INTEGRATED CIRCUITS

ARPPLICATION NOTIE

ABSTRACT

This procedure is suggested to verify the signal, bus, power
connections and timing between the host (control processor), UART
and printed circuit board. The following procedures may be executed
and the results evaluated without recourse to any exotic test
equipment (logic or protocol analyzers, oscilloscopes, etc). The
assumption on which this is based requires that the processor must
be able to read data from and write data to the UART and have some
means of presenting those results to the human operator. If one can
not be absolutely certain that simple reads and writes are properly
executed then any other means of evaluating the UART connections
will be suspicious.

AN462

Hardware and software verification
procedure

author: Peter Narvaez 1998 Oct 07

Philips PHILIPS
Semiconductors AN p

4

Philips Semiconductors Application note
__|

Hardware and software verification procedure AN462

Summary: This procedure is suggested to verify the signal, bus, power connections and timing between the host (control processor), UART
and printed circuit board. The following procedures may be executed and the results evaluated without recourse to any exotic test equipment
(logic or protocol analyzers, oscilloscopes, etc). The assumption on which this is based requires that the processor must be able to read data
from and write data to the UART and have some means of presenting those results to the human operator. If one can not be absolutely certain
that simple reads and writes are properly executed then any other means of evaluating the UART connections will be suspicious.

General procedure: To perform writes and reads of the several registers where the only “ clock “ involved is the chip select, read and write pins.
Secondly to observe the results of writes to several of the control registers and observe the results by reading the status registers. The several
procedures suggested below verify bus data flow and use the “Local Loop back” mode to verify the receiver and transmitter operation. The
local loop back mode (where in all data transmission and reception occurs within the UART) will be used to setup processor interrupt or polling
conditions. Successful completion of these procedures will show correct operation of all internal registers, bus interface, clock generation,
counter timer and oscillator. The only thing not verified is the oscillator frequency and the connection of the TxD and RxD to external ports and
general purpose input and output pins.

General Comment: When in the hardware or software verification mode it is very advantageous to read the status register often. This is also
true when testing for some “random” or “infrequent” fault that appears after the hardware and software have been “verified”. The read of the
status may be performed before and after every access to the device! The content of this register will indicate when and where unexpected
conditions occurred. This will be indicative of conditions internal to the UART as well as external connection, timing, and software. An example
would be after the hardware reset is issued a read of the status shows that the transmitter empty bit set. THIS MEANS THE TRANSMITTER IS
ENABLED! (One would expect to see 0x00, which MUST be returned immediately after hardware reset.) However it is known that software
DID NOT enable the transmitter. Therefore one would reason “some very special” kind of noise, very slow reset fall time, etc. must have
looked like a transmitter enable command. If this situation did exist it would be pointless to go farther in the verification procedures until
correcting this fault. Another example: After a reset and several accesses to the UART and before the receiver is enabled one notes that the
some of the receiver data status bits (a parity error for example) is/are set. This could mean that the receiver is enabled (although an overt
software receiver enable command was not issued) and has received something. It could also mean that timing violations (contention on the
address bus maybe) moved the receiver FIFO read pointer such that the status of random power up conditions of the FIFO are reported. Often
it is found that different parts of the software have control of the UART and they are activated independently of each other. There are many
more conditions!

1998 Oct 07 2

Philips Semiconductors

Application note

Hardware and software verification procedure

AN462

Procedures

Expected Results and Comments

1. Do ahardware reset. (In systems where hardware reset is not
used, temporarily enable it by disconnecting the reset pin such
that a manual reset may be performed).

Hardware reset is not required for proper UART action. For these
procedures, however, it is highly recommend even if it is artificially
implemented. Software resetting is always available. However
knowing that software reset worked implies, at least to some extent,
that these procedures are not required. It is difficult to understand
how one would verify the efficacy of the software reset without going
through a good part of what is described below.

2. Do two writes of different data (OXAA, 0x55) to each of the sets of
MR register(s). Do not worry about MR pointers—just do the
writes!

This will always result in the second byte being written to MR2—the
x’55 in this case.

