
������
�����
	����
�

AN465
Using the 87LPC76X in multi-master
I2C applications

2000 Jan 12

INTEGRATED CIRCUITS

ABSTRACT
Extends the basic concepts presented in AN464 (Using the
87LPC76X microcontroller as an I2C bus master) with special focus
on multi–master configurations including the arbitration mechanism
and handshake by clock synchronization. A description of various
software routines is followed by an ASM example illustrating their use
in a multi-master configuration with bus fault detection and recovery.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I 2C applications

22000 Jan 12

INTRODUCTION
The Philips Semiconductors 87LPC76X offers the advantages of the
80C51 architecture in a small package and at a low cost. It
combines the benefits of a high performance microcontroller with
on-board hardware supporting the Inter Integrated Circuit (I2C) bus
interface.

The Inter IC (I2C) bus developed by Philips allows integrated circuits
to communicate directly with each other via a simple bidirectional
2-wire bus. The comprehensive family of CMOS and bipolar ICs
incorporating the on-chip I2C interface offers many advantages to
designers of digital control for industrial, consumer and
telecommunications equipment.

Interfacing the devices in an I2C based system is very simple as
they connect directly to the two bus lines: a serial data line (SDA)
and a serial clock line (SCL). System design can rapidly progress
from block diagram to final schematics, as there is no need to
design bus interfaces. In addition, functional blocks on the block
diagram correspond to actual ICs. A prototype system or a final
product version can be easily modified or upgraded by ‘clipping’ or
‘unclipping’ ICs to or from the bus. The simplicity of designing with
the I2C bus does not reduce its effectiveness: it is a reliable,
multimaster bus with integrated addressing and data-transfer
protocols. The I2C-bus compatible ICs give cost reduction benefits
through smaller IC packages and a minimization of PCB traces and
glue logic.

The availability of microcontrollers, like the 87LPC76X, with
on-board I2C interface is a very powerful tool for system designers.
The integrated protocols allow systems to be completely software
defined. Software development time of different products can be
reduced by assembling a library of re-usable software modules. In
addition, the multimaster capability allows rapid testing and
alignment of end-products via external connections to an
assembly-line computer.

The 87LPC76X can operate as a master or a slave device on the
I2C small area network. In addition to the efficient interface to the
dedicated function ICs in the I2C family the on-board interface
facilitates I/O and RAM expansion, access to EEPROM, and
processor-to-processor communications.

The multimaster capability of the I2C bus allows easy integration
and expansion of relatively complex systems, in which different
devices can independently initiate data transfers. Integration of a
multimaster system is easy as a Master on the bus does not have to
coordinate its data transfer with other potential Master
devices—arbitration and synchronization are taken care of by the
hardware and bus protocols. Expanding a system with a new device
is trivial—it is “clipped” onto the two serial bus lines, and the new
device may act as a Master without any modification to the other
devices (see Figure 1). Microcontrollers like the 87LPC76X on the
I2C bus are extremely powerful, as they can be programmed to be
both Masters and Slaves in the same system. This way the
microcontroller may initiate communication on the bus, and when
requested, will respond to a data transfer request by another device.

In this Application Note we shall discuss the most important
technical features of the I2C bus and describe the special I2C
hardware interface of the 87LPC76X. We shall demonstrate with an
example how the microcontroller can be programmed for a
multimaster environment. The communications routines of the
example are quite general, and can be ported to many
applications—so we shall discuss in detail the software interface to
these routines.

The description of the 87LPC76X I2C interface hardware and part of
the general discussion of the I2C bus is similar to Application Note
AN464 which dealt with the microcontroller in a single-master
environment. Most of the added discussions relate to the
multimaster aspects of the bus.

MICRO-
CONTROLLER
A

LCD
DRIVER

STATIC
RAM OR
EEPROM

GATE
ARRAY ADC

MICRO-
CONTROLLER
B

SDA

SCL

SU00385

Figure 1. Example of an I 2C-bus Configuration

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 3

+VDD

RPRP

PULL-UP
RESISTORS

DATAN1
OUT

SCLKN1
OUT

SDA (SERIAL DATA LINE)

SCL (SERIAL CLOCK LINE

SCLK

DATA
IN

SCLK
IN

DATAN2
OUT

SCLKN2
OUT

SCLK

DATA
IN

SCLK
IN

SU00386
DEVICE 1 DEVICE 2

Figure 2. Connection of I 2C-bus Devices to the I 2C-bus

THE I2C BUS
The two lines of the I2C bus are a serial data line (SDA) and a serial
clock line (SCL). A typical system configuration is shown in Figure 2.
Each device is recognized by a unique address—whether it is a
microcomputer, LCD driver, memory or keyboard interface—and can
operate as either a transmitter or a receiver, depending on the
function of the device. A device generating a message or data is a
transmitter, and a device receiving the message or data is a
receiver. Obviously, a passive function like an LCD driver could only
be a receiver, while a microcontroller or a memory can both transmit
and receive data.

Every device connected to the bus must have an open-drain or an
open-collector output for both the data (SDA) and the clock (SCL)
lines. Each one of the lines is connected to the positive supply via a
common pull-up resistor (see Figure 2). This implements a
wired-AND function, and each of the bus lines which will have the
HIGH level only if all the output transistors tied to it are switched off.

Data on the I2C bus can be transferred at a rate up to 100kbit/s. The
number of devices connected to the bus is limited only by the
maximum bus capacitance of 400pF. As different technology devices
can be connected to the I2C bus, the levels of the logical 0 (Low)
and logical 1 (High) are not fixed and depend on the appropriate
level of VDD.

MASTERS AND SLAVES
When a data transfer takes place on the bus, a device can be either
a master or a slave. The device which initiates the transfer, and
generates the clock signals for this transfer is the master. At that
time any device addressed is considered a slave. It is important to
note that a master could be either a transmitter or a receiver: a
master microcontroller may send data to a RAM acting as a
transmitter, and then interrogate the RAM for its contents acting as a
receiver—in both cases being the master initiating the transfer. In
the same manner, a slave could be both a receiver and a
transmitter.

The I2C is a multimaster bus. It is possible to have in one system
more than one device capable of initiating transfers and controlling
the bus. A microcontroller may act as a master for one transfer, and

then be the slave for another transfer, initiated by another processor
on the network. The master/slave relationships on the bus are not
permanent, and exist per transfer.

As more than one master may be connected to the bus it is possible
that two devices will try to initiate transfer at the same time.
Obviously, in order to eliminate bus collisions and communications
chaos, an arbitration procedure is necessary. The I2C design has an
inherent arbitration and clock synchronization procedure relying on
the wired-AND connection of the devices on the bus. In a typical
multimaster system, a microcontroller program should allow it to
gracefully switch between master and slave modes and preserve
data integrity upon loss of arbitration.

DATA TRANSFERS
One data bit is transferred during each clock pulse (Figure 3). The
data on the SDA line must remain stable during the HIGH period of
the clock pulse in order to be valid. Changes in the data line at this
time will be interpreted as control signals. A HIGH-to-LOW transition
of the data line (SDA) while the clock signal (SCL) is HIGH indicates
a Start condition, and a LOW-to-HIGH transition of the SDA while
SCL is HIGH defines a Stop condition (Figure 4). The bus is
considered to be busy after the Start condition and free again a
certain time after the Stop condition. The Start and Stop conditions
are always generated by the master.

The number of data bytes transferred between the Start and Stop
condition from transmitter to receiver is not limited. Each byte, which
must be eight bits long, is transferred serially with the most
significant bit first, and is followed by an acknowledge bit (Figure 5).
The clock pulse related to the acknowledge bit is generated by the
master. The device that acknowledges has to pull down the SDA
line during the acknowledge clock pulse, while the transmitting
device releases the SDA line (HIGH) during this pulse (Figure 6).

A slave receiver must generate an acknowledge after the reception
of each byte, and a master must generate one after the reception of
each byte clocked out of the slave transmitter. If a receiving device
cannot receive the data byte immediately, it can force the transmitter
into a wait state by holding the clock line (SCL) LOW. When
designing a system it is necessary to take into account cases when

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 4

acknowledge is not received. This happens, for example, when the
addressed device is busy in a real time operation. In such a case
the master, after an appropriate “time-out”, should abort the transfer
by generating a Stop condition, allowing other transfers to take
place. These “other transfers” could be initiated by other masters in
a multimaster system or by this same master.

An exception to the “acknowledge after every byte” rule occurs
when a master is a receiver: it must signal an end of data to the
transmitter by NOT signalling an acknowledge on the last byte that
has been clocked out of the slave. The acknowledge related clock,
generated by the master, should still take place but the SDA line will
not be pulled down. In order to indicate that this is an active and
intentional lack of acknowledgement, we shall term this special
condition as a “Negative ACK”.

The bus design includes special provisions for interfacing to
microprocessors which implement all the I2C communications in
software only—it is called “Slow Mode”. When all the devices on the
network have built-in I2C hardware support the Slow Mode is
irrelevant.

