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INTEGRATED CIRCUITS

ABSTRACT
Starts with an overview of I2C basics including functions of master &
slave, data transfers, addressing and transfer formats and use of
sub-addresses. Next, the I2C hardware features of the 87LPC76X are
described including control, data and configuration registers and Timer I.
Finally, a single-master ASM programming example is presented which
includes send and receive routines with error recovery.



Philips Semiconductors Application note

AN464Using the 87LPC76X microcontroller
as an I2C bus master

22000 Jan 11

DESCRIPTION
The 87LPC76X Microcontroller offers the advantages of the 80C51
architecture in a small package and at a low cost. It combines the
benefits of a high-performance microcontroller with on-board
hardware supporting the Inter-Integrated Circuit (I2C) bus interface.

The I2C bus, developed and patented by Philips, allows integrated
circuits to communicate directly with each other via a simple
bidirectional 2-wire bus. The comprehensive family of CMOS and
bipolar ICs incorporating the on-chip I2C interface offers many
advantages to designers of digital control for industrial, consumer and
telecommunications equipment. A typical system configuration is
shown in Figure 1.
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Figure 1.  Typical I 2C Bus Configuration

Interfacing the devices in an I2C based system is very simple because
they connect directly to the two bus lines: a serial data line (SDA) and
a serial clock line (SCL). System design can rapidly progress from
block diagram to final schematic, as there is no need to design bus
interfaces, and functional blocks on a block diagram correspond to
actual ICs. A prototype system or a final product version can easily be
modified or upgraded by ‘clipping’ or ‘unclipping’ ICs to or from the
bus. The simplicity of designing with the I2C bus does not reduce its
effectiveness; it is a reliable, multimaster bus with integrated
addressing and data-transfer protocols (see Figure 2). In addition, the
I2C-bus compatible ICs provide cost reduction benefits to equipment
manufacturers, some of which are smaller IC packages and a
minimization of PCB traces and glue logic.

The availability of microcontrollers like the 87LPC76X, with on-board
I2C interface, is a very powerful tool for system designers. The
integrated protocols allow systems to be completely software defined.
Software development time of different products can be reduced by
assembling a library of reusable software modules. In addition, the
multimaster capability allows rapid testing and alignment of
end-products via external connections to an assembly-line computer.

The mask programmable 87LPC76X and its EPROM version, the
87LPC76X, can operate as a master or a slave device on the I2C
small area network. In addition to the efficient interface to the
dedicated function ICs in the I2C family, the on-board interface
facilities I/O and RAM expansion, access to EEPROM and
processor-to-processor communications.

The multimaster capability of the I2C is very important but many
designs do not require it. For many systems, it is sufficient that all
communications between devices are initiated by a single, master
processor. In this application note, use of the 87LPC76X as an I2C
bus master is described. Some of the technical features of the bus
and the 87LPC76X’s special hardware associated with the I2C are
discussed. Also included is a software example demonstrating I2C
single master communications. Note that the sample routines are
quite general, and therefore may be transferred easily to many
applications.

The discussion of the I2C bus characteristics in this application note is
by no means complete. Additional information for the I2C bus and the
87LPC76X Microcontroller can be found in the 80C51 Microcontroller
databook.

THE I2C BUS
The two lines of the I2C-bus are a serial data line (SDA) and a serial
clock line (SCL). Both lines are connected to a positive supply via a
pull-up resistor, and remain HIGH when the bus is not busy. Each
device is recognized by a unique address—whether it is a
microcomputer, LCD driver, memory or keyboard interface—and can
operate as either a transmitter or receiver, depending on the function
of the device. A device generating a message or data is a transmitter,
and a device receiving the message or data is a receiver. Obviously, a
passive function like an LCD driver could only be a receiver, while a
microcontroller or a memory can both transmit and receive data.

Masters and Slaves
When a data transfer takes place on the bus, a device can either be a
master or a slave. The device which initiates the transfer, and
generates the clock signals for this transfer, is the master. At that time
any device addressed is considered a slave. It is important to note
that a master could either be a transmitter or a receiver; a master
microcontroller may send data to a RAM acting as a transmitter, and
then interrogate the RAM for its contents acting as a receiver—in both
cases performing as the master initiating the transfer. In the same
manner, a slave could be both a receiver and a transmitter.

The I2C is a multimaster bus. It is possible to have, in one system,
more than one device capable of initiating transfers and controlling the
bus (Figure 2). A microcontroller may act as a master for one transfer,
and then be the slave for another transfer, initiated by another
processor on the network. The master/slave relationships on the bus
are not permanent, and may change on each transfer.
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Figure 2.  I 2C Bus Connection



Philips Semiconductors Application note

AN464
Using the 87LPC76X microcontroller
as an I2C bus master

2000 Jan 11 3

As more than one master may be connected to the bus, it is possible
that two devices will try to initiate a transfer at the same time.
Obviously, in order to eliminate bus collisions and communications
chaos, an arbitration procedure is necessary. The I2C design has an
inherent arbitration and clock synchronization procedure relying on
the wired-AND connection of the devices on the bus. In a typical
multimaster system, a microcontroller program should allow it to
gracefully switch between master and slave modes and preserve data
integrity upon loss of arbitration. In this note, a simple case is
presented describing the 87LPC76X operating as a single master on
the bus.

Data Transfers
One data bit is transferred during each clock pulse (see Figure 3). The
data on the SDA line must remain stable during the HIGH period of
the clock pulse in order to be valid. Changes in the data line at this
time will be interpreted as control signals. A HIGH-to-LOW transition
of the data line (SDA) while the clock signal (SCL) is HIGH indicates a
Start condition, and a LOW-to-HIGH transition of the SDA while SCL
is HIGH defines a Stop condition (see Figure 4). The bus is
considered to be busy after the Start condition and free again at a
certain time interval after the Stop condition. The Start and Stop
conditions are always generated by the master.

