
������

�����
	����
�

AN461
In-circuit and In-application programming
of the 89C51Rx+/Rx2/66x microcontrollers

Author: Bill Houghton
Supersedes data of 2000 May 25
IC28 Data Handbook

2000 Jul 28

INTEGRATED CIRCUITS

ABSTRACT
This application note describes the three methods that can be used to
program the Flash code memory of the 89C51Rx+/Rx2/66x families
of microcontrollers. It discusses in detail the operation of the
In-System Programming (ISP) capability which allows these
microcontrollers to be programmed while mounted in the end product.
These microcontrollers also have an In-Application Programming
(IAP) capability which allows them to be programmed under firmware
control of the embedded application. This capability is also described.

Philips Semiconductors Application note

AN461In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

22000 Jul 28

INTRODUCTION
This document gives a brief list of features for the
89C51Rx+/Rx2/66x family of microcontrollers with Flash memory,
and the ways that the Flash memory can be programmed.

MCU FEATURES
• 80C51 CPU

• 8K,16K,32K,64 KB Flash EPROM

• Flash EPROM is sectored to allow the user to erase and
reprogram sectors

• 1 KB Masked BOOTROM for In-System Programming of the
Flash EPROM

• User callable BOOTROM subroutines for Flash erase and
programming

• Can automatically run user program or BOOTROM program at
power-up

• Three security bits

• Fully static operation: 0 to 33Mhz @ 12 clocks/instruction; 0 to
20MHz @ 6 clocks/instruction

• 100% code and pin compatibility with 80C52

• Packages: 44-pin PLCC, 44-pin QFP, 40-pin DIP

The Flash Program Memory can be programmed
using three different methods:
• The traditional parallel programming method (not described in this

Application Note)

• A new In-System Programming method (ISP) through the serial
port

• In Application programming method (IAP) under control of a
running microcontroller application program

Programming functions support the following functions:

• erase and blank check Flash memory

• program and read / verify Flash memory

• program and verify security bits, status byte and boot vector

• read signature bytes

• full-chip erase

Memory Spaces
Code memory on Philips Flash microcontrollers is organized into
sectors of 8KB or 16KB, as indicated below. Different amounts of
memory are present depending on the specific device as shown in
Table 1 below.

Table 1. Memory Block of Philips Flash Microcontrollers

Device Total Memory 8KB
(0–1FFF)

8KB
(2000–3FFF)

16KB
(4000–7FFF)

16KB
(8000–BFFF)

16KB
(C000–FFFF)

89C51RB+ 16KB X X

89C51RB2 16KB X X

89C51RC+ 32KB X X X

89C51RC2 32KB X X X

89C51RD+ 64KB X X X X X

89C51RD2 64KB X X X X X

89C660 16KB X X

89C662 32KB X X X

89C664 64KB X X X X X

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 3

General Overview of In-System Programming (ISP)
In-System Programming (ISP) is a process whereby a blank device
mounted to a circuit board can be programmed with the end-user
code without the need to remove the device from the circuit board.
Also, a previously programmed device can be erased and
reprogrammed without removal from the circuit board.

In order to perform ISP operations the microcontroller is powered up
in a special “ISP mode”. ISP mode allows the microcontroller to
communicate with an external host device through the serial port,
such as a PC or terminal. The microcontroller receives commands
and data from the host, erases and reprograms code memory, etc.
Once the ISP operations have been completed the device is
reconfigured so that it will operate normally the next time it is either
reset or power removed and reapplied.

All of the Philips microcontrollers shown in Table 1 have a 1KB
factory-masked ROM located in the upper 1KB of code memory
space from FC00 to FFFF. This 1KB ROM is in addition to the
memory blocks shown in Table 1. This ROM is referred to as the
“Bootrom”. This Bootrom contains a set of instructions which allows
the microcontroller to perform a number of Flash programming and
erasing functions. The Bootrom also provides communications
through the serial port. The use of the Bootrom is key to the
concepts of both ISP and In-Application Programming (IAP). The
contents of the bootrom are provided by Philips and masked into
every device.

When the device is reset or power applied, and the EA/ pin is high or
at the VPP voltage, the microcontroller will start executing
instructions from either the user code memory space at address
0000-h (“normal mode”) or will execute instructions from the
Bootrom (ISP mode). Selection of these modes will be described
later.