SDA

SCL

DATA LINE
STABLE:

DATA VALID

CHANGE
OF DATA

ALLOWED

SU00361

Figure 3. Bit Transfer on the I 2C Bus

SDA

SCL

S P

SDA

SCL

START
CONDITION

STOP
CONDITION

SU00362

Figure 4. Start and Stop Conditions

START
CONDITION

S

STOP
CONDITION

P

SDA

SCL

MSB

1 2 7 8 9 1 2 3 – 8 9

ACK ACK

BYTE COMPLETE,
INTERRUPT WITHIN RECEIVER

CLOCK LINE HELD LOW
WHILE INTERRUPTS ARE SERVICED

SU00363

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

Figure 5. Data Transfer on the I 2C Bus

START
CONDITION

S 1 2 7 8 9

DATA OUTPUT BY
TRANSMITTER

DATA OUTPUT
BY RECEIVER

SCL FROM MASTER

CLOCK PULSE FOR ACKNOWLEDGMENT

SU00387

Figure 6. Acknowledge on the I 2C Bus

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 5

START
CONDITION

ADDRESS R/W ACK DATA DATAACK ACK

CONDITION
STOP

PS

SDA

SCL

1–7 8 9 1–7 8 9 1–7 8 9

SU00365

Figure 7. A Complete Data Transfer on the I 2C-Bus

MASTER WRITE:

S SLAVE ADDRESS W A DATA A DATA A P

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

MASTER READ:

S SLAVE ADDRESS R A DATA A DATA NA P

S SLAVE ADDRESS

COMBINED FORMATS:

R/W A ADATA S SLAVE ADDRESS R/W A DATA A P

DIRECTION OF TRANSFER MAY
CHANGE AT THIS POINTS = START

STOP
WRITE
READ
READ OR WRITE
ACKNOWLEDGE
NEGATIVE ACKNOWLEDGE

P =
W =
R =
R/W =
A =
NA =

(n BYTES +
ACKNOWLEDGE)

(n BYTES +
ACKNOWLEDGE)

SU00366

Figure 8. I 2C Data Formats

ADDRESSING AND TRANSFER FORMATS
Each device on the bus has its own unique address. Before any
data is transmitted on the bus, the master transmits on the bus the
address of the slave of this transaction. A well-behaved slave, if it
exists on the network, should of course acknowledge the master’s
addressing. The addressing is done with the first byte transmitted by
the master after the Start condition.

An address on the network is seven bits long, appearing as the most
significant bits of the address byte. The last bit is a direction (R/W)
bit. A zero indicates that the master is transmitting (WRITE) and a
one indicates that the master requests data (READ). A complete
data transfer, comprised of an address byte indicating a WRITE and
two data bytes is shown in Figure 7.

When an address is sent, each device in the system compares the
first seven bits after the Start with its own address. If there is a
match, the device will consider itself addressed by the master and
will send an acknowledge. The device could also determine if in this
transaction it is assigned the role of a slave receiver or slave
transmitter, depending on the R/W bit.

Each node of the I2C network has a unique seven bit address. The
address of a microcontroller is, of course, fully programmable, while
peripheral devices usually have fixed and programmable address

portions. In addition to the “standard” addressing discussed here,
the I2C bus protocol allows for “general call” addressing and
interfacing to CBUS devices.

When the master is communicating with one device only, data
transfers follow the format of Figure 8 where the R/W bit could
indicate either direction. After completing the transfer and issuing a
Stop condition, if a master would like to address some other device
on the network, it could start another transaction by issuing a new
Start.

Another way for a master to communicate with several different
devices would be by using a “repeated start”. After the last byte of
the transaction was transferred, including its acknowledge (or
Negative ACK), the master issues again a Start, followed by
address byte and data, without effecting a Stop. The master may
communicate with a number of different devices, combining READS
and WRITES. Only after the transfer with the last slave took place,
the master issues a Stop and releases the bus. Possible data
formats are demonstrated in Figure 8. Note that the repeated start
allows for both change of a slave and a change of direction, without
releasing the bus. We shall see later on that the change of direction
feature can come in handy even when dealing with a single device.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 6

In a single master system the repeated start mechanism is more
efficient than terminating each transfer with a Stop and starting
again. In a multimaster environment the determination of which
format is more efficient could be more complicated, as when a
master is using repeated starts it occupies the bus for a long time
and prevents other devices from initiating transfers.

USE OF SUB-ADDRESSES
For some ICs on the I2C bus the device address alone is not
sufficient for effective communications and a mechanism for
addressing the internals of the device is necessary. A typical
example is addressing memories, when we want to access a
specific word inside the device or a sequence of memory locations
starting at a specific internal address.

A typical I2C memory device like the PCF8570 RAM contains a
built-in word address register that is incremented automatically after
each read or written data byte. When a master communicates with
the PCF8570 it must send a sub-address in the byte following the
slave address byte. This sub-address is the internal address of the
word the master wants to access for a single byte transfer or the

beginning of a sequence of locations for a multi-byte transfer. A
sub-address is an eight bit byte, unlike the device address it does
not contain a direction (R/W) bit, and like any byte transferred on the
bus it must be followed by an acknowledge.

A memory write cycle is shown in Figure 9(a). The Start is followed
by a slave byte with the direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop signal. The sub-address is
loaded into the word address memory. The data bytes which follow
will be written one after the other starting with the sub-address
location and the register is incremented automatically.

The memory read cycle (Figure 9(b)) commences in a similar
manner with the master sending a slave address with the direction
bit set to WRITE with a following sub-address. Then, in order to
reverse the direction of the transfer, the master issues a repeated
Start followed again by the memory device address, but this time
with the direction bit set to READ. The data bytes starting at the
internal sub-address will be clocked out of the device with each
followed by a master-generated acknowledge. The last byte of the
read cycle will be followed by a Negative ACK, signalling the end of
transfer. The cycle is terminated by a Stop signal.

S SLAVE ADDRESS 0 A WORD ADDRESS A DATA A P

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

R/W
n BYTES

AUTO-INCREMENT
MEMORY WORD ADDRESS

MASTER TRANSMITS TO SLAVE RECEIVER

(a)

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

AUTO-INCREMENT
MEMORY WORD ADDRESS

S SLAVE ADDRESS 0 A WORD ADDRESS A 1 A

R/W

S SLAVE ADDRESS

A DATA 1 PDATA

NO ACKNOWLEDGE
FROM MASTER

LAST BYTEMASTER TRANSMITTER BECOMES
MASTER RECEIVER AND SLAVE

RECEIVER BECOMES SLAVE
TRANSMITTER AUTO-INCREMENT

MEMORY WORD ADDRESS

n BYTES

(b)

MASTER READS AFTER SETTING WORD ADDRESS
(WRITE WORD ADDRESS; READ DATA)

SU00367

Figure 9. I 2C Sub-Address Usage

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 7

SU00388

CLK
1

CLK
2

SCL

WAIT
STATE

START COUNTING
HIGH PERIOD

COUNTER
RESET

Figure 10. Clock Synchronization During the Arbitration Procedure

SU00389

Transmitter 1 Loses Arbitration
DATA 1 ≠ SDA

DATA
1

DATA
2

SDA

SCL

S

Figure 11. Arbitration Procedure of Two Masters

ARBITRATION IN A MULTIMASTER SYSTEM
The decision about which master has control over the I2C bus is
based solely on the address and data sent by competing masters,
and there is no central master or any order of device priority on the
bus. Any device connected to the I2C bus is allowed to become a
master, but devices are not supposed to “steal” the bus from other
devices when a transfer is in process. If a device wishing to be a
Master is aware that a transaction (initiated by another master) is
taking place, it will wait until the transfer is concluded with a Stop
condition on the bus—and only then try to seize it by sending its
own Start. It is possible, however, that two or more masters may
want to start a transfer at exactly the same moment. A scenario that
may happen quite frequently in a loaded system: two devices are
waiting for a long transaction to be completed, and simultaneously
try to get the bus when detecting the Stop condition. An arbitration
procedure synchronizes the different clocks, ensuring that the data
is not corrupted, and causes all masters except one to withdraw
from the bus, so only one master will control the transfer. This
procedure applies only when masters initiate transfers
simultaneously.

The clock synchronization, illustrated in Figure 10, ensures that only
one defined clock is generated on the bus. It occurs naturally, as a
result of the wired-AND property of the SCL line. Suppose two
masters want to initiate a transfer on the bus. Clk1 and Clk2 in
Figure 10 illustrate the desired clock outputs of each device, which
would actually occur on the bus if each were the only master. The
SCL waveform is the resulting wired-AND of the two clocks. The
device that pulls the SCL down first will succeed. The other masters

continuously monitor the clock line, and reset their internal clock
counter to start counting their own Low clock period. This way, the
first falling edge will synchronize all clock generators to the
beginning of the Low time.

Once a device clock has gone Low it will hold the SCL line in this
state until its internal clock High state is reached, and then will
release the line. The Low to High change in this device will not
change the state of the SCL line if another device, which is still
within its Low period, is pulling down the line. This way, SCL will be
held Low by the device with the longest Low period. A master that
has finished its Low time earlier will enter a wait state until SCL is
released by the slowest master and goes high. Upon the rising edge
of SCL all masters start counting their High period, the first device to
complete its High period will pull the SCL Low. In this way a single,
synchronized clock is generated on the bus where the rising edge is
being defined by the slowest master and the falling edge by the
fastest master.

Arbitration between masters takes place on the SDA line. A master
which tries to transmit a High while another device transmits a Low
will withdraw, shutting off its data output stage and not interfering
with the transfer until a Stop condition is detected. Due to the
wired-AND property of the SDA line, a device “knows” that it lost
arbitration by the fact that the Low SDA is different than its desired
High output. Arbitration starts by comparing the address bits. When
masters transmit different addresses the one transmitting the
address with the lowest binary value wins. If all masters in
arbitration transmit to the same address, arbitration continues into

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 8

the comparison of data. Figure 11 illustrates the arbitration process
between two masters.

By definition, the transfer that forces the wired-AND result is the one
that wins the arbitration, so the address and data of a winning
device are not corrupted and no information is lost in the arbitration
process. A master losing arbitration may generate clock pulses until
the end of the byte. Thus it may affect the clock speed, but not the
data on the bus.

If a master loses arbitration during the addressing stage it is
possible that the winning master is trying to address it. In an efficient
design, the losing master should switch immediately to its slave
receiver mode, receive the data transmitted and acknowledge
it—otherwise the message will have to be re-transmitted or is lost. A
well designed master will take into account “illegal” protocol
situations and will determine that it lost arbitration when it detects a
Stop or a Start which are not synchronized with its own
transmission. Electrical interference or a malfunctioning device may
cause such a situation which actually corrupts the message transfer.

HANDSHAKE BY CLOCK SYNCHRONIZATION
The clock synchronization mechanism as described above actually
implements a handshake mechanism, enabling receiving devices to
“slow down” fast transfers when necessary.