The number of data bytes transferred between the Start and Stop
condition from transmitter to receiver is not limited. Each byte, which
must be eight bits long, is transferred serially with the most significant
bit first, and is followed by an acknowledge bit. (see Figure 5). The
clock pulse related to the acknowledge bit is  generated by the
master. The device that acknowledges has to pull down the SDA line
during the acknowledge clock pulse, while the transmitting device
releases the SDA line (HIGH) during this pulse (see Figure 6).
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Figure 3.  Bit Transfer on the I 2C Bus
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Figure 4.  Start and Stop Conditions
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Figure 5.  Data Transfer on the I 2C Bus
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Figure 6.  Acknowledge on the I 2C Bus
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A slave receiver must generate an acknowledge after the reception of
each byte, and a master must generate one after the reception of
each byte clocked out of the slave transmitter. If a receiving device
cannot receive the data byte immediately, it can force the transmitter
into a wait state by holding the clock line (SCL) LOW.  When
designing a system, it is necessary to take into account cases when
acknowledge is not received. This happens, for example, when the
addressed device is busy in a real time operation. In such a  case the
master, after an appropriate “time-out”, should abort the transfer by
generating a Stop condition, allowing other transfers to take place.
These “other transfers” could be initiated by other masters in a
multimaster system, or by this same master.

There are two exceptions to the “acknowledge after every byte” rule.
The first occurs when a master is a receiver: it must signal an end of
data to the transmitter by NOT signalling an acknowledge on the last
byte that has been clocked out of the slave. The acknowledge related
clock, generated by the master should still take place, but the SDA
line will not be pulled down. In order to indicate that this is an active
and intentional lack of acknowledgement, we shall term this special
condition as a “negative acknowledge”.

The second exception is that a slave will send a negative
acknowledge when it can no longer accept additional data bytes.  This
occurs after an attempted transfer that cannot be accepted.

The bus design includes special provisions for interfacing to
microprocessors which implement all of the I2C communications in
software only—it is called “Slow Mode”. When all of the devices on
the network have built-in I2C hardware support, the Slow Mode is
irrelevant.

Addressing and Transfer Formats
Each device on the bus has its own unique address. Before any data
is transmitted on the bus, the master transmits on the bus the address
of the slave to be accessed for this transaction. A well-behaved slave
with a matching address, if it exists on the network, should of course
acknowledge the master’s addressing.  The addressing is done by the
first byte transmitted by the master after the Start condition.

An address on the network is seven bits long, appearing as the most
significant bits of the address byte. The last bit is a direction (R/W) bit.
A zero indicates that the master is transmitting (WRITE) and a one
indicates that the master requests data (READ). A complete data

transfer, comprised of an address byte indicating a  WRITE and two
data bytes is shown in Figure 7.

When an address is sent, each device in the system compares the
first seven bits after the Start with its own address. If there is a match,
the device will consider itself addressed by the master,  and will send
an acknowledge. The device could also determine if in this transaction
it is assigned the role of a slave receiver or slave transmitter,
depending on the R/W bit.

Each node of the I2C network has a unique seven bit address. The
address of a microcontroller is of course fully programmable, while
peripheral devices usually have fixed and programmable address
portions. In addition to the “standard” addressing discussed here, the
I2C bus protocol allows for “general call” addressing and  interfacing
to CBUS devices.

When the master is communicating with one device only, data
transfers follow the format of Figure 7, where the R/W bit could
indicate either direction. After completing the transfer and issuing a
Stop condition, if a master would like to address some other device on
the network, it could of course start another transaction, issuing a new
Start.

Another way for a master to communicate with several different
devices would be by using a “repeated start”. After the last byte  of the
transaction was transferred, including its acknowledge (or negative
acknowledge), the master issues another Start, followed by address
byte and data—without effecting a Stop. The master may
communicate with a number of different devices, combining READS
and WRITES. After the last transfer takes place, the master issues a
Stop and releases the bus. Possible data formats are  demonstrated
in Figure 8. Note that the repeated start allows for both change of a
slave and a change of direction, without releasing  the bus. We shall
see later on that the change of direction feature can come in handy
even when dealing with a single device.

In a single master system, the repeated start mechanism may be
more efficient than terminating each transfer with a Stop and starting
again. In a multimaster environment, the determination of which
format is more efficient could be more complicated, as when a master
is using repeated starts it occupies the bus for a long time and thus
preventing other devices from initiating transfers.
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Figure 7.  A Complete Data Transfer on the I 2C-Bus



Philips Semiconductors Application note

AN464
Using the 87LPC76X microcontroller
as an I2C bus master

2000 Jan 11 5

MASTER WRITE:

S SLAVE ADDRESS W A DATA A DATA A P

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

MASTER READ:

S SLAVE ADDRESS R A DATA A DATA NA P

S SLAVE ADDRESS

COMBINED FORMATS:

R/W A ADATA S SLAVE ADDRESS R/W A DATA A P

DIRECTION OF TRANSFER MAY
CHANGE AT THIS POINTS = START

STOP
WRITE
READ
READ OR WRITE
ACKNOWLEDGE
NEGATIVE ACKNOWLEDGE

P =
W =
R =
R/W =
A =
NA =

(n BYTES +
ACKNOWLEDGE)

(n BYTES +
ACKNOWLEDGE)

SU00366

Figure 8.  I 2C Data Formats
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Figure 9.  I 2C Sub-Address Usage
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Use of Sub-Addresses
For some ICs on the I2C bus, the device address alone is not
sufficient for effective communications, and a mechanism for
addressing the internals of the device is necessary. A typical  example
when we want to access a specific word inside the device is
addressing memories,  or a sequence of memory locations starting at
a specific internal address.