General Overview of In-Application Programming
(IAP)
Some applications may have a need to be able to erase and
program code memory under the control fo the application. For
example, an application may have a need to store calibration
information or perhaps need to be able to download new code
portions. This ability to erase and program code memory in the
end-user application is “In-Application Programming” (IAP).

The Bootrom routines which perform functions on the Flash memory
during ISP mode such as programming, erasing, and reading, are
also available to end-user programs. Thus it is possible for an

end-user application to perform operations on the Flash memory. A
common entry point (FFF0h) to these routines has been provided to
simplify interfacing to the end-users application. Functions are
performed by setting up specific registers as required by a specific
operation and performing a call to the common entry point. Like any
other subroutine call, after completion of the function, control will
return to the end-user’s code.

The Bootrom is shadowed with the user code memory in the
address range from FC00h to FFFFh. This shadowing is controlled
by the ENDBOOT bit (AUXR1.5). When set, accesses to internal
code memory in this address range will be from the boot ROM.
When cleared, accesses will be from the user’s code memory. It will
be NECESSARY for the end-user’s code to set the ENBOOT bit
prior to calling the common entry point for IAP operations, even for
devices with 16KB and 32KB of internal code memory. (ISP
operation is selected by certain hardware conditions and control of
the ENBOOT bit is automatic when ISP mode is activated).

BOOTROM (1KB
SHADOWED)

BLOCK 4 (16 KB)

BLOCK 3 (16 KB)

BLOCK 2 (16 KB)

BLOCK 1 (8 KB)

BLOCK 0 (8 KB)

64KB
DEVICES

32KB
DEVICES

16KB
DEVICES

SU01344

Figure 1. Memory Space in Flash Microcontrollers

Using the Watchdog Timer (WDT)
The 89C51Rx2 and 89C66x devices support the use of the WDT in
IAP. The user specifies that the WDT is to be fed by setting the most
significant bit of the function parameter passed in R1 prior to calling
PGM_MTP. The WDT function is only supported for Block Erase
when using the Quick Block Erase. The Quick Block Erase is
specified by performing a Block Erase with Register R0 = 0.
Requesting a WDT feed during IAP should only be performed in
applications that use the WDT since the process of feeding the WDT
will start the WDT if the WDT was not running.

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 4

IN-SYSTEM PROGRAMMING (ISP)
The Philips In-System Programming (ISP) facility has made in-circuit
programming in an embedded application possible with a minimum
of additional expense in components and circuit board area.

The ISP function uses five pins: TxD, RxD, VSS, VCC, and VPP (see
Figure 2). Only a small connector needs to be available to interface
your application to an external circuit in order to use this feature.
The VPP supply should be decoupled and VPP not allowed to
exceed datasheet limits.

VSS

X2

X1

RST

VCC

+12V/5V*

+5V

TxD

RxD

VSS

VCC

VPP

TxD

RxD

SU01044
*Depends on specific device – see text

0.1µF

P2.7’1’

Figure 2. In-System Programming with a Minimum of Pins

In order to understand how ISP works it is necessary to first discuss
two special Flash registers; the BOOT VECTOR and the STATUS
BYTE. At the falling edge of reset the MCU examines the contents
of the Status Byte. If the Status Byte is set to zero, power-up
execution starts at location 0000H which is the normal start address
of the user’s application code. When the Status Byte is set to a
value other than zero, the contents of the Boot Vector is used as the
high byte of the execution address and the low byte is set to 00H.
The factory default setting is 0FCH, corresponds to the address
0FC00H for the factory masked-ROM ISP boot loader (Boot ROM).
A custom boot loader can be written with the Boot Vector set to the
custom boot loader.

NOTE:
When erasing the Status Byte or Boot Vector, both bytes
are erased at the same time. It is necessary to reprogram
the Boot Vector after erasing and updating the Status Byte.

The boot loader can also be executed by holding PSEN low, EA’
greater than VIH (such as +12V), P2.7 and ALE HIGH (or not
connected) at the falling edge of RESET. This is the same effect as
having a non-zero status byte. This allows an application to be built
that will normally execute the end user’s code but can be manually
forced into ISP operation.

