & 0x00ff0000) >> 16;
 tmp2[2] = (dmant & 0x0000ff00) >> 8;
 tmp2[1] = (dmant & 0x0000ff);

 printf(”\n\n”);
 printf(”THE RESULT MANTISSA(NORMLZD) IS = %lx\n”,dmant);
 printf(”THE RESULT EXPONENT IS = %x\n”, rexp);
 printf(”THE RESULT SIGN IS = %x\n”, rsign & 1);

 fround();
 fpak(); /* pack in IEEE format */

 printf(”Hit any key to continue ...”);
 getch();

 return(0);
 } //55

} // 2

 else if (dexp > 23)

{ //99
 printf(”DIFFERENCE IN EXPONENT IS GREATER THAN 23\n”);

 for(i = 0; i<= 3; i++)
 tmp2[i] = 0;
 goto loop_here;
} //99

 else if (dexp < 0)

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 18

{//6
 printf(”DIFFERENCE IN EXPONENT IS NEGETIVE\n”);
 printf(”FP2 EXPONENT GREATER THAN FP1 EXPONENT\n”);

 tmp = ~dexp ; /* 2’s complement */
 tmp++;

 printf(”2’s COMPLEMENT OF DEXP = %d\n”, tmp);

 if(tmp < 23)
 {
 while(tmp––)
 {
 for(i = 0; i<= 3; i++)
 {
 tmp1[i] = tmp1[i] >> 1;
 }
 }
 goto loop_here;
 }

 else if(tmp > 23) /* dexp > 23 */
 {
 for(i=0; i<= 3; i++)
 tmp1[i] = 0; /* F1mant = 0 */
 goto loop_here;
 }

 } //6
 else if(dexp == 0) /* shift done */
 printf(”FPs GOT SAME EXPONENT!!\n”);
 goto loop_here;

} // 1

/* Get the mantissa for both FP in 24–bit format */

long getmant(val)
 unsigned short val;

{
 long lnfp, flpm;
 unsigned short i;
 i= 1;
 lnfp = 0;
 flpm = 0;

 if (!val)
 {

 lnfp = tmp1[i];
 flpm |= (lnfp & 0x000000ff);

 lnfp = 0;
 i++;
 lnfp = tmp1[i];
 lnfp = lnfp << 8;
 flpm |= lnfp & 0x0000ff00;

 lnfp = 0;
 i++;
 lnfp = tmp1[i];
 lnfp = (lnfp << 16);
 flpm |= (lnfp & 0x00ff0000);

 flpm = flpm & 0x00ffffff;

 printf(”\n FP1 MANTISSA = %lx\n”, flpm);

 }

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 19

 else
 {
 i=1;
 flpm = 0;
 lnfp = 0;
 lnfp = tmp2[i++];
 flpm |= (lnfp & 0x000000ff);

 lnfp = 0;
 lnfp = tmp2[i++];
 lnfp = (lnfp << 8);
 flpm |= (lnfp & 0x0000ff00);

 lnfp = 0;
 lnfp = tmp2[i];
 lnfp = (lnfp << 16);
 flpm |= (lnfp & 0x00ff0000);

 flpm = (flpm & 0x00ffffff);

 printf(” FP2 MANTISSA = %lx\n”, flpm);

 }
 return (flpm);
}

int fpsub()
{
 unsigned char fp2_sign;

 fp2_sign = tmp2[4];
 fp2_sign = ~fp2_sign;

 tmp2[4] = fp2_sign;
 fpadd();
}

void getnum()

{
unsigned int fp[3], px;
unsigned short i,j,k;

printf(”Type the lo–word of FP#1 in IEEE format :”);
 scanf(”%x”,&px);
 i= 0;
 fp[i] = *&px;

 printf(”Type the hi–word of FP#1 in IEEE format :”);
 scanf(”%x”,&px);
 fp[++i] = *&px;

 funpak(fp); // pass the array ptr. to unpack routine

 for(k=0,j=0; k<=5; j++,k++)
 {
 tmp1[k] = flpar[j];
 }
 printf(”\n”);

 i=0;
 printf(”\n\n”);
 printf(”Type the lo–word of FP#2 in IEEE format :”);
 scanf(”%x”,&px);
 fp[i] = *&px;