A typical I2C memory device like the PCF8570 RAM contains a built-in
word address register that is incremented automatically after each
data byte which is a read or written data byte. When a master
communicates with the PCF8570 it must send a sub-address in the
byte following the slave address byte. This sub-address is the internal
address of the word the master wants to access for a single byte
transfer, or the beginning of a sequence of locations for a multi-byte
transfer. A sub-address is an 8-bit byte, unlike the device address, it
does not contain a direction (R/W) bit, and like any byte transferred on
the bus it must be followed by an acknowledge.

A memory write cycle is shown in Figure 9(a). The Start is followed
by a slave byte with the direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop signal. The sub-address is
loaded into the word address memory, and the data bytes which
follow will be written one after the other starting with the sub-address
location, as the register is incremented automatically.

The memory read cycle (see Figure 9(b))  commences in a similar
manner, with the master sending a slave address with the direction bit
set to WRITE with a following sub-address. Then, in order to reverse
the direction of the transfer, the master issues a repeated Start
followed again by the memory device address, but this time with the
direction bit set to READ. The data bytes starting at the internal
sub-address will be clocked out of the device, each followed by a
master-generated acknowledge. The last byte of the read cycle will be
followed by a negative acknowledge, signalling the end of  transfer.
The cycle is terminated by a Stop signal.

87LPC76X I2C HARDWARE
The on-chip I2C bus hardware support of the 87LPC76X allows
operation on the bus at full speed, and simplifies the software needed
for effective communications on the network. The hardware activates
and monitors the SDA and SCL lines, performs the necessary
arbitration and framing errors checks, and takes care of  clock
stretching and synchronization. The hardware support  includes a bus
time-out timer, called Timer I. The hardware is synchronized to the
software either through polled loops or interrupts.

Two of the port 0 pins are multi-functional.  When the I2C is active, the
pin associated with P0.0 functions as SCL, and the pin  associated
with P0.1 functions as SDA. These pins have an open drain output.

Two of the five 87LPC76X interrupt sources may be used for I2C
support. The I2C interrupt is enabled by the EI2 flag of the interrupt
enable register, and its service routine should start at  address 023h.
An I2C interrupt is usually requested (if enabled) when a rising edge of
SCL indicates a new data bit on the bus, or a special condition occurs:
Start, Stop or arbitration loss.  The interrupt is induced by the ATN
flag—see below for the conditions for setting this flag.  The Timer I
overflow interrupt is enabled by the ETI flag, and the service routine
starts at 01Bh.

The I2C port is controlled through three special function registers: I2C
Control (I2CON), I2C Configuration (I2CFG), and I2C Data (I2DAT).
The register addresses are shown in Table 1.

Although the following discussion of the hardware and register details
is not complete, it should give a better understanding of  the
programming examples.

Timer I
In I2C applications, Timer I is dedicated to the port timing generation
and bus monitoring. In non-I2C applications, it is available for use as a
fixed time base.

In its port timing generation function, Timer I is used to generate SCL,
the I2C clock. Timer I is clocked once per machine cycle (osc/12), so
that the toggle rate of SCL will be some multiple of that rate. Because
the 87LPC76X can be run over a wide range of oscillator frequencies,
it is necessary to adjust SCL for the part’s oscillator frequency. This
allows the I2C bus to be used at its highest transfer rates independent
of the oscillator frequency. SCL is adjusted by writing to two bits (CT0
and CT1) in the I2CFG special function register (see Table 2). The
inverse of the values in CT0 and CT1 are loaded into the least
significant two bit locations of Timer I every time the fourth bit of the
timer is toggled. (A value is actually loaded into the least significant
three bits, the third bit being 0 unless both CT0 and CT1 are
programmed high and in that case the third bit is 1). SCL is then
toggled every time the fourth bit of Timer I is toggled. For example: if
CT1 = 0 and CT0 = 1 then the least significant three bits of Timer I
would be preloaded with 2 (010 binary). Timer I would then count 3, 4,
5, 6, 7, 8 (6 counts or machine cycles). On 8, the fourth bit of Timer I
will toggle, SCL will toggle and the 3 least significant bits will again be
preloaded with the value 2 (010).

Table 1.  I2C Special Function Register Addresses

REGISTER BIT ADDRESS

Name Symbol Address MSB LSB

I2C Control I2CON D8 DF DE DD DC DB DA D9 D8

I2C Data I2DAT D9 – – – – – – – –

I2C Configuration I2CFG C8 CF CE CD CC CB CA C9 C8

Table 2.  CT1, CT0 Values

CT1, CT0 Min Time Count
(Machine Cycles)

CPU Clock Max
(for 100 kHz I 2C)

Timeout Period
(Machine Cycles)

1 0 7 8.4 MHz 1023

0 1 6 7.2 MHz 1022

0 0 5 6.0 MHz 1021

1 1 4 4.8 MHz 1020
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For the bus monitoring function, Timer I is used as a “watchdog timer”
for bus hang-ups. It creates an interrupt when the SCL line stays in
one state for an extended period of time while the bus is active
(between a Start condition and a following Stop condition). SCL “stuck
low” indicates a faulty master or slave. SCL “stuck high” may mean a
faulty device, or that noise induced unto the I2C caused all masters to
withdraw from the I2C arbitration.

The time-out interval of Timer I is fixed (cannot be set): it carries out
and interrupts (if enabled) when about 1024 machine cycles have
elapsed since a change on SCL within a frame. In other words,
whenever I2C is active and Timer I is enabled, the falling edge of SCL
will reset Timer I. If SCL is not toggled low for 1024 machine cycles,
Timer I will overflow and cause an interrupt. (Note: we wrote “about
1024 machine cycles” although for the sake of accuracy—this number
is affected by the setting of the CT0 and CT1 bits mentioned above
and may vary by up to three machine cycles) The exact number of
cycles for a time-out is not critical; what is important is that it indicates
SCL is stuck.