The ISP feature allows programming of the Flash EPROM through
the serial port.

The ISP programming is accomplished by serial boot loader
subroutines found in the BOOTROM. These routines use Intel hex
records to receive commands and data from external sources such
as a host PC. (Details of these hex records are described in a later
section of this application note.)

ENBOOT = 0

ENBOOT = 1

Boot Vector

PSEN

Status Byte

Reset
0000

2000

4000

8000

C000

FC00

FFFF

�0

Low

High

AUXR1

ENBOOT

SU01360

PROGRAM MEMORY

Boot ROM

=0

Figure 3. ISP Flow Chart

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 5

The Boot ROM code is located at memory address FC00H and can
be invoked by having the Status byte non-zero and having the Boot
Vector = FCH. (If the Boot Vector is a value other than FCH, an
attempt to enter the ISP mode will start execution at the wrong
address and may result in incorrect responses). After programming
the Flash, the status byte should be programmed to zero in order to
allow execution of the user’s application code beginning at address
0000H.

We recommend using the following sequence for ISP programming.
Refer to Table 2 for data record structure:

1. Enter the ISP mode by applying one of the methods previously
described (non-zero Status Byte, PSEN, etc.).

2. Send an uppercase “U” from the host to the microcontroller to
autobaud.

3. Send a record from the host to the microcontroller to specify the
oscillator frequency.

4. Send a record from the host to the microcontroller to erase the
desired block(s).

5. Send records from the host to the microcontroller to program
desired data into the device.

6. Send a record to erase both Status Byte and Boot Vector after
ISP has been successfully done. There is no way to erase the
Status Byte without erasing the Boot Vector.

7. Send a record to program the Boot Vector back to the original
value (0FCH) if the you want to keep the default serial loader as
the ISP communication channel.

8. Write 00H to the Status Byte so that the program will begin at
address 0000H after reset.

Using the In-System Programming (ISP)
The ISP feature allows for a wide range of baud rates to be used in
your application, independent of the oscillator frequency. It is also
adaptable to a wide range of oscillator frequencies. This is
accomplished by measuring the bit-time of a single bit in a received
character. This information is then used to program the baud rate in
terms of timer counts based on the oscillator frequency. The ISP
feature requires that an initial character (an uppercase U) be sent to
the 89C51Rx+/Rx2/66x to establish the baud rate. The ISP firmware
provides auto-echo of received characters.

Once baud rate initialization has been performed, the ISP firmware
will only accept Intel Hex-type records. Intel Hex records consist of
ASCII characters used to represent hexadecimal values and are
summarized below:

:NNAAAARRDD..DDCC<crlf>

In the Intel Hex record, the “NN” represents the number of data
bytes in the record. The 89C51Rx+/Rx2/66x will accept up to 16
(10H) data bytes. The “AAAA” string represents the address of the
first byte in the record. If there are zero bytes in the record this field
is often set to 0000. The “RR” string indicates the record type. A
record type of “00” is a data record. A record type of “01” indicates
the end-of-file mark. In this application additional record types will be
added to indicate either commands or data for the ISP facility. The
maximum number of data bytes in a record is limited to 16 (decimal).
ISP commands are summarized in Table 2.

As a record is received by the 89C51Rx+/Rx2/66x the information in
the record is stored internally and a checksum calculation is
performed. The operation indicated by the record type is not
performed until the entire record has been received. Should an error
occur in the checksum, the 89C51Rx+/Rx2/66x will send an “X” out
the serial port indicating a checksum error. If the checksum
calculation is found to match the checksum in the record then the
command will be executed. In most cases successful reception of
the record will be indicated by transmitting a “.” character out the
serial port (displaying the contents of the internal program memory
is an exception).

In the case of a Data Record (record type 00) an additional check is
made. A “.” character will NOT be sent unless the record checksum
matched the calculated checksum and all of the bytes in the record
were successfully programmed. For a data record an “X” indicates
that the checksum failed to match and an “R” character indicates
that one of the bytes did not properly program. It is necessary to
send a type 02 record (specify oscillator frequency) to the
89C51Rx+/Rx2/66x before programming data.

The ISP facility was designed so that specific crystal frequencies
were not required in order to generate baud rates or time the
programming pulses. The user thus needs to provide the
89C51Rx+/Rx2/66x with information required to generate the proper
timing. Record type 02 is provided for this purpose.