On the bit level, a slow slave device like a microcontroller that does
not have hardware I2C interface port, can extend each clock period
and slow down the bus clock. The speed of any master is adapted
to the operating rate of this device as long as it is active on the bus.

On the byte level the synchronization mechanism takes effect as a
“handshake” mechanism when a slave device that was fast enough
to receive or transmit a byte still needs extra time to store the
received byte or prepare the next byte for transmission. The slave
can hold the SCL line low after the reception and acknowledge of a
byte, thus forcing the Master into a wait state—until the slave is
ready for the next transfer.

87LPC76X I2C HARDWARE
The on-chip I2C bus hardware support of the 87LPC76X allows
operation on the bus at full speed and simplifies the software
needed for effective communications on the network. The hardware
activates and monitors the SDA and SCL lines, performs the
necessary arbitration and framing error checks, and takes care of
clock stretching and synchronization. The hardware support
includes a bus timeout timer, called Timer I. The hardware is
synchronized to the software either through polled loops or
interrupts.

Two of the port 0 pins are multi-functional. When the I2C is active,
the pin associated with P0.0 functions as SCL, and the pin
associated with P0.1 functions as SDA. These pins have an open
drain output.

Two of the five interrupt sources may be used for I2C support. The
I2C interrupt is enabled by the EI2 flag of the interrupt enable
register, and its service routine should start at address 033h. An I2C
interrupt is usually requested (if enabled) when a rising edge of SCL
indicates new data on the bus or a special condition occurs: Start,
Stop or arbitration loss. The interrupt is induced by the ATN flag,
(see below for the conditions for setting this flag). The Timer I
overflow interrupt is enabled by the ETI flag, and the service routine
starts at 073h.

The I2C port is controlled through four special function registers: I2C
Control (I2CON), I2C Configuration (I2CFG), I2C Data (I2DAT) and
I2C Status (I2STA).

Timer I
In I2C applications, Timer I is dedicated to the port timing generation
and bus monitoring. In non-I2C applications, it is available for use as
a fixed rate timer.

For the bus monitoring function, Timer I is being used as a
“watchdog timer” for bus hang-ups. It creates an interrupt when the
SCL line stays in one state for an extended period of time between a
Start condition and a following Stop condition. SCL “stuck low”
indicates a faulty master or slave. SCL “stuck high” may mean a
faulty device or that noise induced into the I2C caused all masters to
withdraw from the I2C arbitration.

The time-out interval of Timer I is fixed: it carries out and interrupts
(if enabled) when about 1024 machine cycles have elapsed since a
change on SCL within a frame. In other words, whenever I2C is
active we let Timer I run, but clear it whenever a frame is not in
progress (reset or Stop occurred more recently than the last Start
condition) or SCL changes within a frame. (Note: we wrote “about
1024 machine cycles” for the sake of accuracy—this number may
slightly change according to the setting of the CT0 and CT1 bits
mentioned below. In any case, the exact number of cycles for a time
out does not have any practical significance).

In addition to the interrupt upon Timer I overflow, the I2C port
hardware is reset. This is useful for multiple master systems in
situations where this same 87LPC76X caused the bus hang-up due
to a lack of software response. SCL will be released and I2C
operation between other devices could continue.

I2CON Register
The I2C Control register can be read or written to (see Figure 12).

When writing to the I2CON register one should use bit masks as
demonstrated in the examples. Trying to clear or set the bits in the
register using the bit addressing capabilities of the 87LPC76X may
lead to undesirable results. The reason is that a command like
CLRB reads the register, sets the bit and writes it back—and the
write-back may affect other bits.

I2CFG Register
The configuration register is a read/write register (see Figure 13).

I2DAT Register
The I2C data register is a read/write register, where the msb
represents the data received or data to be sent. The other seven
bits are read as 0 (see Figure 14).

I2CSTA Register
The I2C STAtus Register is a read-only register reflecting the
internal status of the I2C interface hardware (see Figure 15).

Transmit Active State
The transmit active state—Xmit Active—is an internal state in the
I2C interface that is affected by the I2C registers as explained
above. The I2C interface will only drive the SDA line low when Xmit
Active is set. Xmit Active is set by writing the I2DAT register or by
writing I2CON with XSTR = 1 or XSTP = 1. The ARL bit will be set to
1 only when Xmit Active is set—in such a case Xmit Active will be
automatically reset upon ARL. Xmit Active is cleared by writing 1 to
CXA at I2CON register or by reading the I2DAT register.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 9

MASTERRDAT ATN DRDY ARL STR STP –––

RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to RDAT in the
I2DAT register. Reading the received data here allows doing so without clearing DRDY and releasing SCL.

ATN An “ATteNtion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit testing for
terminating “wait loops”, indicating a meaningful event on the bus. This flag also activates the I2C interrupt request.

DRDY Data ReaDY flag. Set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is cleared by
reading or writing the I2DAT register, or by writing a 1 to CDR (at the same address, when I2CON is written).

ARL ARbitration Loss flag. Indicates that this device lost arbitration while trying to take control of the bus.

STR STaRt flag. Set when a Start condition is detected, except at an idle slave.

STP SToP flag. Set when a Stop condition is detected, except at an idle slave.

MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).

I2CON READ

XSTRCXA IDLE CDR CARL CSTR CSTP XSTPI2CON WRITE

CXA “Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.

IDLE Setting this bit will cause a slave to enter idle mode and ignore the I2C bus until the next Start is detected. If the
software sets the MASTRQ flag, the device may stop idling by turning into a master.

CDR Clear Data Ready. Clears the DRDY flag.

CARL Clear Arbitration Lost. Clears the ARL flag.

CSTR Clear STaRt. Clears the STR flag.

CSTP Clear STop. Clears the STP flag.

XSTR “Xmit repeated STaRt”. Writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A side effect
will be setting the internal Xmit Active state. This should be used only when the device is a master.

XSTP “Xmit SToP”. Issues a Stop condition. The Xmit active state is set.
SU00368

Figure 12. I2CON Register

CT1SLAVEN MASTRQ CLRTI TIRUN — — CT0

SLAVEN Writing a 1 to this flag enables the slave functions of the I2C interface.

MASTRQ Request control of the bus as a master.

CLRTI Clear the Timer I interrupt flag. This bit is always read as 0.

TIRUN Writing a 1 will let Timer I run. When I2C is active, it will run only inside frames, and will be cleared by SCL
transitions, Start and Stop. Writing a 0 will stop and clear the timer.

CT1, CT0 These bits should be programmed according to the frequency of the crystal oscillator used in the hardware. They
determine the minimum high and low times for SCL, and are used to optimized performance at different oscillator
speeds.

SU00369

Figure 13. I2CFG Register

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 10

—RDAT — — — — — —

RDAT Received DATa bit, captured from SDA every rising edge of SCL. Reading I2CAT clears DRDY and the
Xmit Active state. If it is necessary to read the data without affecting the flags, it can be read out of RDAT
in the I2CON register.

I2DAT READ

—XDAT — — — — — —I2DAT WRITE

XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the I2C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.

SU00370

Figure 14. I2DAT Register

XSTPIDLE XDATA XACTV MAKSTR MAKSTP XSTR —

IDLE Indicates when the I2C hardware is in the Idle mode.

XDATA Reflects the contents of the I2C transmitter buffer.

XACTV Indicates that the I2C transmitter is active.

MAKSTR Indicates that the hardware is effecting a Start.

MAKSTP Indicates that the hardware is effecting a Stop.

XSTR Hardware effecting a Repeated Start.

XSTP Hardware effecting a Stop.
SU00390

I2CSTA READ

Figure 15. I2CSTA Register

I2C COMMUNICATIONS SOFTWARE
The software listing demonstrates programming the 87LPC76X for a
multimaster I2C environment where the device can be both a Master
or a Slave responding to other Masters on the I2C network. The bulk
of the software is communications routines which are not only for
demonstration but could be ported to other user programs with
minimal or no modifications. The routines are quite general and
could be useful in most applications. We have tried to design a
well-defined software interface, enabling most users to copy the
routines as they are, modifying only the pre-defined interface
elements to fit the specific applications. We encourage users to use
the routines without modifications whenever possible, as the lower
levels of the hardware-software integration could be quite involved.

The rest of this application note will relate to the programming
example. We shall discuss the general operation of the routines and
how they are integrated into an application. Then we shall describe
in detail all the software interface elements and how to use them.

I2C COMMUNICATIONS ROUTINES—OVERVIEW
In order to function well in a multimaster environment the
microcontroller must be able to take control of the I2C bus as a
Master, “tolerate” message transactions between other Masters and
other devices, and respond efficiently as a Slave to other bus
Masters. The communications routines should allow a Master
“graceful” recovery from an arbitration loss and other situations
when a message transaction is not completed, allowing for
communication re-tries.

For Slave operation the microcontroller must be interrupt driven
relative to an I2C frame Start, as any Master on the bus could
request a transaction at any moment, not synchronized to the
application program executing on the controller. An interrupt service
routine monitors the address transmitted on the bus. When the
microcontroller is addressed it takes care to either read the data
from the bus into a buffer or write buffer data onto the bus. When
such a transaction is successfully completed, one of several “Slave
Event Routines” is called prior to returning to the main application
program. Such an “Event Routine” is a part of the application,
allowing an immediate response to the data received, or the fact that
data was transmitted to a requesting Master. This allows
“synchronization” of the application to a “slave” bus transaction.
Typical uses of the Event Routine mechanism will be a computation
based on new data, or re-loading the transmit buffer with new data
getting ready for the next random request. The actual Event
Routines will be programmed differently for different applications, but
the names and the calls will remain the same as long as the
communications routines are left unmodified.