In addition to the interrupt, upon Timer I overflow the I2C port
hardware is reset. This is useful for multiple master systems in
situations where a bus fault might cause the bus to hang-up due to a
lack of software response. When this happens, SCL will be released,
and I2C operation between other devices can continue.

I2CON Register
The I2C control register (I2CON) can be written to (see Figure 10).
When writing to the I2CON register, one should use bit masks as
demonstrated in the example program. Trying to clear or set the bits in
the register using the bit addressing capabilities of the 87LPC76X
may lead to undesirable results. The reason is that a command like
CLR reads the register, sets the bit and writes it back, and the
write-back may affect other bits.

I2CFG Register
The configuration register (I2CFG) is a read/write register (see
Figure 11).

I2DAT Register
The I2C data register (I2DAT) is a read/write register, where the MSB
represents the data received or data to be sent. The other seven bits
are read as 0 (see Figure 12).

Transmit Active State
The transmit active state—Xmit Active—is an internal state in the I2C
interface that is affected by the I2C registers as explained above. The
I2C interface will only drive the SDA line low when Xmit Active is set.
Xmit Active is set by writing the I2DAT register, or by writing I2CON
with XSTR = 1 or XSTP = 1. The ARL bit will be set to 1 only when
Xmit Active is set—in such a case Xmit Active will be automatically
reset upon arbitration loss. Xmit Active is cleared by writing 1 to CXA
at I2CON register or by  reading the I2DAT register.

MASTERRDAT ATN DRDY ARL STR STP –––

RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to RDAT in the
I2DAT register. Reading the received data here allows doing so without clearing DRDY and releasing SCL.

ATN An “ATteNtion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit testing for
terminating “wait loops”, indicating a meaningful event on the bus. This flag also activates the I2C interrupt request.

DRDY Data ReaDY flag. Set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is cleared by
reading or writing the I2DAT register, or by writing a 1 to CDR (at the same address, when I2CON is written).

ARL ARbitration Loss flag. Indicates that this device lost arbitration while trying to take control of the bus.

STR STaRt flag. Set when a Start condition is detected, except at an idle slave.

STP SToP flag. Set when a Stop condition is detected, except at an idle slave.

MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).

I2CON READ

XSTRCXA IDLE CDR CARL CSTR CSTP XSTPI2CON WRITE

CXA “Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.

IDLE Setting this bit will cause a slave to enter idle mode and ignore the I2C bus until the next Start is detected. If the
software sets the MASTRQ flag, the device may stop idling by turning into a master.

CDR Clear Data Ready. Clears the DRDY flag.

CARL Clear Arbitration Lost. Clears the ARL flag.

CSTR Clear STaRt. Clears the STR flag.

CSTP Clear STop. Clears the STP flag.

XSTR “Xmit repeated STaRt”. Writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A side effect
will be setting the internal Xmit Active state. This should be used only when the device is a master.

XSTP “Xmit SToP”. Issues a Stop condition. The Xmit active state is set.
SU00368

Figure 10.  I2CON Register
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CT1SLAVEN MASTRQ CLRTI TIRUN — — CT0

SLAVEN Writing a 1 to this flag enables the slave functions of the I2C interface.

MASTRQ Request control of the bus as a master.

CLRTI Clear the Timer I interrupt flag. This bit is always read as 0.

TIRUN Writing a 1 will let Timer I run. When I2C is active, it will run only inside frames, and will be cleared by SCL
transitions, Start and Stop. Writing a 0 will stop and clear the timer.

CT1, CT0 These bits should be programmed according to the frequency of the crystal oscillator used in the hardware. They
determine the minimum high and low times for SCL, and are used to optimized performance at different oscillator
speeds.

SU00369

Figure 11.  I2CFG Register

—RDAT — — — — — —

RDAT Received DATa bit, captured from SDA every rising edge of SCL. Reading I2CAT clears DRDY and the
Xmit Active state. If it is necessary to read the data without affecting the flags, it can be read out of RDAT
in the I2CON register.

I2DAT READ

—XDAT — — — — — —I2DAT WRITE

XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the I2C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.

SU00370

Figure 12.  I2DAT Register

PROGRAMMING EXAMPLE
The listing demonstrates communications routines for the 87LPC76X
as an I2C bus master in a single-master system.

The single-master system is less complicated than a multimaster
environment. The programmer does not have to worry about switching
between master and slave roles, or the consequences of an
arbitration loss.

The I2C interrupt is not used, and therefore disabled. There is no need
for frame Start interrupts,  as this processor is the only bus master
and all data transfers are initiated by it when the  appropriate routines
are called by the application. No one else generates frame Starts
which could be an interrupt source in a multimaster system. Within the
frames we monitor bus activity with a wait-loop which polls the ATN
flag.  As we expect the bus to operate in its full-speed mode, we can
assume that only a small amount of time will be wasted in those
loops, and the use of interrupts would be less efficient.

The 87LPC76X has single-bit I2C hardware interface, where the
registers may directly affect the levels on the bus and the software
interacting with the register takes part in the protocol implementation.
The hardware and the low-level routines dealing with the registers are
tightly coupled. Therefore, one should take extra care if trying to
modify these lower level routines.

The beginning of the program, at address 0, contains the reset vector,
where  the microcontroller begins executing code after a hardware
reset. In this case, the code simply jumps to the main part of the
program, which begins at the label ‘Reset’ near the end of the listing.