WinISP, a software utility to implement ISP programming with a PC,
is available from the Philips website (www.semiconductors.philips.com).

Table 2. Intel-Hex Records Used by In-System Programming
RECORD TYPE COMMAND/DATA FUNCTION

00 Program Data
:nnaaaa00dd....ddcc

Where:
Nn = number of bytes (hex) in record
Aaaa = memory address of first byte in record
dd....dd = data bytes
cc = checksum

Example:
:10008000AF5F67F0602703E0322CFA92007780C3FD

01 End of File (EOF), no operation
:xxxxxx01cc

Where:
xxxxxx = required field, but value is a “don’t care”
cc = checksum

Example:
:00000001FF

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 6

RECORD TYPE COMMAND/DATA FUNCTION

02 Specify Oscillator Frequency
:01xxxx02ddcc

Where:
xxxx = required field, but value is a “don’t care”
dd = integer oscillator frequency rounded down to nearest MHz
cc = checksum

Example:
:0100000210ED (dd = 10h = 16, used for 16.0–16.9 MHz)

03 Miscellaneous Write Functions
:nnxxxx03ffssddcc

Where:
nn = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
03 = Write Function
ff = subfunction code
ss = selection code
dd = data input (as needed)
cc = checksum

Subfunction Code = 01 (Erase Blocks)
ff = 01
ss = block code as shown below:
 block 0, 0k to 8k, 00H
 block 1, 8k to 16k, 20H
 block 2, 16k to 32k, 40H
 block 3, 32k to 48k, 80H
 block 4, 48k to 64k, C0H
Example:
 :0200000301C03A erase block 4

Subfunction Code = 04 (Erase Boot Vector and Status Byte)
ff = 04
ss = don’t care
Example:
 :020000030400F7 erase boot vector and status byte

Subfunction Code = 05 (Program Security Bits)
ff = 05
ss = 00 program security bit 1 (inhibit writing to Flash)
 01 program security bit 2 (inhibit Flash verify)
 02 program security bit 3 (disable external memory)
Example:
 :020000030501F5 program security bit 2

Subfunction Code = 06 (Program Status Byte or Boot Vector)
ff = 06
ss = 00 program status byte
 01 program boot vector
Example:
 :030000030601FCF7 program boot vector with 0FCH

Subfunction Code = 07 (Full Chip Erase – not available with 89C51RB+/RC+/RD+ devices)
Erases all blocks, security bits, and sets status and boot vector to default values
ff = 07
ss = don’t care
dd = don’t care
Example:
 :0100000307F5 full chip erase

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 7

RECORD TYPE COMMAND/DATA FUNCTION

04 Display Device Data or Blank Check – Record type 04 causes the contents of the entire Flash array to be sent out
the serial port in a formatted display. This display consists of an address and the contents of 16 bytes starting with that
address. No display of the device contents will occur if security bit 2 has been programmed. Data to the serial port is
initiated by the reception of any character and terminated by the reception of any character.

General Format of Function 04
:05xxxx04sssseeeeffcc

Where:
05 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
04 = “Display Device Data or Blank Check” function code
ssss = starting address
eeee = ending address
ff = subfunction

 00 = display data
 01 = blank check

cc = checksum
Example:

:0500000440004FFF0069 display 4000–4FFF

05 Miscellaneous Read Functions

General Format of Function 05
:02xxxx05ffsscc

Where:
02 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
05 = “Miscellaneous Read” function code
ffss = subfunction and selection code

0000 = read signature byte – manufacturer id (15H)
0001 = read signature byte – device id # 1 (C2H)
0002 = read signature byte – device id # 2

0700 = read security bits
0701 = read status byte
0702 = read boot vector

cc = checksum
Example:

:020000050001F8 read signature byte – device id # 1

06 Direct Load of Baud Rate (not available with 89C51RB+/RC+/RD+ devices)

General Format of Function 06
:02xxxx06hhllcc

Where:
02 = number of bytes (hex) in record
xxxx = required field, but value is a “don’t care”
06 = ”Direct Load of Baud Rate” function code
hh = high byte of Timer 2
ll = low byte of Timer 2
cc = checksum

Example:
:02000006F500F3

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 8

WINISP – The Windows In-System Programmer
Utility Program
Launch the ISP program into a window. Use the mouse to select the
part type, the Windows serial port being used, and the oscillator
frequency in your application.