A transaction as a Master is initiated by the application program. Our
implementation uses the interrupt mechanism for the Master
communications as well. The application issues a request for the
bus by setting the MASTRQ bit of the I2C port control, and when the
bus is available an interrupt occurs. This way, if the bus is free there
will be an immediate response. If the bus is busy, the application
may go on executing (if so programmed) until this controller can get
control of the bus. When the microcontroller gets mastership of the
bus it initiates a bus transaction according to “directives” set by the

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 11

application program. The most important directives are the address
(and subaddress if relevant) of the slave device addressed, and the
length of the message to be transmitted or received.

When a Master transaction is concluded, a Master Event Routine
(called MastNext) is called to perform whatever task the application
demands. As with the Slave Event Routines it will typically respond
to a successful transmission or reception of data. In addition, it could
handle situations where a slave does not respond at all, or does not
acknowledge a data byte (thus causing data transfer to terminate). A
program might react to the fact that a slave does not respond by
re-trying to communicate at a later time, by issuing a message to
another peripheral device or just ignoring it. The handling of such
cases is application dependent, and should be programmed into the
routine called “MastNext”. The MastNext routine is invoked when the
Master terminates the transaction “willingly”, but not upon arbitration
loss.

The microcontroller operating as a bus Master may lose arbitration
to another Master which happens when two Masters transmit in
synchronization, commencing with the same Start signal. If
arbitration is lost while transmitting or receiving data, our processor
withdraws from the bus and turns itself into a slave—an active Slave
upon a Start, or returning to the calling program as an idle slave.
When the arbitration loss occurs while transmitting an address, our
processor turns itself immediately into an active slave, “listening” to
the rest of the address transmitted by the new Master. If our
processor reads its own address from the bus (as transmitted by the
new Master) our processor responds as a willful slave. If this
mechanism would not have been implemented, there could be
potential inefficiency when a device that happened to be
synchronized to another Master loses arbitration, but is not able to
respond to the winning device.

Another situation for arbitration loss could be a bus exception
resulting from a device operating not according to the bus protocol
or interference on the bus lines. In addition to “regular” arbitration
loss detected with the ARL hardware flag, such a situation may
occur with detecting a Start or a Stop in the middle of transmitting an
address or data byte. In such a situation the microcontroller
withdraws from the bus as well—active Slave upon a Start
detection, or returning as an idle slave in other cases.

When a Master transaction is terminated by an arbitration loss, the
Master Request flag (MASTRQ) of the hardware I2C port remains in
effect. As a result when the bus gets free, our device will take
control, issue a Start, and the transaction that was cut will start
again. This restart will happen automatically, without any application
involvement (unlike non-acknowledgement, where the MastNext
routine determines what shall be done).

The I2C communications routines are structured as an interrupt
service routine responding to an I2C port interrupt upon a frame
Start. Within a frame the I2C processing is continuous, where the
I2C port is polled for hardware response, and the I2C interrupts are
disabled. Other interrupts are enabled during the service routine.
The set-up requirements from the mainline program are minimal,
and interfacing is done via RAM buffers and some pre defined RAM
locations. The lower level interface with the hardware is done inside
the service routine, and can typically be ignored by the application
programmer.

BUS WATCHDOG AND ERROR RECOVERY
A malfunctioning device (in hardware or software) may hold the SCL
line low, thus causing the bus to be “stuck”. It might even be
possible that a transient protocol violation (due to hardware
interference, such as a device turning on) may cause some devices
(non programmable, or even microcontrollers which were not
carefully programmed) to hold the bus. Since within a frame the bus
is software-polled, a “stuck” bus might cause the application
software to “hang forever”. Here the TIMERI watchdog comes to the
rescue, interrupting when there is no bus activity for a long period of
time.

When the I2C service routine is interrupted by the watchdog timer,
the processing of the current frame is not completed and the event
routines are not called. The software returns to execute the mainline
application, and will be interrupted again for the next frame (next
Start, received as a slave or induced as a Master). A status flag and
a counter report on the watchdog interrupt, so the application
program can be made to inhibit the I2C port if there are too many
occurrences of a “hanging” bus.

Bus protocol errors and “hangups” might be an issue in systems
which are susceptible to noise, temporary bus line shorts, “hot plug
in” of devices or even erroneously programmed devices—and a “fail
safe” controller program should be able to detect bus problems and
possibly assist in resolving them. The RECOVER routine resets the
I2C interface of the microcontroller, and attempts to release some
other devices on the bus by toggling the clock line. The I2C interface
of the 87LPC76X is reset by letting TimerI run and expire, since this
circuitry does not feature a software controlled reset. This “extreme”
measure is needed in some cases of bus protocol violation.

The bus and interface circuit recovery routine can be automatically
invoked whenever TimerI detects a timeout. In addition, for systems
where potential bus failures are a concern and reliability is an issue,
one may implement mechanisms to invoke bus and interface
recovery from the application code. This may help in cases where
the bus gets “stuck” when there is no I2C frame in progress. In such
an instance the watchdog timer will not give any timeout indications,
as it has not been activated. Another case emanates from a design
peculiarity of the interface circuitry on the 87LPC76X: if the SCL line
is externally grounded when there is a Start condition, this Start
might be ignored, and the watchdog may not be activated. Our
programming example deals with potential failures by testing for
transaction completion and retrying transmissions when necessary
(these are explicit retries, in addition to an “automatic” retry after a
Master’s arbitration loss, invoked by the MASTRQ bit). Too many
transmission failures activate the RECOVER routine.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 12

I2C COMMUNICATIONS ROUTINES—INTERFACE
The I2C service routine deals with the transmission and reception of
messages, without any concern for the contents of the message. In
order to provide a general interface for different applications the data
is transferred via buffers. The service routine does not have to
“know” where the data goes to or comes from—as long as the
application program specifies the required pointers for these buffers.
The interface to the actual application (which “cares” about message
contents, timing, addressing and so forth) is done in a well defined
manner, allowing usage of the same service routine with different
application programs.

The interface is carried out with the use of buffers, pre-defined
names for Application Event Routines, interface RAM locations for
transferring parameters, pointers and flags, and constants. A more
detailed discussion of the interface follows.

Buffers
There are three buffers for data transfers between the I2C bus and
the application program.

MasBuf is used for Master transmission and reception. The number
of data bytes for each Master message—reception or transmission,
is specified by the memory location MASTCNT. The value in
MASTCNT should be less than the length of MasBuf. For Master
transmission the message is placed in MasBuf before the
transmission is initiated. In Master reception, the received message
will be contained in the same buffer. There is only one Master
message transaction occurring at the same time, so we may use the
same buffer both for transmission and reception.

For Slave operation we must accommodate data transfers which
may come randomly, asynchronous to each other or to possible
operation of the same device as a Master. Therefore it is necessary
to allocate additional RAM area as buffers dedicated to Slave
operation: SRcvBuf for receiving data, STxBuf for transmission.

The length of the Slave receive buffer is defined by the symbol
RBufLen. It is used by the code for protection, avoiding overwriting
RAM beyond the allocated buffer size in case a Master sends a
message which is too long. There is no need for RAM protection for
transmission, but the Master should not request more data than
STxBuf can supply.

Interface RAM Locations
RAM location MyAddr contains the address of this processor.

Status flag MSGSTAT is used for reporting to the application on I2C
communications status—mainly on the successful, or unsuccessful,
completion of a message transaction. The contents of MSGSTAT
may be used by the mainline application code or by the Event
Routines. The different codes that could be placed by the I2C
service routine are described later in the text. When the message
processing commences, a code indicating Slave or Master
processing is inserted to MSGSTAT, and is updated as we go along.

There could be many applications that will not need to use
MSGSTAT contents, as the very fact of calling a certain event
routine implies completion of a processing stage.

For Master transactions, in addition to the data buffer MasBuf, there
are several RAM locations into which the application inserts Master
message “directives”. These directives provide the service routine
with the information necessary to carry out the next Master
transaction. The one byte RAM locations used for directives are
DESTADRW, DESSUBAD, MASTCNT and MASCMD.

DESTADRW contains the destination slave address in bits 7-1, while
bit 0 is the R/W bit. Bit 0 contains 0 for a Write operation (the
message is to be transmitted to the salve) and 1 for a Read
operation (message is being read from the slave and received by
this Master).

DESSUBAD contains the 8 bit sub-address of the slave, if
necessary. For transactions without a sub-address, the contents of
DESSUBAD is ignored.

MASTCNT contains the number of data bytes in the message to be
sent from or received into MasBuf. This number should not be
bigger than the length of MasBuf.

MASCMD byte contains the bit flags SUBADD, RPSTRT and
SETMRQ. SUBADD is 0 (cleared) for a message with a regular
address, and 1 (set) when a subaddress is required. When
SUBADD is set, the service routine takes care of all the protocol
required for sub-addressing, which includes a Repeated Start for
Read operations. A message with a subaddress is considered to be
a single message, even if it includes a Repeated Start.

The RPSTRT and SETMRQ are kept cleared in regular applications,
and will be used only for “tailoring” the bus transfers in special
cases. When RPSTRT is cleared the message will terminate, as
usually required, with a Stop. When RPSTRT is set a Repeated
Start will be sent on the bus, and Master operation will resume. The
RPSTRT directive relates to terminating the message after all the
data was transferred, and not to the mandatory Repeated Start in
the middle of sub-addressed Read operation. A single message with
a subaddress will typically have RPSTRT cleared. SETMRQ
indicates what will be loaded into the MASTRQ flag of the hardware
when Stop is transmitted. Typically it will be cleared. When
SETMRQ is 1, MASTRQ will be set, thus trying to issue a new Start
immediately following the Stop. In such a case the service routine
will not return upon Stop, but will continue as a Master.