The main program is a simple demonstration of the I2C routines which
comprise the balance of the listing. It first enables the Timer I interrupt,

and sets up parameters in order to read data from a slave device. In
this example, the slave device is a PCF8574A 8-bit I/O port that has
pushbuttons connected to bits 3:0, and LEDs connected to bits 7:4.
The program causes the I/O port data to be read by calling the
“RcvData” routine. Once the data byte from the PCF8574A has been
read, the pushbutton data is saved and copied to the LED bit position
and the switch data set high. The program then prepares to write this
new value to the PCF8574A I/O port, and performs the write operation
by calling the “SendData” routine. The SendData and RcvData
routines can send or receive multiple bytes of data, the number of
which is determined by the variable ‘ByteCnt’.

Upon return from both SendData and RcvData, the program checks
the system flag named ‘Retry’ to see if the transfer was completed
correctly. If not, it loops back and attempts the same transfer again.

This entire process is repeated indefinitely by jumping back to
MainLoop.

Back at the beginning of the program, the next location after the reset
vector is the Timer I interrupt service routine. The microcontroller will
go to address 73 hexadecimal if Timer I overflows. This routine stops
the timer, clears the timer interrupt, clears the pending interrupt so
that other interrupts will be enabled, restores the stack pointer, and
jumps to the ‘Recover’ routine to try to correct whatever stopped the
I2C bus and allowed Timer I to overflow.

Next in the listing come the main I2C service routines. These are the
routines SendData, RcvData, SendSub, and RcvSub that were called
from the main program. Both of the send routines use the data area
labeled ‘XmtDat’ as the transmit data buffer. In this sample program,
four bytes were reserved for this area,  but it could be larger or
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smaller depending on the application. The two receive routines use
another four byte buffer labeled ‘RcvDat’ to store received data. All of
these routines use the variables ‘SlvAdr’ and ‘ByteCnt’ to determine
the slave address and the number of bytes to be sent or received,
respectively. The SendSub and RcvSub routines use the variable
‘SubAdr’ as the sub-address to send to the slave device.

Following the main I2C service routines in the listing are the
subroutines that  are called by the main routines to deal intimately
with the I2C hardware.

The ‘SendAddr’ subroutine requests mastership of the I2C bus and
calls the routine ‘XmitAddr’ to complete sending the slave address.
The bulk of the XmitAddr routine is shared with the ‘XmitByte’
subroutine which sends data bytes on the I2C bus. XmitByte is also
used to send I2C sub-addresses. Both subroutines check for an
acknowledge from the slave device after every byte is sent on the I2C
bus.

The next subroutine ‘RDAck’ calls the ‘RcvByte’ routine to read in a
byte of data. It then sends an acknowledge to the slave device.
RDAck is used to receive all data except for the last byte of a receive
data frame, where the acknowledge is omitted by the bus master. The
RcvByte subroutine is called directly for the last byte of a frame.

The ‘SendStop’ subroutine causes a stop condition on the I2C, thus
ending a frame. The ‘RepStart’ subroutine sends a repeated start
condition on the I2C bus, to allow the master to start a new frame
without first having to send an intervening stop.

The lower level subroutines deal directly with the hardware. The tight
coupling between hardware and software is best demonstrated by the
following explanations, relating to two cases in which the code is not
self evident.

Sending the Address
When sending the address byte in the Send Addr subroutine, the first
bit is written to I2DAT prior to the loop where the other seven bits are

sent (SendAd2). The reason is that we need to clear the Start
condition in order to release the SCL line, and this is done explicitly by
the subsequent command. When SCL is released, the correct bit
(MSB of address) must already be in I2DAT.

Capturing the Received Data
Typically, a program receiving data waits in a loop for ATN, and when
detected, checks DRDY.  If DRDY = 1 then there was a rising SCL,
and the new data can be read from RDAT in I2CON or I2DAT.
Reading or writing I2DAT clears DRDY, thus releasing SCL.

When reading the last bit in a byte, it should be read from I2CON, and
not I2DAT (see the end of the RcvByte routine). This way the Data
Ready (DRDY) flag is not cleared, and the low period on SCL is
stretched. The reason for doing so is that upon reception of the last bit
of a received byte the master must react with an acknowledge. In
order to ensure that we “wait” with the acknowledge clock (release of
SCL) until the acknowledge level is issued on SDA, the last bit is read
out of I2CON and not I2DAT.  SCL is stretched low until the
acknowledge level is written into I2DAT by the software.

Bus Faults and Other Exceptions
Bus exceptions are detected either by Timer I time-out, or “illegal”
logic states tested for and detected by the software. Upon Timer I
time-out, a bus recovery is attempted by the Recover  routine. The
final section of the listing is this ‘Recover’ routine. Its job is to try to
restore control of the I2C bus to the main program. First, the
subroutine ‘FixBus’ is called. It checks to see if only the SDA line is
‘stuck’, and if so, tries to correct it by sending some extra clocks on
the SCL line, and forcing a stop condition on the bus. If this does not
work, another subroutine ’BusReset’ is called. This generally happens
when a severe bus error occurs, such as a shorted clock line. The
philosophy used in this code is that the only chance of recovering
from a severe error is to cause a reset of the I1C  hardware by
deliberately forcing Timer I to time out. This method allows recovery
from a temporary short or other serious condition on the I2C bus.
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;****************************************************************************

;                 I2C Single Master Routines for the 87LPC764

; Modified from code published for the 8xC751/752 in AN422. This program
; reads an I2C slave device using subaddressing, alters the data, and
; returns it to the same slave.