CHIP – selects the chip type:

• 89C51RC+

• 89C51RD+

PORT – Selects which port on the host computer is connected
to the ISP board

• COM1

• COM2

• COM3

• COM4

RANGE – Selects the beginning and ending address

• START

• END

WINISP Commands
Load File

Click the LOAD FILE button and enter the desired file name
into the dialog box

Erase Blocks
Click the ERASE BLOCKS button and use the mouse to
select the desired blocks. Click the ERASE! button.

Blank Check
Click the BLANK CHECK button.

Program Part
Click the PROGRAM PART button.

Read Part
Click the READ PART button.

Verify Part
Click the VERIFY PART button.

Fill Buffer
Enter the starting and ending address in the RANGE boxes.
Click the FILL BUFFER button. Enter the data pattern in the
next dialog box.

NOTE: The MCU must be running the BOOT ROM
program for WINISP to be able to communicate with the
microcontroller.

P35 17
P3.5/T1

P34 16
P3.4/T0

P33 15
INT1/P3.3

P32 14
INT0/P3.2

P17 9
P1.7/CEX4

P16 8
P1.6/CEX3

P15 7
P1.5/CEX2

P14 6
P1.4/CEX1

P13 5
P1.3/CEX0

P12 4
P1.2/ECI

P11 3
P1.1/T2EX

P10 2
P1.0/T2

RST 10
RST

VPP 35
EA/VPP

20 XTAL2

21
XTAL1

P89C51RD+ PLCC

U1
22MHz PARALLEL

Y121

21

C1

C2

27pF

27pF

2
1

2
1

C15
0.1uF

+5V

2
1

1
2

D1
1N914

R1
10K

2
1

1
2

C7
10uF 16V

S1
RST

PSEN32
PSEN

RXD11
P3.0/RXD

TXD13
P3.1/TXD

ALE33
PROG/ALE

P3719
P3.7/RD

P3618
P3.6/WR

P2731
P2.7/A15

P2630
P2.6/A14

P2529
P2.5/A13

P2428
P2.4/A12

P2327
P2.3/A11

P2226
P2.2/A10

P2125
P2.1/A9

P2024
P2.0/A8

P0736
P0.7/AD7

P0637
P0.6/AD6

P0538
P0.5/AD5

P0439
P0.4/AD4

P0340
P0.3/AD3

P0241
P0.2/AD2

P0142
P0.1/AD1

P0043
P0.0/AD0

3
ISP

NORMAL 1
S2

2

JP7

1
2

IN VPP = 5V
OUT VPP = 12V

+5V

R4
100K

1
2

1
2

R5
100K

1
U4

GND2
SEL

3
SHDN4
SENSE

LT1301CN8
VPP

8
7
6
5

PGND
SW
VIN
ILIM

+5V

1

TP1
TP

VPP21

MBRS130LT3
D2

2
1

C10
L1
10uHy

2
1

C9
1uF

2
1

47uF 16V

2
1

C8
0.1uF

2
1

C4
0.1uF 2

1

C6
0.1uF

+5V

U2

MAX232CPE

15
GND

6
V–

16
VCC

2
V+

2 1

C2–

C2+

C1–

C1+

5

4

3

1

2 1

8
R2IN

13
R1IN GND

R2OUT
9 R1OUT

12

T2IN
10 T1IN
11

RXD

GND
TXD 14

T1OUT 7
T2OUT

P1
FEMALE 90DEG. DB9

C3

0.1uF

C5

0.1uF

5 9 4 8 3 7 2 6 1

ONLY NEEDED FOR 89C51Rx+ DEVICES

SU01348

Figure 4. Typical ISP Implementation

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 9

In Application Programming Method
Several In Application Programming (IAP) calls are available for use by
an application program to permit selective erasing and programming of
Flash sectors. All calls are made through a common interface,
PGM_MTP. The programming functions are selected by setting up
the microcontroller’s registers before making a call to PGM_MTP at

FFF0H. The oscillator frequency is an integer number rounded down
to the nearest megahertz. For example, set R0 to 11 for 11.0592 MHz.
Results are returned in the registers. The IAP calls are shown in
Table 3.