TITOCNT is used to count time-outs of the watchdog timer.
Whenever such a timeout invokes the TIMER I interrupt service
routine the contents of the location TITOCNT are incremented, and
the timeout is reported in MSGSTAT. The count is saturated at 0FFh.
This mechanism may be used in an application that is very much
“concerned” with potential bus failures, allowing some type of “failure
monitoring” by the application even for Slave transactions.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 13

TRANSACTION
SUCCESSFULLY

COMPLETED

TRANSACTION
SUCCESSFULLY

COMPLETED

INITIALIZE AND SET UP
I2C COMMUNICATIONS

RUN APPLICATION

APPLICATION INITIATES
MASTER TRANSACTION

INTERRUPT

INTERRUPT

TRANSACTION
NOT

COMPLETED

TRANSACTION
NOT

COMPLETED

I2C INTERRUPT
ROUTINE (ISR)-MASTER

MASTER ROUTINE
Mastnext

CONTINUE
APPLICATION

I2C INTERRUPT
ROUTINE (ISR)-SLAVE

SLAVE EVENT ROUTINE
STxedR/ScvdR/SLnRcvdR

NOTE:
This is a simplified diagram to assist
the text. It is not a flow chart.

SU00391

Figure 16. Typical Communications Scenario—A Simplified Diagram

APPLICATION EVENT ROUTINES
The service routine calls Event Routines with pre-defined names
(Figure 16), and these routines must be provided by the application
program. The actual code of the routines will differ from application
to application, but the routine names are being kept the same.

These routines are being called when successful processing of a
message (send or receive) is completed. The routines may perform
whatever action the application was designed for, which is not
necessarily related to the I2C communications mechanism. In
addition, the routines may perform the data interface tasks for the
I2C port, like emptying buffers from received data or preparing the
next message by setting up the buffers.

The mechanism of calling the event routines out of the service
routine allows an immediate reaction to the event of message
processing completion, before any new activity happens on the bus.
In some simple applications this may not be necessary. For
example, one may have a main program for a slave which is just a
wait loop monitoring a flag set by the service routine when a
message transfer, initiated by some master, is completed. In such a
case the application could react to the message completion after the
interrupt service routine returns. However, in the general case this
will not be sufficient. An example could be a slave with an

application which is constantly busy doing another task, in an
environment where the communication requests on the I2C bus are
frequent. If there is a new message request shortly after the current
message is completed, having to wait for the application until it “has
time” may result in not reacting, or sending the same data again, or
overwriting the received data in the buffer. Another obvious case
demanding event routine calls is a Master sending different
messages with a Repeated Start—the new data for the following
message must be prepared in the interrupt service routine as the
current message is completed (there is no return from interrupt prior
to the new data transmission).

The programmer has the flexibility to decide where to prepare the
next message according to the requirements of the application. This
can be done after return from the event routine, in the application
code after the return from interrupt, or a combination of both, where
the time critical events are performed in the event routines. The
application may monitor the MSGSTAT flag for message processing
completion. If the event routines are not used, it is recommended to
simply code them as a “RET” instruction, thus turning them into
dummy routines (this an easier and better practice than changing
the service routine itself, eliminating the calls).

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 14

Master Event Routine:

MastNext
This routine is called by the service routine when the processing of
the current Master message is completed. For an indication on the
type of message processing completion, MastNext may inspect the
contents of MSGSTAT RAM location.

When MastNext is called, MSGSTAT will contain one of the following
codes for message processing completion:

MRCVED (= 21h)—a complete message (with number of data
bytes indicated by MASTCNT) was received from the slave.

MTXED (= 22h)—the number of data bytes indicated by MASTCNT
were successfully sent and acknowledged by the slave.

MTXNAK (= 23h)—the slave did not acknowledge a data byte of the
message, even though it had acknowledged its address. The
message transmission was terminated upon the NAK.

MTXNOSLV (= 24h)—no slave acknowledged the address
indicated by memory location DESTADDR.

The MastNext routine may perform any task(s) necessary for the
application. Data handling tasks will typically be dependent on the
MSGSTAT indication. One possible task could be setting the
directives for the next message. The necessity for executing this
task here (versus the main-line code initiating the transfer) is of
course application dependent.

Slave Event Routines:
These routines are called when a message transaction as a slave
has been completed. In many cases it could be important to utilize
the calls to such routines as the requests for message transactions
as a slave can come randomly, asynchronous to the application
program. The application may demand that new data coming in
should immediately initiate some tasks (e.g. control an output
port)—and the event routine can be used to process the result of the
slave interrupt.

In most cases it will be necessary for a slave to react immediately to
a message received simply in order not to lose the data. As a new
message may come randomly, it may overwrite the reception buffer
before the data has been transferred out of it or acted upon.

For applications in which the reaction for slave events is performed
after the return from the service routine, the event is reported by
placing an appropriate code in the MSGSTAT flag. The programmer
may use event routines, other mainline routines inspecting
MSGSTAT, or both. If the event routines are not used, it is
recommended to code them as a “RET” instruction.

SRcvdR:
Called by the service routine when a new, complete message has
been received into SRcvBuf. When SRcvdR is called, R1 points to
the address of the last byte received into the buffer. In a typical
application SRcvdR will transfer the new data out of SRcvBuf, so it
will not be written over by a subsequent slave reception.

The equivalent MSGSTAT indication for this event is SRCVD (= 11h).

SLnRcvdR:
Called when a slave message has been received into SRcvBuf, but
the message was longer than the SRcvBuf buffer (as specified by
RbufLen).

The equivalent MSGSTAT indication for this event is SRLNG (= 12h).

If the program is supposed to react to a too long a message the
same way as to a message that can be contained in the buffer, one
may code SLnRcvdR simply as a call to SRcvdR.

STXedR:
Called by the service routine when data has been transmitted out of
the slave STxBuf buffer according to a master’s request. This
routine may insert new data into the buffer, preparing it for the next
slave transmission.

The equivalent MSGSTAT indication for this event is STXED (= 13h).

Note that we do not have a separate routine for the case that the
master requested too many bytes—more than STxBuf length—and
we sent out meaningless bytes. It is the master’s responsibility to
specify the message length, and it should be able to request
messages with the appropriate length from each slave on the bus.

SRErrR:
This routine relates more to bus communications than to the
application itself. It can be called when we positively detect a bus
error upon reception as a slave, in case the application is supposed
to know about it. In most cases this call will not be used, as dealing
with bus communications difficulties is usually left to the Master.

Just prior to calling SRErrR, the code SRERR (= 14h) is placed in
MSGSTAT.

0Completion Routine:
I2CDONE
This routine is called every time, before returning from the I2C
interrupt service routine, whether the transaction was successful or
not. It can be used to “safely” monitor MSGSTAT without any risk of
a new interrupt modifying the current indication. Simple application
programs will not make use of this routine. A more sophisticated
application implementing a fail-safe communications protocol may
use it to count errors of a certain type in order to determine a
recovery scheme. In our programming example, I2CDONE inhibits
I2C interrupts when it is evident that as a result of protocol errors
interrupts are not caused by legitimate Starts.

CONSTANTS
RBufLen—the length of SRcvBuf, the slave receive buffer. This
constant may be used both by the I2C routines and the application
program, and it is the responsibility of the application programmer to
define the correct buffer length.

MYNUM—This ROM constant is dependent on the application
environment. It is a small integer defining a “serial number” of the
node, out of all the processors running the same code. This
constant is used only when recovering from a timeout, in order to
“de-synchronize” masters from each other when trying to recover
the bus.

CTVAL1 is a constant defined in ROM. It is used by the application
code portion which initializes the I2C, for loading CT0 and CT1 with
a value appropriate for the crystal being used.

MYADDR1 is a ROM constant containing the address of the
processor’s I2C node. This value is used by the application demo to
load the RAM location MyAddr.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 15

USING THE COMMUNICATIONS SUBROUTINES
In order to use the I2C Communications Routines an application
program should take care of the following:
– Upon initialization, load bits CT1, CT0 of I2CFG register according

to the clock crystal used (refer to the table of CT1, CT0 values in
the 87LPC76X section of the Philips Semiconductors
Microcontroller Data Handbook (IC28)).

– Load MyAddr RAM location with the address of this node.

– For Slave operation, load STxBuf with the initial data to be
transmitted.

– For slave operation, set the SLAVEN bit in the I2CFG register.

– Enable I2C and watchdog interrupts by setting the ETI, EI2 and
EA bits of the interrupt enable register.

– For Master operation, set up the next transaction by loading the
appropriate directives into MASCMD, DESTADRW, DESSUBAD
(if applicable) and MASTCNT, and load MasBuf with the
appropriate data if it is a Write message.

– For Master operation, initiate the next transaction by setting
MASTRQ bit in I2CFG.

– For both Master and Slave operation, handle data transmission
and reception via the buffers in main-line code or the Event
Routines.

PROGRAMMING EXAMPLE
The assembler listing includes the I2C Communications Routines
and a demo application exercising these routines. In most real-life
applications the code of the routines could be used without
modifications. For those who follow the coding of the routines, one
should note that in many instances code speed and program space
have been slightly compromised in order to improve readability. The
almost “general purpose” interface to the routines affects efficiency
as well, and it is possible to write more compact and somewhat
faster code for specific applications. The reader is encouraged,
though, to use the code “as is” whenever possible.

The “application” demo is simple—two microcontrollers exchange
messages in a “ping-pong” game. In addition to trivial message
exchange, the code demonstrates recovery mechanisms from
communications errors and bus “hangups”. We tried this code with
two pairs of controllers exchanging messages on the same bus. The
message exchange could repeatedly recover and restart when the
SCL and SDA lines were temporarily shorted to ground or between
themselves. Simpler versions, without the “protection” mechanisms,
could “hang up” under such conditions.

Source Code Availability
The source code file is available from the Philips Semiconductors
website: www.semiconductors.philips.com

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 16

;***
; Multi–Master Test Code for 8xC751 from AN430
; Modified for use with the 87LPC764, 15 June 1999
;***

; Notes on 87LPC764 I2C differences:
; – I2C interrupt vector address.
; – Timer I interrupt vector address.
; – IEN0 SFR name (IE on 751) and addition of IEN1.
; – I2C interrupt enable location (now in IEN1 and a different bit).
; – Timer I interrupt enable location (now in IEN1 and a different bit).
; – I2C SFR addresses (altered by inclusion of the MOD764 file).

