
Philips Semiconductors Application note

AN700Digital filtering using XA

Author: Santanu Roy, MCO Applications Group, Sunnyvale, California

11996 Mar 01

SUMMARY
This report describes a method of implementation of FIR filters using
Philips XA microcontroller. Appended with this application note is a
generic routine that could be used to implement a N-point FIR filter.

INTRODUCTION
The term “digital filter” refers to the computational process or
algorithm by which a digital signal or sequence of numbers (acting
as input) is transformed into a second sequence of numbers termed
the output digital signal. Digital filters involve signals in the digital
domain (discrete-time signals) and are used extensively in
applications such as digital image processing, pattern recognition,
and spectral analysis.

Digital Signal Processing (DSP) is concerned with the
representation of signals (and information they contain) by

sequences of numbers and with the transformation or processing of
such signal representations by numeric computational procedures.
In order to be considered a DSP microcontroller, a part must be able
to quickly multiply two values, and add the result to an accumulator
register. this is a minimum requirement. “Quickly” implies MAC
(Multiply and Accumulate). Typically, the multiply and accumulate
path operates on 16-bit values with a 32-bit result. Figure 1 shows a
typical Digital Signal Processing hardware used in digital filtering.

Although XA currently does not have a hardware MAC unit, it is
quite suitable for some DSP applications, due to its relatively high
computational power, and high I/O throughput. This application note
is intended to demonstrate such DSP power of the XA through
implementation of FIR and IIR digital filters. It is to be noted, though,
that this application note is not intended as a learning tool for DSP.
It is assumed that the reader is familiar with DSP and filtering
basics.

y(n)� �
N�1

k�0

h(k)� x(n� k)
x(t)

A/D
y(t)x(n) y(n)

D/A

Sample
Data Memory

Coefficient
Memory

Code

MAC

∑

×

SU00506

Figure 1. Typical DSP Hardware

Philips Semiconductors Application note

AN700Digital filtering using XA

1996 Mar 01 2

Filter Algorithms
For a large variety of applications, digital filters are usually based on
the following relationship between the filter input sequence x(n) and
filter output sequence y(n);

y(n)��
N

k�0

ak� y(n� k) � �
M

k�0

bk� x(n� k) (1)

where ak and bk represent constant coefficients and N and M
represent the number of input samples.

Equation (1) is referred to as a linear constant coefficient difference
equation. Two classes of filters can be represented by such
equations:
1. Finite Impulse Response (FIR) filters, and

2. Infinite Impulse Response (IIR) filters.

This applications note describes the implementation of the FIR class
of digital filters on the XA.

FIR Filters
FIR filters are preferred in lower order solutions, and since they do
not employ feedback (output values used in the calculation of newer
output values), they exhibit naturally bounded response. They are
simpler to implement, and require one RAM location and one
coefficient for each order.

For FIR filters, all of the ak in equation (1) is zero. Therefore (1)
reduces to:

y(n)��
M

k�0

bk� x(n� k) (2)

As a result, the output of an FIR filter is simply a finite length
weighted sum of the present and previous inputs to the filter. If the
unit-sample response of the filter is denoted as h(n), then from (2), it
is seen that h(n) = b(n). Therefore, (2) is sometimes written as:

y(n)� �
N�1

k�0

h(k)� x(n� k) (3)

where N = length of the filter = M+1.

Digital Filter Implementation
As described above, a digital filter (FIR or IIR) could then be
implemented by multiplying a vector of sampled signals with another
vector of constants (coefficients) and adding the results to a register.
The vectors involved in the filter process are derived from
transformation of an S domain transfer function into the sampled Z
domain.

The Multiply-Accumulate (MAC) Function
The MAC speed applies both to finite impulse response (FIR) and
finite impulse response (IIR) filters. The complexity of the filter
response dictates the number MAC operations required per sample
period.

A multiply-accumulate step performs the following:

• Read a 16-bit sample data (pointed to by a register)

• Increment the sample data pointer by 2

• Read a 16-bit coefficient (pointed to by another register)

• Increment the coefficient register pointer by 2

• Sign Multiply (16-bit) data and coefficient to yield a 32-bit result

• Add the result to the contents of a 32-bit register pair for
accumulate.