This will show (in step 4 below) that you can at least read and write
to the device and return data to the controlling system. No other
exotic measuring devices are required—only the system itself. |
believe this test will work even without Vsg and Vpp applied although
logical low levels would be near +0.7 volt.

3. Read the status register of each UART before and after the
accesses to the MR registers. They must always return x’00.

The read of the status must return x’00. If not x’00 then the write to
the MR register was corrupted to do some other action. The
condition of the status register indicates what that may be.

4. Perform a single read of the MR register. Again, don’t worry
about the MR pointer. Just do the read!

The read will return the second byte written to the MR register; A
x’55 would be returned for the data above.

Caution: This is a very important step. It shows the validity of
fundamental control. However it is so simple from the internal
logic of the chip that it will most likely work even if Vgg and Vpp
are not connected!

After the previous two writes (in step 2) the MR pointer must be at
MR2. Then a read of MR will return the value of the second byte
written to the MR in step 2.

This step indicates that at least some of the address lines are
connected and operating correctly and that the CEN, RDN, and WRN
signals are correct. It also shows that the data bus is operating but it
does not show that the data bus is correctly wired.

Most CMOS devices of nominal design can be powered through
input pins assuming at least one is at V¢ and another is at Vgs.

The internal logic will then be supplied with approximately 3.6 volts (a
diode drop above Vss and a diode drop below Vcc). They will most
likely not operate a specified speed however. This is a good way
(Vcc and Vgg pins not connected) to generate the famous CMOS
latch up which can destroy CMOS devices. Modern design of CMOS
circuits considers this potential for latch up and consequently circuit
design and process procedures have been improved to discourage
the latch up “feature.” However the “old timers” will say that if you try
hard enough one can latch up any CMOS integrated circuit. | haven't
tried.

5. Write 0x10 to the command register (CR) at chip address 0x2.
Repeat the writes to the MR registers of step 2. Set the
MR pointer back to MR1 and do two reads of the MR register.
Do this for all sets of the MR registers. The two bytes previously
written MUST be returned.

Note: It would be convenient, for step 8, to leave the MR1 and
MR2 set to 00 and 87 respectively. However for the purpose of
this step all MR registers should be written with different data.

This shows that one more address line is operating, one data line is
correct and that the oscillators operating and the UART is not in he
power down mode and Vgg and Vpp are connected.

Through this entire sequence a read of the status register must
return x'00.

6. Write to the command register again and enable the transmitter.
Write x'15 to CR of each UART

Enabling the transmitters will cause the transmitter status bits in the
status register (SR) to set immediately. It also sets the MR pointer to
MR1

7. Read the status register. You must see the transmitter ready and
empty bits set in the status register. The status register read
should return a 0x0C.

Now to regress a bit: If the MR1 and MR2 values are at 00 and
87 respectively the receivers and transmitters will be put into the
“local loop back” mode. Set them to those values now. (The MR
pointer was set to MR1 in previous step.)

8. Write to the clock select registers and select a clock, say code
BB — 9600 baud, for each receiver and transmitter.

1998 Oct 07

Philips Semiconductors

Application note

Hardware and software verification procedure

AN462

Procedures

Expected Results and Comments

9. Write to the command register and enable the receivers and
transmitters. (0x05) ??? already done step 8 ??

10. Read status. It should still be OC.

11. Write a byte to the transmitter. Now several events will occur
which will be shown through a read of the status register(s)

12.Loop on a read of the status registers. The important events to
read are the status conditions of 0x04 and 0x0D.

a. Immediately after the write to the transmitter the status will return
a x’00.

b. Status now changes to x’'04 showing the start bit is completed
and the TxFIFO is ready for another byte

c. Next the status will read 0x05. This state will exist for less than
7/16-bit time. This is usually not seen by the bus cycle.

d. The status will now go to Ox0D.

The status register will report read this sequence of values starting
with 0xOC then 0x00, 0x04, 0xOC, 0x0D. Due to the asynchronous
nature of the read timing with respect to the 9600 baud clock you
may not see all or the above values; some exist only for 1/16 bit time
and some for only 270 ns. However you will certainly see the 0x04
and the 0x0D.