;****************************************************************************

; Notes on 87LPC764 I2C differences:
;     – I2C interrupt vector address.
;     – Timer I interrupt vector address.
;     – IEN0 SFR name (IE on 751) and addition of IEN1.
;     – I2C interrupt enable location (now in IEN1 and a different bit).
;     – Timer I interrupt enable location (now in IEN1 and a different bit).
;     – I2C SFR addresses (altered by inclusion of the MOD764 file).

$DEBUG
$MOD764

; I2C Demo Board I2C Addresses

LCD     equ   74h         ; PCF8577 LCD display.
LED7    equ   76h         ; SAA1064 LED display.
RTCLK   equ   0A2h        ; PCF8583 clock calendar.
RAM     equ   0AEh        ; PCF8570 256 byte RAM.
EEPROM  equ   0A6h        ; PCF8582 256 byte EEPROM.
DTMF    equ   4Ah         ; PCD3312 DTMF generator.
PIO     equ   4Eh         ; PCF8574 8–bit I/O port.
KEYLED  equ   7Eh         ; PCF8574A that runs the discrete LEDs & keypad.
ADDAC   equ   09Eh        ; PCF8591 A/D and DAC.

; Value definitions.

CTVAL   equ   02h         ; CT1, CT0 bit values for I2C.

; Masks for I2CFG bits.

BTIR    equ   10h         ; mask for TIRUN bit.
BMRQ    equ   40h         ; mask for MASTRQ bit.

; Masks for I2CON bits.

BCXA    equ   80h         ; mask for CXA bit.
BIDLE   equ   40h         ; mask for IDLE bit.
BCDR    equ   20h         ; mask for CDR bit.
BCARL   equ   10h         ; mask for CARL bit.
BCSTR   equ   08h         ; mask for CSTR bit.
BCSTP   equ   04h         ; mask for CSTP bit.
BXSTR   equ   02h         ; mask for XSTR bit.
BXSTP   equ   01h         ; mask for XSTP bit.

; RAM locations used by I2C routines.

bitCnt  data  21h         ; I2C bit counter.
ByteCnt data  22h
SlvAdr  data  23h         ; address of active slave.
SubAdr  data  24h

RcvDat     data  25h         ; I2C receive data buffer (4 bytes).
                             ;   addresses 25h through 28h.
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XmtDat     data  29h         ; I2C transmit data buffer (4 bytes).
                             ;   addresses 29h through 2Ch.

StackSave  data  2Dh         ; saves stack address for bus recovery.

Flags      data  20h         ; I2C software status flags.
NoAck      bit   Flags.0     ; indicates missing acknowledge.
Fault      bit   Flags.1     ; indicates a bus fault of some kind.
retry      bit   Flags.2     ; indicates that last I2C transmission
                             ;   failed and should be repeated.

;****************************************************************************
;                                 Begin Code
;****************************************************************************

; Reset and interrupt vectors

           org    0000h
           ajmp   Reset           ; reset vector.

           org    0073h           ; Timer I interrupt address.
TimerI:    setb   CLRTI           ; Clear timer I interrupt.
           clr    TIRUN
           acall  ClrInt          ; Clear interrupt pending.
           mov    SP,StackSave    ; Restore stack for return to main.
           ajmp   Recover         ; Attempt bus recovery.
ClrInt:    reti

           org    0100h

;****************************************************************************
;                    Main Transmit and Receive Routines
;****************************************************************************

; Send data byte(s) to slave.
;   Enter with slave address in SlvAdr, data in XmtDat buffer, # of data
;   bytes to send in ByteCnt.

Senddata:
           clr    NoAck           ; clear error flags.
           clr    Fault
           clr    retry
           mov    StackSave,SP    ; save stack address for bus fault.
           mov    A,SlvAdr        ; get slave address.
           acall  SendAddr        ; get bus and send slave address.
           jb     NoAck,SDEX      ; check for missing acknowledge.
           jb     Fault,SDatErr   ; check for bus fault.
           mov    R0,#XmtDat      ; set start of transmit buffer.

SDLoop:    mov    A,@R0           ; get data for slave.
           inc    R0
           acall  XmitByte        ; send data to slave.
           jb     NoAck,SDEX      ; check for missing acknowledge.
           jb     Fault,SDatErr   ; check for bus fault.
           djnz   ByteCnt,SDLoop

SDEX:      acall  SendStop        ; send an I2C stop.
           ret

; Handle a transmit bus fault.

SDatErr:   ajmp   Recover         ; attempt bus recovery.
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; Receive data byte(s) from slave.
;   Enter with slave address in SlvAdr, # of data bytes requested in ByteCnt.
;   Data returned in RcvDat buffer.

Rcvdata:
         clr   NoAck             ; clear error flags.
         clr   Fault
         clr   retry
         mov   StackSave,SP      ; save stack address for bus fault.
         mov   A,SlvAdr          ; get slave address.
         setb  ACC.0             ; get bus read bit.
         acall SendAddr          ; send slave address.
         jb    NoAck,RDEX        ; check for missing acknowledge.
         jb    Fault,RDatErr     ; check for bus fault.

         mov   R0,#RcvDat        ; set start of receive buffer.
         djnz  ByteCnt,RDLoop    ; check for count = 1 byte only.
         sjmp  RDLast

RDLoop:  acall RDAck             ; get data and send an acknowledge.
         jb    Fault,RDatErr     ; check for bus fault.
         mov   @R0,A             ; save data.
         inc   R0
         djnz  ByteCnt,RDLoop    ; repeat until last byte.

RDLast:  acall RcvByte           ; get last data byte from slave.
         jb    Fault,RDatErr     ; check for bus fault.
         mov   @R0,A             ; save data.

         mov   I2DAT,#80h        ; send negative acknowledge.
         jnb   ATN,$             ; wait for NAK sent.
         jnb   DRDY,RDatErr      ; check for bus fault.

RDEX:    acall SendStop          ; send an I2C bus stop.
         ret

; Handle a receive bus fault.