$title(I2C – Multi–Master Demo for 87LPC764)
$pagewidth(132)
$debug
$object
$mod764

;***
; Symbols and RAM definitions
;***

; Symbols (masks) for I2CFG bits.

BTIR EQU 10h ; TIRUN bit.
BMRQ EQU 40h ; MASTRQ bit.

; Symbols (masks) for I2CON bits.

BCXA EQU 80h ; CXA bit.
BIDLE EQU 40h ; IDLE bit.
BCDR EQU 20h ; CDR bit.
BCARL EQU 10h ; CARL bit.
BCSTR EQU 08h ; CSTR bit.
BCSTP EQU 04h ; CSTP bit.
BXSTR EQU 02h ; XSTR bit.
BXSTP EQU 01h ; XSTP bit.

; Note:
;
; Specific bits of the I2CON register are set by writing into this register a
; combination of the masks defined above using the MOV command.
; The SETB command should not be used with I2CON, as it is implemented by
; reading the contents of the register, setting the appropriate bit and
; writing it back into the register. As the functionality of the Read and
; Write portions of the I2CON register is different, using SETB may cause
; unwanted results.

; Message transaction status indicated in MSGSTAT:

SGO EQU 10h ; Started Slave message processing.
SRCVD EQU 11h ; as a slave, received a new message
SRLNG EQU 12h ; received as slave a message which is too
 ; long for the buffer
STXED EQU 13h ; as slave, completed message transmission.
SRERR EQU 14h ; bus error detected when operating as a slave.

MGO EQU 20h ; Started Master message processing.
MRCVED EQU 21h ; As Master, received complete message from
 ; slave.
MTXED EQU 22h ; As Master, completed successful message
 ; transmission (slave acknowledged all data
 ; bytes).

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 17

MTXNAK EQU 23h ; As Master, truncated message since slave did
 ; not acknowledge a data byte.
MTXNOSLV EQU 24h ; AS Master, did not receive an acknowledgement
 ; for the specified slave address.

TIMOUT EQU 30h ; TIMERI Timed out.
NOTSTR EQU 32h ; Master did not recognize Start.

; RAM locations used by I2C interrupt service routines.

MASCMD DATA 20h
SUBADD BIT MASCMD.0
RPSTRT BIT MASCMD.1
SETMRQ BIT MASCMD.2

 DSEG AT 24h

MSGSTAT: DS 1 ; I2C communications status.
MYADDR: DS 1 ; Address of this I2C node.
DESTADRW: DS 1 ; Destination address + R/W (for Master).
DESSUBAD: DS 1 ; Destination subaddress.
MASTCNT: DS 1 ; Number of data bytes in message (Master,
 ; send or receive).

TITOCNT: DS 1 ; Timer I bus watchdog timeouts counter.
StackSave: DS 1 ; SP save location (used when returning from
 ; bus recovery routine).

MasBuf: DS 4 ; Master receive/transmit buffer, 8 bytes.
SRcvBuf: DS 4 ; Slave receive buffer, 8 bytes.
STxBuf: DS 4 ; Slave transmit buffer, 8 bytes.

RBufLen EQU 4h ; The length of SRcvBuf

;***
; APPLICATION output pins and RAM definitions
;***

; Outputs used by the application:

TogLED BIT P0.0 ; Toggling output pin, to confirm
 ; that the ping–pong game proceeds fine.
ErrLED BIT P0.1 ; Error indication.
OnLED BIT P0.3 ;

; Application RAM

APPFLAGS DATA 21h
TRQFLAG BIT APPFLAGS.0 ; Flag for monitoring I2C transmission success.
SErrFLAG BIT APPFLAGS.1

FAILCNT: DS 1

TOGCNT: DS 1 ; Toggle counter.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 18

;***
;
; Program Start
;
;***
 CSEG

; Reset and interrupt vectors.

 AJMP Reset ; Reset vector at address 0.

; A timer I timeout usually indicates a ‘hung’ bus.

 org 0033h
iicint: ajmp I2CISR ; I2C interrupt

 org 0073h
TimerI: SETB CLRTI ; Timer I timeout interrupt.
 AJMP TIISR ; Go to Interrupt Service Routine.

;***
; I2C Interrupt Service Routine
;***
;
; Notes on the interrupt mechanism:
;
; Other interrupts are enabled during this ISR upon return from XRETI.
; Limitations imposed on other ISR’s:
; – Should not be long (close to 1000 clock cycles). A long ISR will cause
; the I2C bus to ‘hang’, and a TIMERI interrupt to occur.
; – Other interrupts either do not use the same mechanism for allowing
; further interrupts, or if they do – disable TIMERI interrupt beforehand.
;
; The 751 hardware allows only one level of interrupts. We simulate an
; additional level by software: by performing a RETI instruction (at location
; XRETI) the interrupt–in–progress flip–flop is cleared, and other interrupts
; are enabled. The second level of interrupt is a must in our implementation,
; enabling timeout interrupts to occur during “stuck” wait loops in the I2C
; interrupt service routine.

I2CISR: CLR EI2 ; Disable I2C interrupt.
 ACALL XRETI ; Allow other interrupts to occur.
 PUSH PSW
 PUSH ACC
 MOV A,R0
 PUSH ACC
 MOV A,R1
 PUSH ACC
 MOV A,R2
 PUSH ACC

 MOV StackSave, SP
 CLR TIRUN
 SETB TIRUN

 JB STP,NoGo
 JNB MASTER, GoSlave
 MOV MSGSTAT,#MGO
 JB STR,GoMaster
NoGo: MOV MSGSTAT,#NOTSTR
 AJMP Dismiss ; Not a valid Start.

XRETI: RETI

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 19

;***
; Main Transmit and Receive Routines
;***

; SLAVE CODE –
; GET THE ADDRESS

GoSlave: MOV MSGSTAT,#SGO
AddrRcv: ACALL ClsRcv8
 JNB DRDY, SMsgEnd ; Must be some strange Start or Stop
 ; before the address byte was completed.
 ; Not a valid address.
STstRW: MOV C,ACC.0 ; Save R/W~ bit in carry.
 CLR ACC.0 ; Clear that bit, leaving “raw” address
 JZ GoIdle ; If it is a General Address
 ; – ignore it.

 ; NOTE:
 ; One may insert here a different
 ; treatment for general calls, if
 ; these are relevant.

 JC SlvTx ; It’s a Read – (requesting slave
 ; transmit).

; It is a Write (slave should receive the message).

; Check if message is for us

SRcv2: CJNE A,MYADDR,GoIdle ; If not my address – ignore the
 ; message.
 MOV R1,#SRcvBuf ; Set receive buffer address.
 MOV R2,#RbufLen+1 ;
 SJMP SRcv3

SRcvSto: MOV @R1,A ; Store the byte
 Inc R1 ; Step address.
SRcv3: ACALL AckRcv8
 JNB DRDY,SRcvEnd ; Exit loop –end reception.
 DJNZ R2,SRcvSto ; Go to store byte if buffer not full.

; Too many bytes received – do not acknowledge.
 MOV MSGSTAT,#SRLNG ; Notify main that (as slave) we
 ; have received too long a message.
 ACALL SLnRCvdR ; Handle new data – slave event routine.
 SJMP GoIdle

; Received a byte, but not DRDY – check if a legitimate message end.

SRcvEnd: CJNE R0,#7,SRcvErr ; If bit count not 7, it was not
 ; a Start or a Stop.

; Received a complete message

 MOV MSGSTAT,#SRCVD
 ; Calculate number of bytes received
 MOV A,R1
 CLR C
 SUBB A,#SRcvBuf ; number of bytes in ACC
 ACALL SRCvdR ; Handle new data – slave event routine.
 SJMP SMsgEnd

; It is a Read message, check if for us.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 20

SlvTx: NOP

STx2: CJNE A,MYADDR,GoIdle ; Not for us.
 MOV I2DAT,#0 ; Acknowledge the address.
 JNB ATN,$; Wait for attention flag.
 JNB DRDY,SMsgEnd ; Exception – unexpected Start
 ; or Stop before the Ack got out.
 MOV R1,#STxBuf ; Start address of transmit buffer.
STxlp: MOV A,@R1 ; Get byte from buffer
 INC R1
 ACALL XmByte
 JNB DRDY,SMsgEnd ; Byte Tx not completed.
 JNB RDAT,STxlp ; Byte acknowledge, proceed trans.
 MOV I2CON,#BCDR+BIDLE ; Master Nak’ed for msg end.
 MOV MSGSTAT,#STXED
 ACALL STXedR ; Slave transmitted event routine.
 AJMP Dismiss

SRcvErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
 ACALL SRErrR ; Slave error event routine.
 SJMP SMsgEnd
StxErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
 ACALL SRErrR

SMsgEnd: JB MASTER,SMsgEnd2
 JB STR,GoSlave ; If it was a Start, be Slave
SMsgEnd2: AJMP Dismiss

; End of Slave message processing

GoIdle:
 AJMP Dismiss

;
;

GoMaster:

; Send address & R/W~ byte

 MOV R1,#MasBuf ; Master buffer address
 MOV R2,MASTCNT ; # of bytes, to send or rcv
 MOV A,DESTADRW ; Destination address (including
 ; R/W~ byte).
 JB SUBADD,GoMas2 ; Branch if subaddress is needed.

 ACALL XmAddr

 JNB DRDY,GM2
 JNB ARL,GM3
GM2: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.
GM3: JB RDAT,Noslave ; No Ack for address transmission.
 JB ACC.0, MRcv ; Check R/W~ bit
 AJMP MTx

; Handling subaddress case:

GoMas2: NOP ; Subaddress needed. Address in ACC.
 CLR ACC.0 ; Force a Write bit with address.
 ACALL XmAddr

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 21

 JNB DRDY,GM4
 JNB ARL,GM5
GM4: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.