This shows the transmitter has accepted the byte, is loading it to the
shift register and is starting to send the start bit.

b) The time for the x’04 to occur is a variable that depends on the
relative positions of the Tx 16x clock, the Tx 1x clock and the bus
cycle. It may be from 1/16 to 17/16-bit time.

c) It shows receiver having received the byte (The receiver loads the
byte to the Rx FIFO shortly after the center of the stop bit time.) and
the transmitter has not yet finished the stop bit.

d) The status shows the receiver has loaded the byte to the RxFIFO
and the transmitter is empty.

13. Read the receiver FIFO.

You must read the byte loaded to the transmitter in step 8.

14.Read the status. It should show 0x0C.

It should show OC meaning that the receiver FIFO is now empty;
transmitter is empty and FIFO still ready to be loaded.

15. This finishes the basic verification of the bus interface and
expected values from the status register.

All of the above MUST function as described. Any unexpected
results will be caused by timing violations, incorrect wiring, or the
oscillator not starting. Of course a damaged chip must also be
considered. FAILURES OF THE ABOVE PROCEDURE WILL BE
CAUSED BY “FIRST ORDER “ EFFECTS!

If the MR2 register is now set to 03 you should be able to connect the
transmitter output pin to the receiver input pin and repeat the steps 8

to 10. This shows the transmitter and receiver can converse through

an “external” loop back.

In most cases this may not be done easily since board connections
to the UART are in place. However if it can be done such that only a
“wire type” connection exists between the transmitter and the
receiver then it proves that the transmitter output port and the
receiver input port have not been damaged in the fracas of getting
the first prototype board built.

The antithesis of this procedure is attempting to verify the
function of the UART by “having it talk to” some other UART or
a dumb terminal. This implies that you already can program he
UART for the “other device” and that the “other device” is
correctly programmed and all the intervening hardware is
operating! It is suggested that this is a rather large assumption;
that an error in this assumption has extremely high probability
of leading one to a debug path that has no relation to the real
problem!

At this point connection to real external transmitters and receivers is
meaningful. Any malfunction can now be properly partitioned to the
areas of external hardware, differences between the setups of the
communications devices and misunderstandings of the system
protocols. System protocols include baud rates, character lengths,
RTS/CTS handshake, simplex, or duplex etc.

1998 Oct 07

Philips Semiconductors Application note

Hardware and software verification procedure AN462

Procedures Expected Results and Comments

PLEASE NOTE THAT ALL OF THIS IS DONE WITH THE SYSTEM

ITSELF! No external logic analyzers, transmitters, receivers, etc. are
required. The only three entities are used: the UART, its interface to

the control device and the control/display device itself.

Now the problem will be to determine that the UART can
communicate with external devices. For example, in this list the ACR
(Auxiliary Control Register) was not used nor was MRO programmed.
This could cause the baud rate to be other than 9600 but the
transmitters and receivers would still see the same baud rate and
operate together.

While in the local loop back mode all UART to processor controls and
interrupt configurations may be verified. This seems like a good
thing to do since it eliminates any external influences from clouding
the analysis of what the UART is doing and how the host interprets
its actions.

1998 Oct 07 5

Philips Semiconductors Application note

Hardware and software verification procedure AN462

Preliminary code for setting up the C100 devices for basic 9600-baud receive and transmit Initialization for the 28L198, 26C198, 26C194 and
28L194.

For this code, use “Local Loop back” or connect transmitter A to Receiver A. If this is not done then the status bits and interrupt associated with
the receiver will not go active. See steps 19 to 23.

Step | Action Reg Addr | Data Comments
1 WR GCCR F8 04 | Async bus cycle, Interrupt vector modified to show channel code in lower 3 bits of vector
2 WR CRa 81 F8 | Reset chip
3 WR MROa 00 CO | No flow control, no Xon/Xoff, Tx Int on FIFO empty
4 WR MR1la 01 13 | No RTS/CTS, ISR unmasked, character mode, no parity, 8 data bits
5 WR MR2a 10 00 | Normal mode, Receiver interrupt on ready, 1 stop bit
6 WR Rx CSR ocC 1E | 9600 baud
7 WR Tx CSR OE 1E | 9600 Baud
8 WR CRa 81 28 | Reset Break Change, Disable Tx & Rx (Redundant at this point but good restart w/o power
cycle
9 RD SRa 81 00 | Should read a status of 00—ANYTHING ELSE SHOWS A FUNDAMENTAL PROBLEM!
10 RD ISRa 82 00 “
11 WR IMRa 82 03 | Enable Tx and Rx interrupts for channel a
12 WR ICR 1B 00 | setinterrupt threshold at 00
13 WR IVR 1F 00 | Interrupt vector set to 00. (See step 1—lower three bits modified)
14 WR CRa 81 03 | Enable Rx, Tx. This will generate an immediate interrupt.