Interrupts and the watchdog timer must be disabled while IAP
subroutines are executing.

Table 3. IAP calls
IAP CALL PARAMETER

PROGRAM DATA BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 02h
R1 = 82h (WDT feed, Rx2 & 66x only)
DPTR = address of byte to program
ACC = byte to program

Return Parameter
ACC = 00 if pass, !00 if fail

Sample routine:
;***** Program Device Data (DData) *****
;***** ACC holds data to write
;***** DPTR holds address of byte to write *****
;***** Returns with ACC = 00h if successful, else ACC NEQ 00h
WRData:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0, #11 ;FOSC
MOV R1,#02H ;program data function
MOV A,Mydata ;data to write
MOV DPTR,Address ;specify address of byte to read
CALL PGM_MTP ;execute the function
RET

ERASE BLOCK Input Parameters:
R0 = osc freq (integer)
R0 = 0 (QUICK ERASE, Rx2 & 66x only)
R1 = 01h
R1 = 81h (WDT feed, Rx2 & 66x only; can only be used with Quick Erase)
DPH = block code as shown below:
 block 0, 0k to 8k, 00H
 block 1, 8k to 16k, 20H
 block 2, 16k to 32k, 40H
 block 3, 32k to 48k, 80H
 block 4, 48k to 64k, C0H

DPL = 00h
Return Parameter

none
Sample routine:

;***** Erase Code Memory Block *****
;***** DPH (7:5) indicates which of the 5 blocks to erase
;***** DPTR values for the blocks are:
; 0000h = block 0
; 2000h = block 1
; 4000h = block 2
; 8000h = block 3
; C000h = block 4

ERSBLK:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0, #11 ;FOSC
MOV R1,#01H ;erase block
MOV DPTR,#BLk_NUM ;specify which block
CALL PGM_MTP ;execute the function
RET

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 10

IAP CALL PARAMETER

ERASE BOOT VECTOR &
STATUS BYTE

Input Parameters:
R0 = osc freq (integer)
R1 = 04h
R1 = 84h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = don’t care

Return Parameter
none

Sample routine:
;***** Erase Boot Vector (BV) & Status Byte (SB) *****
;***** Note: This command erases BOTH the SB & BV

ERSBBV;
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0, #11 ;FOSC
MOV R1,#04H ;erase status byte & boot vector
MOV DPH,#00h ;we don’t care about DPL
CALL PGM_MTP ;execute the function
RET

PROGRAM SECURITY BIT Input Parameters:
R0 = osc freq (integer)
R1 = 05h
R1 = 85h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 00h – security bit # 1 (inhibit writing to Flash)
 01h – security bit # 2 (inhibit Flash verify)
 02h – security bit # 3 (disable external memory)

Return Parameter
none

Sample routines:
;***** Program Security Bit1 *****
;***** DPTR indicates security bit to program *****

WRSB1:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#05H ;program security bit function
MOV DPTR,#0000h ;specify security bit 1
CALL PGM_MTP ;execute the function
RET

;***** Program Security Bit2 *****
;***** DPTR indicates security bit to program *****

WRSB2:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#05H ;program security bit function
MOV DPTR,#0001h ;specify security bit 2
CALL PGM_MTP ;execute the function
RET

;***** Program Security Bit3 *****
;***** DPTR indicates security bit to program *****

WRSB3:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#05H ;program security bit function
MOV DPTR,#0002h ;specify security bit 3
CALL PGM_MTP ;execute the function
RET

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 11

IAP CALL PARAMETER

PROGRAM STATUS BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 06h
R1 = 86h (WDT feed, Rx2, 66x only)
DPH = 00h
DPL = 00h – program status byte
ACC = status byte

Return Parameter
ACC = 00 if pass; not 00 if fails

Sample routine:
;***** Program Status Byte (SB) *****
;***** DPTR indicates program status byte *****
;***** ACC holds new value of Status Byte to program *****

WRSB:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#06H ;program status byte or boot vector
MOV DPTR,#0000h ;specify status byte
MOV A,NEW_SB ;
CALL PGM_MTP ;execute the function
RET