RDatErr:
         ajmp  Recover           ; attempt bus recovery.

; Send data byte(s) to slave with subaddress.
;   Enter with slave address in ACC, subaddress in SubAdr, # of bytes to
;   send in ByteCnt, data in XmtDat buffer.

SendSub:
         clr   NoAck             ; clear error flags.
         clr   Fault
         clr   retry
         mov   StackSave,SP      ; save stack address for bus fault.
         mov   A,SlvAdr          ; get slave address.
         acall SendAddr          ; get bus and send slave address.
         jb    NoAck,SSEX        ; check for missing acknowledge.
         jb    Fault,SSubErr     ; check for bus fault.

         mov   A,SubAdr          ; get slave subaddress.
         acall XmitByte          ; send subaddress.
         jb    NoAck,SSEX        ; check for missing acknowledge.
         jb    Fault,SSubErr     ; check for bus fault.
         mov   R0,#XmtDat        ; set start of transmit buffer.

SSLoop:  mov   A,@R0             ; get data for slave.
         inc   R0
         acall XmitByte          ; send data to slave.
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         jb    NoAck,SSEX        ; check for missing acknowledge.
         jb    Fault,SSubErr     ; check for bus fault.
         djnz  ByteCnt,SSLoop

SSEX:    acall SendStop          ; send an I2C stop.
         ret

; Handle a transmit bus fault.

SSubErr:
         ajmp  Recover           ; attempt bus recovery.

; Receive data byte(s) from slave with subaddress.
;   Enter with slave address in SlvAdr, subaddress in SubAdr, # of data bytes
;   requested in ByteCnt. data returned in RcvDat buffer.

RcvSub:  clr   NoAck             ; clear error flags.
         clr   Fault
         clr   retry
         mov   StackSave,SP      ; save stack address for bus fault.
         mov   A,SlvAdr          ; get slave address.
         acall SendAddr          ; send slave address.
         jb    NoAck,RSEX        ; check for missing acknowledge.
         jb    Fault,RSubErr     ; check for bus fault.

         mov   A,SubAdr          ; get slave subaddress.
         acall XmitByte          ; send subaddress.
         jb    NoAck,RSEX        ; check for missing acknowledge.
         jb    Fault,RSubErr     ; check for bus fault.

         acall RepStart          ; send repeated start.
         jb    Fault,RSubErr     ; check for bus fault.
         mov   A,SlvAdr          ; get slave address.
         setb  ACC.0             ; get bus read bit.
         acall SendAd2           ; send slave address.
         jb    NoAck,RSEX        ; check for missing acknowledge.
         jb    Fault,RSubErr     ; check for bus fault.

         mov   R0,#RcvDat        ; set start of receive buffer.
         djnz  ByteCnt,RSLoop    ; check for count = 1 byte only.
         sjmp  RSLast

RSLoop:  acall RDAck             ; get data and send an acknowledge.
         jb    Fault,RSubErr     ; check for bus fault.
         mov   @R0,A             ; save data.
         inc   R0
         djnz  ByteCnt,RSLoop    ; repeat until last byte.

RSLast:  acall RcvByte           ; get last data byte from slave.
         jb    Fault,RSubErr     ; check for bus fault.
         mov   @R0,A             ; save data.

         mov   I2DAT,#80h        ; send negative acknowledge.
         jnb   ATN,$             ; wait for NAK sent.
         jnb   DRDY,RSubErr      ; check for bus fault.

RSEX:    acall SendStop          ; send an I2C bus stop.
         ret

; Handle a receive bus fault.

RSubErr:
         ajmp  Recover           ; attempt bus recovery.
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;****************************************************************************
;                                 Subroutines
;****************************************************************************

; Send address byte.
;   Enter with address in ACC.

SendAddr: mov   I2CFG,#BMRQ+BTIR+CTVAL  ; request I2C bus.
          jnb   ATN,$             ; wait for bus granted.
          jnb   Master,SAErr      ; should have become the bus master.
SendAd2:  mov   I2DAT,A           ; send first bit, clears DRDY.
          mov   I2CON,#BCARL+BCSTR+BCSTP ; clear start, releases SCL.
          acall XmitAddr          ; finish sending address.
          ret

SAErr:    setb   Fault            ; return bus fault status.
          ret

; Byte transmit routine.
;   Enter with data in ACC.
;   XmitByte : transmits 8 bits.
;   XmitAddr : transmits 7 bits (for address only).

XmitAddr:  mov   bitCnt,#8        ; set 8 bits of address count.
           sjmp  Xmbit2
XmitByte:  mov   bitCnt,#8        ; set 8 bits of data count.
Xmbit:     mov   I2DAT,A          ; send this bit.
Xmbit2:    rl    A                ; get next bit.
           jnb   ATN,$            ; wait for bit sent.
           jnb   DRDY,XMErr       ; should be data ready.
           djnz  bitCnt,Xmbit     ; repeat until all bits sent.
           mov   I2CON,#BCDR+BCXA ; switch to receive mode.
           jnb   ATN,$            ; wait for acknowledge bit.
           jnb   RDAT,XMBX        ; was there an ack?
           setb  NoAck            ; return no acknowledge status.
XMBX:      ret

XMErr:     setb  Fault            ; return bus fault status.
           ret

; Byte receive routines.
;   RDAck: receives a byte of data, then sends an acknowledge.
;   RcvByte : receives a byte of data.
;   data returned in ACC.