This interrupt will show transmitter "A” interrupting. You may see this by reading the SR 9
Status Register) or by letting the interrupt vector steer the service routine.

15 RD SRa 81 0C | transmitter ready & empty

16 WR TXa 83 nun | Write any data you wish. Tx interrupt will go off

17 WR TXa 83 tt | write any value you wish

18 RD SRa 81 04 | 0O4—transmitter not empty and ready for more data. Interrupt is off because Tx fifo is not
empty

— After a character time (10.4ms) the receiver interrupt is active. Decide on service type per
step 14

19 RD SRa 81 05 | Receiver has one byte and Tx is still busy

— Wait one more character time

20 RD SRa 81 0B | Tx ready and empty, Receiver FIFO ready

21 RD RXa 83 nn | Read First data byte sent by transmitter

22 RD RXa 83 tt second byte sent by the transmitter

23 RD SRa 81 0C | Receiver is empty; transmitter is empty, and ready. See step 15.

1998 Oct 07 6

Philips Semiconductors Application note

Hardware and software verification procedure AN462

The programming below is a basic setup for all SCCxxx, SCxxx, and SCNxxx UART devices. Setup is for one start bit, 8 data bits, no parity
and one stop bit. Recall that for the devices under consideration the access to the MR registers is by the MR pointer. TxA may be externally
connected to RxA or Local Loop back may be used.

Step | Action Reg | Addr | Data Comments
1 Execute hardware reset.
2
3 WR MROa 0 00 [No flow control, no Xon/Xoff, Tx Int on FIFO empty (only SCxxx devices have MRO)
4 WR MR1la 0 13 | No RTS/CTS, character mode, no parity, 8 data bits
5 WR MR2a 0 07 | Normal mode, Receiver interrupts on ready, 1 stop bit. (External Tx to Rx connection is used)
6 WR CSRa 1 BB | 9600 baud Rx, 9600 baud Tx
7 WR CRa 2 28 | Reset error hits, disable Rx and Tx (Redundant at this point but good restart w/o power cycle)
8 WR ACR 4 00 [Baud rate normal, C/T to counter mode, External C/T clock, disable change of state.
9 WR IMR 5 03 | Enable interrupts for RxA and TxA
10 RD SRa 1 00 [Status register should read 0OXO0—ANYTHING ELSE SHOWS A FUNDAMENTAL PROBLEM!
11 WR CRa 2 15 | Reset MR pointer to MR1, Enable Rx, and Tx. Interrupt will occur immediately!
12 RD SRa 2 0C | Shows transmitter is empty and ready
13 WR TXa 3 55 | Load first byte to transmitter. Interrupt sets inactive for approximately 1 to 2 bit times.
14 WR TXA 3 AA | Load next byte to TXa. Interrupt will extinguish for about one character time.
15 RD ISR 5 00 [Loop on this read operation or wait for the interrupt.
The next interrupt will be the transmitter followed by a receiver interrupt
16 RD SRa 1 0D [Transmitter is empty and ready again, receiver has one byte in its FIFO.

1998 Oct 07 7

Philips Semiconductors Application note

Hardware and software verification procedure AN462
Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For

detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is notimplied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips

Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Rightto make changes— Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors 0 Copyright Philips Electronics North America Corporation 1998
811 East Arques Avenue All rights reserved. Printed in U.S.A.
P.O. Box 3409

Sunnyvale, California 94088-3409

Date of release: 10-98
Telephone 800-234-7381

Document order number: 9397 750 04631

Let make things bette
= PHILIPS

	ABSTRACT
	Definitions
	Disclaimers