PROGRAM BOOT VECTOR Input Parameters:
R0 = osc freq (integer)
R1 = 06h
R1 = 86h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 01h – program boot vector
ACC = boot vector

Return Parameter
ACC = 00 if pass; not 00 if fails

Sample routine:
;***** Program Boot Vector (BV) *****
;***** DPTR indicates program boot vector *****
;***** ACC holds new value of boot vector to program *****

WRBV:
MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#06H ;program status byte or boot vector
MOV DPTR,#0001h ;specify boot vector
MOV A,NEW_SB ;new value for the boot vector
CALL PGM_MTP ;execute the function
RET

READ DEVICE DATA Input Parameters:
R1 = 03h
R1 = 83h (WDT feed, Rx2 & 66x only)
DPTR = address of byte to read

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Device Data (DData) *****
;***** DData returned in ACC *****
;***** DPTR holds address of byte to read *****
RDData:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#03H ;read data function
MOV DPTR,Address ;specify address of byte to read
CALL PGM_MTP ;execute the function
RET

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 12

IAP CALL PARAMETER

READ MANUFACTURER ID Input Parameters:
R0 = osc freq (integer)
R1 = 00h
R1 = 80h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 00h (manufacturer ID)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Manufacturer ID (MID) *****
;***** MID returned in ACC (should be 15h for Philips)
RDMID:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#00H ;read misc function
MOV DPTR,#0000H ;specify MID
CALL PGM_MTP ;execute the function
RET

READ DEVICE ID # 1 Input Parameters:
R0 = osc freq (integer)
R1 = 00h
R1 = 80h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 01h (device ID # 1)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Device ID 1 (DID1) *****
;***** DID1 returned in ACC
RDDID1:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#00H ;read misc function
MOV DPTR,#0001H ;specify device id 1
CALL PGM_MTP ;execute the function
RET

READ DEVICE ID # 2 Input Parameters:
R0 = osc freq (integer)
R1 = 00h
R1 = 80h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 02h (device ID # 2)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Device ID 2 (DID2) *****
;***** DID2 returned in ACC
RDDID2:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#00H ;read misc function
MOV DPTR,#0002H ;specify device id 2
CALL PGM_MTP ;execute the function
RET

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 13

IAP CALL PARAMETER

READ SECURITY BITS Input Parameters:
R0 = osc freq (integer)
R1 = 07h
R1 = 87h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 00h (security bits)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Security Bits (SBits) *****
;***** SBits returned in ACC (2:0)
RDSBits:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#07H ;read misc function
MOV DPTR,#0000H ;specify security bits
CALL PGM_MTP ;execute the function
RET

READ STATUS BYTE Input Parameters:
R0 = osc freq (integer)
R1 = 07h
R1 = 87h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 01h (status byte)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Status Byte (SB) *****
;***** SB returned in ACC
RDSB:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#07H ;read misc function
MOV DPTR,#0001H ;specify status byte
CALL PGM_MTP ;execute the function
RET

READ BOOT VECTOR Input Parameters:
R0 = osc freq (integer)
R1 = 07h
R1 = 87h (WDT feed, Rx2 & 66x only)
DPH = 00h
DPL = 02h (boot vector)

Return Parameter
ACC = value of byte read

Sample routine:
;*****reads the Boot Vector (BV) *****
;***** BV returned in ACC
RDBV:

MOV AUXR1,#20H ;set the ENBOOT bit
MOV R0,#11 ;FOSC
MOV R1,#07H ;read misc function
MOV DPTR,#0002H ;specify boot vector
CALL PGM_MTP ;execute the function
RET

Philips Semiconductors Application note

AN461
In-circuit and In-application programming of the
89C51Rx+/Rx2/66x microcontrollers

2000 Jul 28 14

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 08-00

Document order number: 9397 750 07372

������

�����
	����
�

	INTRODUCTION
	MCU FEATURES
	The Flash Program Memory can be programmed using three different methods:
	Memory Spaces
	General Overview of In-System Programming (ISP)
	General Overview of In-Application Programming (IAP)

	IN-SYSTEM PROGRAMMING (ISP)
	Using the In-System Programming (ISP)
	WINISP – The Windows In-System Programmer Utility Program
	WINISP Commands
	In Application Programming Method

	Definitions
	Disclaimers