RDAck:     acall RcvByte          ; receive a data byte.
           mov   I2DAT,#0         ; send receive acknowledge.
           jnb   ATN,$            ; wait for acknowledge sent.
           jnb   DRDY,RdErr       ; check for bus fault.
           ret

RcvByte:   mov   bitCnt,#8        ; set bit count.
           clr   A                ; init received byte to 0.
Rbit:      orl   A,I2DAT          ; get bit, clear ATN.
           rl    A                ; shift data.
           jnb   ATN,$            ; wait for next bit.
           jnb   DRDY,RdErr       ; should be data ready.
           djnz  bitCnt,Rbit      ; repeat until 7 bits are in.
           mov   C,RDAT           ; get last bit, don’t clear ATN.
           rlc   A                ; form full data byte.
           ret

RdErr:     setb  Fault            ; return bus fault status.
          ret
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; I2C stop routine.

SendStop:
          clr   MASTRQ             ; release bus mastership.
          mov   I2CON,#BCDR+BXSTP  ; generate a bus stop.
          jnb   ATN,$              ; wait for atn.
          mov   I2CON,#BCDR        ; clear data ready.
          jnb   ATN,$              ; wait for stop sent.
          mov   I2CON,#BCARL+BCSTP+BCXA ; clear I2C bus.
          clr   TIRUN              ; stop timer I.
          ret

; I2C repeated start routine
;   Enter with address in ACC.

RepStart:
          mov   I2CON,#BCDR+BXSTR  ; send repeated start.
          jnb   ATN,$              ; wait for ATN.
          mov   I2CON,#BCDR        ; clear data ready.
          jnb   ATN,$              ; wait for repeated start sent.
          mov   I2CON,#BCARL+BCSTR ; clear start.
          ret

; Bus fault recovery routine.

Recover:
          acall FixBus             ; See if bus is dead or can be ‘fixed’.
          jc    BusReset           ; If not ‘fixed’, try extreme measures.
          setb  Retry              ; If bus OK, return to main routine.
          clr   Fault
          clr   NoAck
          setb  CLRTI
          setb  TIRUN              ; Enable timer I.
          setb  ETI                ; Turn on timer I interrupts.
          ret

; This routine tries a more extreme method of bus recovery.
;   This is used if SCL or SDA are stuck and cannot otherwise be freed.
;   (will return to the Recover routine when Timer I times out)

BusReset:
          clr   MASTRQ             ; Release bus.
          mov   I2CON,#0BCh        ; Clear all I2C flags.
          setb  TIRUN
          sjmp  $                  ; Wait for timer I timeout (this will
                                   ;   reset the I2C hardware).

; This routine attempts to regain control of the I2C bus after a bus fault.
;   Returns carry clear if successful, carry set if failed.

FixBus:   clr   MastRQ             ; Turn off I2C functions.
          setb  c
          setb  SCL                ; Insure I/O port is not locking I2C.
          setb  SDA
          jnb   SCL,FixBusEx       ; If SCL is low, bus cannot be ‘fixed’.
          jb    SDA,RStop          ; If SCL & SDA are high, force a stop.
          mov   BitCnt,#9          ; Set max # of tries to clear bus.
ChekLoop: clr   SCL                ; Force an I2C clock.
          acall SDelay
          jb    SDA,RStop          ; Did it work?
          setb  SCL
          acall SDelay
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          djnz  BitCnt,ChekLoop    ; Repeat clocks until either SDA clears
                                   ;   or we run out of tries.
          sjmp  FixBusEx           ; Failed to fix bus by this method.

RStop:    clr   SDA                ; Try forcing a stop since SCL & SDA
          acall SDelay             ;   are both high.
          setb  SCL
          acall SDelay
          setb  SDA
          acall SDelay
          jnb   SCL,FixBusEx       ; Are SCL & SDA still high? If so,
          jnb   SDA,FixBusEx       ;   assume bus is now OK, and return
          clr   c                  ;   with carry cleared.
FixBusEx:
          ret

; Short delay routine (10 machine cycles).

SDelay:   nop
          nop
          nop
          nop
          nop
          nop
          nop
          ret

;****************************************************************************
;                                 Main Program
;****************************************************************************

Reset:
          setb  ETI                ; enable timer I interrupts.
          setb  EA                 ; enable global interrupts.

; These test cases are setup to be used with the I2C Demo board.

MainLoop:
          mov   SlvAdr,#KEYLED     ; set slave address (8–bit I/O port).
          mov   ByteCnt,#1         ; set up byte count.
          mov   SubAdr,#0h         ; set slave subaddress.
          acall RcvSub             ; read data from slave.
          jb    retry,MainLoop     ; repeat if there is anything wrong.

          mov   a,RcvDat           ; get received data byte.
          anl   a,#0fh             ; mask off the pushbuttons.
          swap  a                  ; mirror the pushbuttons to the LED bits.
          orl   a,#0fh             ; don’t lock the pushbutton bits.
          mov   XmtDat,a           ; echo back this value.

ML2:      mov   SlvAdr,#KEYLED     ; set slave address (8–bit I/O port).
          mov   ByteCnt,#1         ; set up byte count.
          mov   SubAdr,#0h         ; set slave subaddress.
          acall SendSub            ; send data to slave.
          jb    retry,ML2          ; repeat if there is anything wrong.

          sjmp  MainLoop           ; repeat only the pushbutton/LED transaction.

          org   0fd00h             ; EPROM Configuration Byte (UCFG1)
          db    038h               ; WDT off, RST pin on, port RST high,
                                   ;   BO=2.5V, CLK / 1, osc = high freq.
          end



Philips Semiconductors Application note

AN464Using the 87LPC76X microcontroller 
as an I2C bus master

2000 Jan 11 17

NOTES



Philips Semiconductors Application note

AN464Using the 87LPC76X microcontroller 
as an I2C bus master

2000 Jan 11 18

Definitions
Short-form specification —  The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition —  Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information —  Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support —  These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes —  Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone  800-234-7381

  Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.
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