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 20

 printf(”Type the hi–word of FP#2 in IEEE format :”);
 scanf(”%x”,&px);
 fp[++i] = *&px;
 funpak(fp);

 for(k=0,j=0; k<=5; j++,k++)
 {
 tmp2[k] = flpar[j];
 }

}

void fpmult()
{

 int fp1_exp,fp2_exp, res_sign;
 unsigned int fp1_hi, fp1_lo, fp2_hi, fp2_lo, tmp;
 unsigned int c0_hi,c0_lo,c1_hi, c1_lo, c2_lo,c3_hi, c3_lo, c4_lo;
 int res_exp;
 long ltmp;

 fp1_exp = tmp1[5];
 fp2_exp = tmp2[5];

 res_exp = (long)(fp1_exp + fp2_exp –127); // result exponent

 if(res_exp < 0) // underflow
 undflw();

 if (res_exp > 255)
 ovflw();

 res_sign = tmp1[4] ^ tmp2[4]; // XOR = result sign

 tmp = tmp1[3] << 8; /* 1.m22:8 = FP_HI*/
 tmp = tmp & 0xff00;
 tmp |= tmp1[2];

 fp1_hi = tmp;
 fp_hi = fp1_hi;

 tmp = fnanchk();

 if(tmp)
 fnan(); // F1 is a NaN

 tmp = tmp2[3] << 8; /* 1.m22:8 = FP_LO */
 tmp = tmp & 0xff00;
 tmp |= tmp2[2];

 fp2_hi = tmp;
 fp_hi = fp2_hi;

 tmp = fnanchk();

 if(tmp)
 fnan(); // F2 is a NaN

 tmp = zchk(); // Check for F2 = 0

 if(tmp) {
 printf(”\nResult is = 0 as Multiplier is 0\n”); // F2 = 0
 goto endprog; }

 fp_hi = fp1_hi;

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 21

 tmp = zchk(); // Check for F1 = 0

 if(tmp) {
 printf(”\nResult is = 0 as Multiplicand is 0\n”); // F1 = 0
 goto endprog; }

 tmp = tmp1[1] << 8; /* m7:0.0000 */
 tmp = tmp & 0xff00;
 tmp |= tmp1[0];

 fp1_lo = tmp;

 tmp = tmp2[1] << 8;
 tmp = tmp & 0xff00;
 tmp |= tmp2[0];

 fp2_lo = tmp;

 ltmp = (long)fp1_hi * (long)fp2_hi; /* FP1_HI * FP2_HI */

 c1_hi = (ltmp & 0xffff0000) >> 16;
 c1_lo = ltmp & 0x0000ffff;

 ltmp = (long)fp1_hi * (long)fp2_lo;
 c0_hi = (ltmp & 0xffff0000) >> 16;
 c0_lo = ltmp &0x0000ffff;

 ltmp = c0_hi + c1_lo;

 if(ltmp & 0x10000)
 c1_hi++;

 c2_lo = ltmp & 0xffff;

 ltmp = (long)fp1_lo * (long)fp2_hi;

 c3_hi = (ltmp & 0xffff0000) >> 16;
 c3_lo = ltmp & 0x0000ffff;

 ltmp = c3_hi + c2_lo;

 if(ltmp & 0x10000)
 c1_hi++;

 c4_lo = ltmp & 0xffff;

 ltmp = c1_hi;
 ltmp = ltmp <<8;
 ltmp = (ltmp & 0xffffff00) | c4_lo;

 if(!(c1_hi & 0x8000))
 ltmp = ltmp << 1;

 else
 res_exp++;

 if(res_exp > 254)
 ovflw();

 /* save result in tmp2[i] array */
 tmp2[5] = res_exp;
 tmp2[4] = res_sign;
 tmp2[3] = (ltmp & 0x00ff0000) >> 16;
 tmp2[2] = (ltmp & 0x0000ff00) >> 8;
 tmp2[1] = (ltmp & 0x000000ff);

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 22

 printf(”\n\n”);
 printf(”RESULT EXPONENT : %x\n”, res_exp);
 printf(”RESULT MANTISSA (NORMLZD) = %lx\n”, ltmp);
 printf(”RESULT SIGN = %x\n”, res_sign & 1);

 fround();

 /* final check of exponent */

 tmp = tmp2[5];

 if(!tmp)
 undflw(); /* exponent underflow */

 if (tmp > 254)
 ovflw();

 fpak();
endprog:
 printf(”Hit any key to continue ...”);
 getch();
}

void fpdiv(void)

{
 unsigned int tmp, fp1_hi, fp2_hi, fp1_lo, fp2_lo, c1_hi, c1_lo;
 unsigned char i, c1_exp, c1_sign, fp1_sign, fp2_sign;
 long ltmp, rem, lfpm1, lfpm2, tmplng;
 unsigned int m1_hi, m1_lo, m2_hi, m2_lo, m3_hi, m3_lo;
 signed int fp1_exp, fp2_exp, dexp;

 tmp = tmp1[3] << 8;
 tmp = tmp & 0xff00;
 tmp |= tmp1[2];

 fp1_hi = tmp;
 fp_hi = fp1_hi;
 tmp = fnanchk();

 if(tmp)
 fnan(); // F1 is a NaN

 tmp = tmp2[3] << 8;
 tmp = tmp & 0xff00;
 tmp |= tmp2[2];

 fp2_hi = tmp;
 fp_hi = fp2_hi;

 tmp = fnanchk();

 if(tmp)
 fnan(); // F2 is a NaN

 tmp = zchk(); // Check for F2 = 0

 if(tmp) {
 divbyz(); // F2 = 0
 printf(”\nException as a result of Division by 0\n”);
 goto exit;
 }

 fp_hi = fp1_hi;
 tmp = zchk(); // Check for F1 = 0

 if(tmp) // Result = 0
 {
 printf(”\nResult of Division of a zero Dividend is = 0\n”);
 goto exit;
 }