This accumulator should be initialized to zero before calculating
each output. It is assumed that the algorithm cannot overflow the
accumulator, either by reducing significant bits of samples and/or
constants or the number of accumulations.

All these above MAC operations take place in addition to a buffer
management routine that maintains an updated database for the
filters samples, and system coefficients.

Buffer Management
In order to effectively perform the task of buffer management, the
processor should be able to quickly “shift” data (or pointers) in a
data array which contains a series of input samples. New data is
going in, and oldest sample is disposed off.

There are few ways to maintain and manage this database. They
are as follows:
1. Linear Buffer

New Sample x(n)

Increasing
Address

x(n–1)

Increasing
Address

x(n–2) Increasing
Address

x(n–3)

Increasing
Address

Lost x(n–4)

Increasing
Address

Linear buffer management requires the data to physically move
down towards the oldest sample, then the newest sample is
written into the top (FIFO style).

2. Circular Buffer

x(n–1)

x(n)

*1 –> x(n–4)

x(n–3) <– *2

x(n–2)

*1 At the beginning of filter pass, input pointer points to the oldest
(n–4) sample, new sample is stored there.

*2 At the end of the filter pass, pointer now points to the next oldest
sample (n–3).

Circular buffer management requires a test to make sure a buffer
pointer increment does not move the pointer beyond the “tail” (end)
of the buffer. If so, the pointer must be reset to the “head”
(beginning) of the buffer.

Selecting one approach versus another depends mainly on the
overhead involved with this task over the plain Multiply-Accumulate
and loop control operations, and may vary based on the processor
architecture, storage access time and other factors.

Philips Semiconductors Application note

AN700Digital filtering using XA

1996 Mar 01 3

MAC Implementation on the XA
An efficient loop for memory mapped vectors is presented below.
The loop entry is at an even address, to reduce the fetch overhead
after branch to beginning of the loop. Arrays are accessed using the
indirect-autoincrement addressing mode.

.incld fir.h
 MAC_LOOP:
 mov.w R3, [R1+] ; read sample vector entry
 mov.w R4, [R2+] ; read coefficient vector entry
 mul.W R3, R4 ; multiply
 add R5, R3 ; accumulate into
 addc R6, R4 ; a 32 bit register pair(R5:R6)
 ; this serves as the RRP
 djnz R0, MAC_LOOP ;
 ;decrement loop counter and
 ;branch to MAC_LOOP

The loop contains 13 bytes and takes 32 clocks (including branch
penalty) per iteration (1.6µS at 20MHz and 1.07µS at 30.0MHz).

The following section analyzes the digital filter performance,
including initialization, I/O, MAC operations and sample vector buffer
management.

An N-Point FIR Filter Implementation on XA
The FIR filter maintains a list of a fixed number N of recent samples.
At each iteration, a new sample is taken, replacing the oldest
sample on the list. This list represents a sampled vector. It is then
multiplied by an N constant’s vector to yield the current output.

As mentioned earlier, there are 2 register pointers fetching data
samples and coefficient and feeding it to the ALU for 16-bit signed
multiply with the 32-bit result being added to the MAC result register
pair (RRP). In addition, a buffer management routine updates the
sample data buffer each sample period.

The following sample codes show the mechanism for running filters
on successive samples. It reflects the simplest data structures and
list management, to simulate an output of a high level compiler.

Data Samples in Buffer

x(n)

x(n–1)

x(n–2)

x(n–3)

x(n–4)

x(n–5)

x(n–6)

x(n–7)

New_Entry

Old_Entry

NOTE: Arrows indicate direction of data shift on each filter pass.

R2

R1

SU00507

Figure 2. Buffer Management for FIR Filter

Philips Semiconductors Application note

AN700Digital filtering using XA

1996 Mar 01 4

FIR Algorithm in XZ

;Preliminary initialization for first filter pass:
.incldfir.h
 Start_FIR:
 mov R0, #N–1 ; N = number of entries in the list
 ; = loop counter
 mov R1, #Old_Entry ; compiler uses 2 pointers
 mov R2, #Old_Entry+2 ;

Shft_Smpl:
 mov.w [R1+], [R2+]
 djnz R0, Shft_Smpl
 ; – SAMPLE FROM A/D PORT
 mov R0, A2D ; input from port
 and R0, #mask ; mask upper bits (for N–bit A/D)
 mov New_Entry, R0 ; add to list