GM5: JB RDAT,Noslave ; No Ack for address transmission.
 MOV A,DESSUBAD
 ACALL XmByte ; Transmit subaddress.
 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
 JB ARL,SMsgEnd2 ; Arbitration loss occurred.
 JB RDAT,NoAck ; Subaddress transmission was not ack’ed.
 MOV A,DESTADRW ; Reload ACC with address.
 JNB ACC.0, MTx ; It’s a Write, so proceed
 ; by sending the data.
 ; Read message, needs rp. Start and add. retransmit.

 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
 JNB ATN,$
 MOV I2CON,#BCDR ; Clear useless DRDY while preparing
 ; for Repeated Start.
 JNB ATN,$; expecting an STR.
 JNB ARL,GM6
 AJMP MArlEnd ; oops – lost arbitration.
GM6: ACALL XmAddr ; Retransmit address, this time with the
 ; Read bit set.
 JNB DRDY,GM7
 JNB ARL,GM8
GM7: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.
GM8: JB RDAT,Noslave ; No Ack – the slave disappeared.
 SJMP MRcv ; Proceed receiving slave’s data.

; A Write message. Master transmits the data.

MTx: NOP

MTxLoop: MOV A,@R1 ; Get byte from buffer.
 INC R1 ; Step the address.
 ACALL XmByte
 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
 JB ARL,SMsgEnd2 ; Arbitration loss.
 JB RDAT,NoAck
 DJNZ R2,MTxLoop ; Loop if more bytes to send.

 MOV MSGSTAT,#MTXED ; Report completion of buffer
 ; transmission.
 SJMP MTxStop
NoSlave: MOV MSGSTAT,#MTXNOSLV
 SJMP MTxStop
NoAck: MOV MSGSTAT,#MTXNAK
 SJMP MTxStop

; Master receive – a Read frame

MRcv: ACALL ClaRcv8 ; Receive a byte.
 SJMP MRcv2
MRcvLoop: ACALL AckRcv8
MRcv2: JNB DRDY,MArl ; Other’s Start or Stop.
 MOV @R1,A ; Store received byte.
 INC R1 ; Advance address.
 DJNZ R2,MRcvLoop

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 22

; Received the desired number of bytes – send Nack.

 MOV I2DAT,#80h
 JNB ATN,$
 JNB DRDY,MArl
 MOV MSGSTAT,#MRCVED
 SJMP MTxStop ; Go to send Stop or Repeated Start.

; Conclude this Master message:
; Send Stop, or a Repeated Start

MTxStop: JNB RPSTRT,MTxStop2 ; Check if Repeated Start needed
 ; Around if not RPSTRT.
 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
 SJMP MTxStop3
MTxStop2: MOV C,SETMRQ ; Set new Master Request if demanded
 MOV MASTRQ,C ; by SETMRQ bit of MASCMD.

 MOV I2CON,#BCDR+BXSTP ; Request the HW to send a Stop.

MTxStop3: JNB ATN,$; Wait for Attention
 MOV I2CON,#BCDR ; Clear the useless DRDY, generated
 ; by SCL going high in preparation
 ; for thr Stop or Repeated Start.
 JNB ATN,$; Wait for ARL, STP or STR.
 JB ARL,MarlEnd ; Lost arbitration trying to send
 ; Stop or a ReStart.

; Master is done with this message. May proceed with new messages, if any,
; or exit.

 ACALL MastNext ; Master Event Routine. May Prepare
 ; the pointers and data for the
 ; next Master message.

 JNB MASTRQ,MMsgEnd ; Go end service routine if MASTRQ
 ; does not indicate that the master
 ; should continue (was set according
 ; to SETMRQ bit, or by MastNext).

 JNB STR,MMsgEnd ; Return from the ISR, unless Start
 ; (avoid danger if we do not return:
 ; if there was a Stop, the watchdog
 ; is inactive until next Start).
 AJMP GoMaster ; Loop for another Master message
 ;
MMsgEnd: ; End of Master messages,
 SJMP Dismiss

; Terminate mastership due to an arbitration loss:

MArl:
 JNB STR,MArl2 ; If lost arbitration due to other
 ; Master’s Start, go be a slave.
 AJMP GoSlave

Marl2:
 AJMP Dismiss

; Switch from Master to Slave due to arbitration loss after completing
; transmission of a message. The MASTRQ bit was cleared trying to write a

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 23

; Stop, and we need to set it again on order to retry transmission when the
; bus gets free again.

MArlEnd:
 SETB MASTRQ ; Set Master Request – which will get
 ; into effect when we are done as a
 ; slave.
 AJMP MArl

; Handling arbitration loss while transmitting an address

AdTxArl: JB STR,MArl ; Non–synchronous Start or Stop.
 JB STP,MArl

; Switch from Master to Slave due to arbitration loss while transmitting
; an address – complete receiving the address transmitted by the new Master.

 CJNE R0,#0,AdTxArl2
 ; Arl on last bit of address
 ; (R0 is 0 on exit from XmAddr).
 DEC A ; The lsb sent, in which arl occurred
 ; must have been 1. By decrementing
 ; A we get the address that won.
 SJMP AdAr3

AdTxArl2:
 RR A ; Realign partially Tx’ed ACC
 MOV R1,A ; and save it in R1
 MOV A,R0 ; Pointer for lookup table
 MOV DPTR,#MaskTable
 MOVC A,@A+DPTR
 ANL A,R1 ; Set address bits to be received,
 ; and the bit on which we lost
 ; arbitration to 0
 ; Now we are ready to receive the rest
 ; of the address.

 MOV I2CON,#BCXA+BCARL ; Clear flags and release the clock.

 ACALL RBit3 ; Complete the address using reception
 ; subroutine.
 JB DRDY,AdAr3 ; Around if received address OK
 AJMP SMsgEnd ; Unexpected Start or Stop – end
 ; as a slave.
AdAr3: AJMP STstRW ; Proceed to check the address
 ; as a slave.

MaskTable: DB 0ffh,7Eh,3Eh,1Eh,0Eh,06h,02h,00h, ; 0ffh is dummy

; End I2C Interrupt Service Routine:

Dismiss: ACALL I2CDONE

 MOV I2CON,#BCARL+BCSTP+BCDR+BCXA+BIDLE
 CLR TIRUN
 POP ACC
 MOV R2,A
 POP ACC
 MOV R1,A
 POP ACC
 MOV R0,A
 POP ACC
 POP PSW
 SETB EI2

 RET ; Return from I2C interrupt Service Routine

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 24

;***
; Byte Transmit and Receive Subroutines
;***

; XmAddr: Transmit Address and R/W~
; XmByte: Transmit a byte

XmAddr: MOV I2DAT,A ; Send first bit, clears DRDY.
 MOV I2CON,#BCARL+BCSTR+BCSTP
 ; Clear status, release SCL.
 MOV R0,#8 ; Set R0 as bit counter
 SJMP XmBit2
XmByte: MOV R0,#8
XmBit: MOV I2DAT,A ; Send the first bit.
XmBit2: RL A ; Get next bit.
 JNB ATN,$; Wait for bit sent.
 JNB DRDY,XmBex ; Should be data ready.
 DJNZ R0,XmBit ; Repeat until all bits sent.
 MOV I2CON,#BCDR+BCXA ; Switch to receive mode.
 JNB ATN,$; Wait for acknowledge bit.
 ; flag cleared.
XmBex: RET

;
; Byte receive routines.
;
; ClsRcv8 clears the status register (from Start condition)
; and then receives a byte.
; AckRcv8 Sends an acknowledge, and then receives a new byte.
; If a Start or Stop is encountered immediately after the
; ack, AckRcv8 returns with 7 in R0.
; ClaRcv8 clears the transmit active state and releases clock
; (from the acknowledge).
;
; A contains the received byte upon return.
; R0 is being used as a bit counter.
;

ClsRcv8: MOV I2CON,#BCARL+BCSTR+BCSTP+BCXA
 ; Clear status register.
 JNB ATN,$
 JNB DRDY,RCVex
 SJMP Rcv8

AckRcv8: MOV I2DAT,#0 ; Send Ack (low)
 JNB ATN,$
 JNB DRDY,RCVerr ; Bus exception – exit.
ClaRcv8: MOV I2CON,#BCDR+BCXA ; clear status, release clock
 ; from writing the Ack.
 JNB ATN,$

Rcv8: MOV R0,#7 ; Set bit counter for the first seven
 ; bits.
 CLR A ; Init received byte to 0.
RBit: ORL A,I2DAT ; Get bit, clear ATN.
RBit2: RL A ; Shift data.
 JNB ATN,$; Wait for next bit.
 JNB DRDY,RCVex ; Exit if not a data bit (could be Start/
 ; Stop, or bus/protocol error)
RBit3: DJNZ R0,RBit ; Repeat until 7 bits are in.
 MOV C,RDAT ; Get last bit, don’t clear ATN.
 RLC A ; Form full data byte.
RCVex: RET

RCVerr: MOV R0,#9 ; Return non legitimate bit count
 RET

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 25

;***
; Timer I Interrupt Service Routine
; I2C us Timeout
;***

; In addition to reporting the timeout in MSGSTAT, we update a failure
; counter, TITOCNT. This allows different types of timeout handling by the
; main program.

TIISR: CLR MASTRQ ; “Manual” reset.
 MOV I2CON,#BXSTP ;
 MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP

TI1: MOV MSGSTAT,#TIMOUT ; Status Flag for Main.
TI2: MOV A,#0FFh
 CJNE A,TITOCNT,TI3 ; Increment TITOCNT, saturating
 SJMP TI4 ; at FFh.
TI3: INC TITOCNT

TI4: ACALL RECOVER
 SETB CLRTI ; Clear TI interrupt flag.
 ACALL XRETI ; Clear interrupt pending flag (in
 ; order to re–enable interrupts).
 MOV SP,StackSave ; Realign stack pointer, re–doing
 ; possible stack changes during
 ; the I2C interrupt service routine.
 ; TimerI interrupts in other ISR’s
 ; were not allowed !
 AJMP Dismiss ; Go back to the I2C service routine,
 ; in order to return to the (main)
 ; program interrupted.