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 23

 tmp = tmp1[1] << 8;
 tmp = tmp & 0xff00;
 tmp |= tmp1[0];

 fp1_lo = tmp;

 tmp = tmp2[1] << 8;
 tmp = tmp & 0xff00;
 tmp |= tmp2[0];

 fp2_lo = tmp;

 lfpm1 = fp1_hi;
 lfpm1 = lfpm1 << 16;
 lfpm1 |= fp1_lo;

 lfpm2 = fp2_hi;
 lfpm2 = lfpm2 << 16;
 lfpm2 |= fp2_lo;

 /* Exponent bits */
 fp1_exp = tmp1[5];

 fp2_exp = tmp2[5];

 /* Sign bits */
 fp1_sign = tmp1[4];
 fp2_sign = tmp2[4];

 /* Ensure that fp2_hi > fp1_hi */

 if(fp1_hi > fp2_hi) // compare fp1_hi & fp2_hi

 {
 lfpm1 >> 1;
 fp1_exp++;
 }

 /* else := good */

 fp1_hi = (lfpm1 & 0xffff0000) >> 16;
 fp1_lo = lfpm1 & 0x0000ffff;

 dexp = (fp1_exp – fp2_exp); // difference in exponent (2’s compl)

 c1_exp = dexp + 127;
 c1_sign = fp1_sign + fp2_sign;

 ltmp = (long)fp1_hi*(long)fp2_lo; // m1_hi.m1_lo

 m1_hi = (ltmp & 0xffff0000) >> 15;
 m1_lo = (ltmp & 0x0000ffff);

 m2_hi = ltmp / (long)fp2_hi; // Quotient
 m3_lo = fp1_lo – m2_hi;

 if(m2_hi > fp1_lo) // B = 0 i.e C = 1
 fp1_hi––;
 ltmp = (unsigned long)fp1_hi;
 ltmp = ltmp << 16;
 ltmp = ltmp|m3_lo;
 tmplng = ltmp;

Philips Semiconductors Application note

AN701SP floating point math with XA

1995 Jul 28 24

 ltmp = ltmp /(unsigned long)fp2_hi; // Quotient
 c1_hi = ltmp & 0x0000ffff;
 ltmp = tmplng;
 ltmp = ltmp % (unsigned long)fp2_hi; // remainder

 ltmp = ltmp << 16;
 ltmp = ltmp & 0xffff0000;
 c1_lo = ltmp/(unsigned long)fp2_hi;

 if(c1_hi & 0x8000)

 {
 c1_hi << 1;
 c1_lo << 1;
 c1_exp –= 1;
 }

 ltmp = c1_hi;
 ltmp = ltmp << 16;
 ltmp = ltmp | c1_lo;

 /* save result in tmp2[i] array */
 tmp2[5] = c1_exp;
 tmp2[4] = c1_sign;
 tmp2[3] = (ltmp & 0xff000000) >> 24;
 tmp2[2] = (ltmp & 0x00ff0000) >> 16;
 tmp2[1] = (ltmp & 0x0000ff00) >> 8;
 tmp2[0] = ltmp & 0x000000ff;

 printf(”\n\n”);
 printf(”RESULT EXPONENT : %x\n”, c1_exp);
 printf(”RESULT MANTISSA (NORMLZD) = %lx\n”, ltmp);
 printf(”RESULT SIGN = %x\n”, c1_sign & 1);

 fround(); // round up results in IEEE format

 /* final check of exponent */

 tmp = tmp2[5];

 if(!tmp)
 undflw(); /* exponent underflow */

 else if (tmp > 0xfe)
 ovflw; /* exponent overflow */

 fpak(); // pack in IEEE format
exit:
 printf(”Hit any key to continue ...”);
 getch();

}

void fcopy(FILE *ifp, FILE *ofp)
{
 int c;
 while ((c=getc(ifp)) != EOF)
 putc(c,ofp);
}

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1994
All rights reserved. Printed in U.S.A.

	IEEE SINGLE PRECISION FLOATING POINT ARITHMETIC WITH XA
	Introduction
	IEEE Floating Point Formats
	Representation of FLP Number
	Differences with the IEEE Standards

	DESCRIPTION OF ALGORITHMS
	General Considerations
	Exception Handling
	Unpacked FLP Format
	Algorithms

	FPADD AND FPSUB
	FMULT = FP1 * FP2
	FPDIV = FP1/FP2
	APPENDIX A
	APPENDIX B