Mac_init: ; MULTIPLY ACCUMULATE
 mov R0, #N ; N = number of entries in the list
 ; = loop counter
 mov R1, #Old_Entry ; pointer to sample vector
 mov R2, #Coef_Entry ; pointer to coefficient vector
 xor R5, R5 ; zero to accumulator
 xor R6, R6 ; zero to accumulator

MAC_LOOP:
 mov.w R3, [R1+] ; read sample from list to reg
 mov.w R4, [R2+] ; read constant from list to reg
 mul.w R3, R4 ; multiply
 add R5, R3 ; accumulate in RRP
 addc R6, R4 ; complete 32 bit add
 djnz R0, MAC_LOOP

ACC_corr: ; – NORMALIZE RESULT BY SHIFTING
 asl R5, #norm** ; correction for non–significant LSBs
 ; for eight 10 bit samples and 16 bit
 ; constants, #norm=3
 ; i.e. take only most significant 29 bits of the result
 ; [16+10 + 3 (for 8 iterations)]
 ; – OUTPUT TO D2A PORT
 mov DAC, R6 ; send to DAC

 A total of 62 bytes and 370 clocks for this FIR algorithm.

** For N=8, 10 bit A/D, 16 bit filter coefficients; 8, 12, 16 bits clock very similar performance.

Total time for an 8-point filter at 20 MHz is 19.0 microseconds and
12.7 microseconds at 30 MHz. This would translate to a maximum
sampling rate of 52 KHz at 20 MHz and 78 KHz at 30 MHz clock.
If this filter algorithm is interrupt driven, then additional 20 clocks
would be required for latency, which would then translate to 50 KHz
maximum sampling rate at 20 MHz and 75 KHz at 30 MHz. This
puts the XA in the bandwidth of Audio Signal Processing (44.1 KHz)
applications.

NOTES:
1. The above FIR algorithms are assembled with “asmxa rev 1.4” ,

the first XA absolute assembler for verification. It is to be noted in
this context, that this assembler is a beta-site tool and still under
evaluation. The syntax used in the assembler might be subjected
to change. The functionality of the code is not checked at this
stage using any simulator or ICE.

2. It is possible in the above MAC operation to extend the length of
the accumulator to accommodate more iterations and higher
precision (greater than 10-bit A/D) sample values with some
additional overhead, e.g., using ’ADDC Rn, R6H”, etc., after the
32-bit accumulate, where Rn is a byte-size register to increase
the length of the accumulator to accommodate more
accumulations and higher precision (greater than 10-bit A/D)
sample values.

Philips Semiconductors Application note

AN700Digital filtering using XA

1996 Mar 01 5

Author’s Note
All addresses and constants assumed 16 bit for generality.
Performance is calculated for a work-aligned branch targets which is
mandated in the XA architecture for performance reasons.
Misalignment will result in addition of NOPs by the assembler
causing penalty in both code density and execution times. It is also
to be mentioned that this is not the fastest executable code for the
XA. A good programmer can combine the two loops into one, and
data can be kept in registers. For low order filter implementation,
code can be written in-line, and can utilize direct addressing mode
for samples array.

This code was written in a way that reflects minimum expected
optimization form a compiler (local loop optimization only), and it
shows the expected speed for code written in a high level language,

without rewriting routines in assembly language. also, this is not the
ultimate performance for the XA architecture. The register banks
can be used to store coefficients and samples, resulting in slightly
faster execution time.

Author’s Acknowledgement
The author recognizes the following Philips Semiconductors XA
team members for their review and inputs on this article:

Greg Goodhue, Ori Mizrahi-Shalom, and Ata Khan.

References
XA User Guide — Philips Semiconductors
Digital Signal Processing — Rosenbaum

	SUMMARY
	INTRODUCTION
	Filter Algorithms
	FIR Filters
	Digital Filter Implementation
	The Multiply-Accumulate (MAC) Function
	Buffer Management
	MAC Implementation on the XA
	An N-Point FIR Filter Implementation on XA
	FIR Algorithm in XZ
	Author’s Note
	Author’s Acknowledgement
	References