;***
; Bus recovery attempt subroutine
;***

RECOVER: CLR EA
 CLR MASTRQ ; “Manual” reset.
 MOV I2CON,#BCXA+BIDLE+BCDR+BCARL+BCSTR+BCSTP
 CLR SLAVEN ; Non I2C TimerI mode
 SETB TIRUN ; Fire up TimerI. When it overflows, it
 ; will cause I2C interface hardware reset.
 MOV R1,#0ffh
DLY5: NOP
 NOP
 NOP
 DJNZ R1,DLY5
 CLR TIRUN
 SETB CLRTI

 SETB SCL ; Issue clocks to help release other devices.
 SETB SDA
 MOV R1,#08h
RC7: CLR SCL
 DB 0,0,0,0,0
 SETB SCL
 DB 0,0,0,0,0
 DJNZ R1,RC7
 CLR SCL
 DB 0,0
 CLR SDA
 DB 0,0
 SETB SCL
 DB 0,0,0,0,0
 SETB SDA
 DB 0,0,0,0,0, ; Issue a Stop.

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 26

Rex: MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP ; clear flags
 SETB EA
 RET

;***
;
; Main Program
;
;***

; Message ping pong game. Each message is transmitted by
; a processor that is a master on the I2c bus, and it contains one byte
; of data. A processor that receives this data byte as a slave increments
; the data by one and transmits it back as a master. The data received is
; confirmed to be a one increment of the data formerly sent, unless
; it is a “reset” value, chosen to be 00h.
; The two participating processors have similar code, where the node
; address of the second processor is the destination address of this
; one, and vice versa.
; The first data byte each processor tries to send is 00h. One of the
; processors will acquire the bus first, and the second processor that will
; receive this “resetting” 00h will not attempt to confirm it against an
; expected value. It will simply increment and transmit it. Subsequent
; receptions will be confirmed against the expected value, until 0ffh data
; bytes are sent and the game is effectively reset by the 00h resulting from
; the next increment.
; A toggling output (TogLED) tells the outer world that the “ping pong”
; proceeds well. If something unexpected happens we temporarily activate
; another output, ErrLED.
; The different tasks of the code are performed in a combination of main–
; line program and event routines called from the I2C interrupt service
; routine.

; Initial set–ups:
; Load CT1,CT0 bits of I2CFG register, according to the clock
; crystal used.
; Load RAM location MYADDR with the I2C address of this processor.
; We load these values out of ROM table locations (R_CTVAL and R_MYADDR).
; One may, instead, load with a MOV <immediate> command.

Reset: MOV SP,#07h ; Set stack location.
 CLR A
 MOV DPTR,#R_CTVAL
 MOVC A,@A+DPTR
 MOV I2CFG,A ; Load CT1,CT0 (I2C timing, crystal
 ; dependent).
 CLR A
 MOV DPTR,#R_MYADDR
 MOVC A,@A+DPTR ; Get this node’s address from ROM table
 MOV MYADDR,A ; into MYADDR RAM location.

 CLR OnLED

Reset2: CLR ErrLED ; Flash LED.
 ACALL LDELAY
 SETB ErrLED
 CLR SErrFLAG
 CLR TRQFLAG
 MOV FAILCNT,#50h
 SETB TogLED
 MOV TOGCNT,#050h ; Initialize pin–toggling counter

; Enable slave operation.
; The Idle bit is set here for a restart situation – in normal

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 27

; operation this is redundant, as this bit is set upon power_up reset.
 MOV I2CON,#BIDLE ; Slave will idle till next Start.
 SETB SLAVEN ; Enable slave operation.

; Enable interrupts.
; This is necessary for both Slave and Master operations.
 SETB ETI ; Enable timer I interrupts.
 SETB EI2 ; Enable I2C port interrupts.
 SETB EA ; Enable global interrupts.

; Set up Master operation.

 MOV MASCMD,#0h ; “Regular” master transmissions.
 MOV DPTR,#PongADDR
 CLR A
 MOVC A,@A+DPTR
 MOV DESTADRW,A ; The partner address. The LSB is
 ; low, for a Write transaction.
 MOV MASTCNT,#01h ; Message length – a single byte.

PPSTART:
 MOV MasBuf,#00h

; “Ping” transmission:

PP2:
 SETB TRQFLAG
 SETB MASTRQ
 MOV R1,#0ffh
PP22: JNB TRQFLAG,PP3 ; Transmitted OK
 DJNZ R1,PP22
MFAIL1: DJNZ FAILCNT,PP2
 ACALL RECOVER
 SJMP Reset2

; “Pong” reception:

PP3: MOV R0,#0ffh ; Software timeout loop count.
PP31: MOV R1,#0ffh
PP32: JB TRQFLAG,PP2 ; Rcvd ok as slave, go transmit.
 JB SErrFLAG,PP5
 DJNZ R1,PP32
 DJNZ R0,PP31
PPTO: ACALL RECOVER ; Software timeout.
 AJMP Reset2

PP5: CLR ErrLED ; Receive error.
 ACALL LDELAY
 SETB ErrLED
 CLR SErrFLAG
 AJMP PPSTART

LDELAY: MOV R2,#030h
LDELAY1: MOV R1,#0ffh
 DJNZ R1,$
 DJNZ R2,LDELAY1

 RET

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 28

;***
; Slave and Master Event Routines.
;***

;
; Invoked upon completion of a message transaction.
; This is the part of the application program actually dealing
; with the data communicated on the I2C bus, by responding to
; new data received and/or preparing the next transaction.

; Slave Event Routines
;
; These routines are invoked by the I2C interrupt service routine when a
; message transaction as a slave has been completed. Our “application”
; reacts to a message received as a slave with the routine SRCvdR.
; The calls that indicate erroneous reception are treated the same way as
; erroneous data reception in the “ping pong” game.

; SRcvdR
; Invoked when a new message has been received as a Slave.

SRcvdR: NOP
 MOV A,SRcvBuf
 JNZ SR2
 MOV MasBuf,#01h ; It was ping–pong reset value
 SJMP SR3

SR2: INC MasBuf ; The expected data.
 CJNE A,MasBuf,ErrSR
 INC MasBuf ; Data for next transmission – the data
 ; received incremented by 1.

; A successful two way data exchange. Let the outside world know by
; toggling an output pin driving a LED. We actually toggle only
; when a number of such exchanges is completed, in order to
; slow down the changes for a good visual indication.

 DJNZ TOGCNT,SR3
 CPL TodLED ; Toggle output
 MOV TOGCNT,#050h ;

SR3: CLR SErrFLAG
 SETB TRQFLAG ; Request main to transmit
 RET

ErrSR: SETB SErrFLAG
 RET

; SLnRcvdR
; Invoked when a message received as a Slave is too long
; for the receive buffer.

; STXedR
; Invoked when a Slave completed transmission of its buffer.
; We do not expect to get here, since we do not plan to have
; in our system a master that will request data from this node.
;

; SRErrR
; Slave error event subroutine.
; In most applications it will not be used.
;

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

2000 Jan 12 29

SLnRcvdR:
STXedR:
SRErrR: JMP ErrSR

;
; MastNext – Master Event Routine.
;
; Invoked when a Master transaction is completed, or terminated
; “willingly” due to lack of acknowledge by a slave.
;

MastNext:
 MOV A,MSGSTAT
 CJNE A,#MTXED,MN1
 MOV RAILCNT,#50h
 CLR TRQFLAG
 RET
MN1:
 RET

; I2CDONE
; Called upon completion of the I2C interrupt service routine.
; In this example it monitors exceptions, and invokes the bus
; recovery routine when too many occurred.

I2CDONE:
 MOV A,MSGSTAT
 CJNE A,#NOTSTR,I2CD1
 DJNZ FAILCNT,I2CD1
 MOV FAILCNT,#01h ; Too many “illegal” i2c interrupts
 CLR EI2 ; – shut off.
I2CD1: RET

;***
; I2C Communications Table:
;***

; We used table driven values for clarity. One may use immediates to load
; these values and save several lines of code.

; Contents is used in the beginning of the main program to load
; RAM location MYADDR and the I2CFG register.
; The node address, in R_MYADDR, is application specific, and unique for
; each device in the I2C network.
; R_CTVAL depends on the crystal clock frequency.

R_MYADDR: DB 4Ch ; This node’s address

R_CTVAL: DB 02h ; CT1, CT0 bit values

;***
; Application Code Definitions
;***

PongADDR: DB 48h ; The address of the “partner” in
 ; the ping–pong game.

; EPROM configuration bit definitions for the 87LPC764.

 org 0fd00h ; EPROM Configuration Byte (UCFG1)
 db 038h ; WDT off, RST pin on, port RST high,
 ; BO=2.5V, CLK / 1, osc = high freq.

 end

Philips Semiconductors Application note

AN465Using the 87LPC76X in multi-master I2C applications

yyyy mmm dd 30

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 01-00

Document order number: 9397 750 06851

������
�����
	����
�

	ABSTRACT
	INTRODUCTION
	THE I 2 C BUS
	MASTERS AND SLAVES
	DATA TRANSFERS
	ADDRESSING AND TRANSFER FORMATS
	USE OF SUB-ADDRESSES
	ARBITRATION IN A MULTIMASTER SYSTEM
	HANDSHAKE BY CLOCK SYNCHRONIZATION
	87LPC76X I 2 C HARDWARE
	I2CON Register
	I2CFG Register
	I2DAT Register
	I2CSTA Register
	Transmit Active State

	C COMMUNICATIONS SOFTWARE
	C COMMUNICATIONS ROUTINES—OVERVIEW
	BUS WATCHDOG AND ERROR RECOVERY
	C COMMUNICATIONS ROUTINES—INTERFACE
	Buffers
	Interface RAM Locations

	APPLICATION EVENT ROUTINES
	CONSTANTS
	USING THE COMMUNICATIONS SUBROUTINES
	PROGRAMMING EXAMPLE
	Definitions
	Disclaimers

