
�������
��	���
�����
�

AN458
Dual data pointers for ’51 family

Author: Peious Yoseph 1996 Dec 18

INTEGRATED CIRCUITS

IC20 Data Handbook

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

Author: Peious Yoseph

21996 Dec 18

INTRODUCTION
In the course of redesign for manufacturing process upgrade, members of the ’51 family have been enhanced with
the addition of a second ‘data pointer’ (DPTR). Software can take advantage of the additional data pointer to both
increase speed and reduce code size.

This application note starts by reviewing the operation of the original data pointer and then shows how the new
data pointer fits in. Next, physical and software identification of dual data pointer parts is explained. Finally, various
software strategies (including assembly language, interrupts and ‘C’) for taking advantage of the dual data pointers
are covered.

DATA POINTER (DPTR) REVIEW
In the original 8051 architecture, the 16-bit DPTR register provides the means for addressing various portions of
the memory space. The instructions which use DPTR to address memory are as follows:

MOVX @DPTR,A ;move A to data memory byte addressed by DPTR
MOVX A,@DPTR ;move data memory byte addressed by DPTR to A

The 8051 architecture supports separate code (read-only) and data memories with the PSEN and RD lines
respectively. The MOVX instructions access data memory (i.e., RD pin) which is typically RAM or
memory-mapped I/O.

MOVC A,@DPTR ;move code memory byte addressed by DPTR to A

To support read-only constants (ex: data tables, strings) the MOVC instruction accesses code memory (i.e., PSEN
pin) which is typically ROM or EPROM.

JMP @A+DPTR ;branch to address DPTR+A

The PC is set equal to DPTR + A (neither DPTR or A is changed). This is often used to implement a ‘jump table’ in
which DPTR points to the base of a table of jump instructions indexed by A.

Instructions which manipulate DPTR are as follows:

INC DPTR ;increment DPTR by 1
MOV DPTR,#16 ;load DPTR with a 16–bit immediate

However, DPTR can also be manipulated by virtue of the fact that it, like other CPU registers such as A, B and the
PSW, is also accessible as a Special Function Register (SFR). All SFRs are accessible as bytes by a variety of
instructions (such as PUSH and MOV) using the ‘direct’ addressing mode.

The 16-bits of DPTR are mapped into two SFR byte addresses, referred to as DPH (high-byte, address 83H) and
DPL (low-byte, address 82H). For example, the instruction:

MOV DPTR,#1234H ;load DPTR with 1234H

is functionally equivalent (but not timing or code size equivalent) to the sequence:

MOV DPH,#12H ;load high–byte of DPTR (83H) with 12H
MOV DPL,#34H ;load low–byte of DPTR (82H) with 34H

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 3

DUAL DATA POINTERS
The following ’51 family CPUs are being upgraded with dual data pointers:

80C51, 80C52, 80C54, 80C58, 83C51FA, 83C51FB, 83C51FC, 83C575

Contact Philips Semiconductors to determine the dual data pointer conversion status of these and future products.

As shown in Figure 1, these upgraded CPUs still have one logical DPTR, but now two physical data pointers.
References to the single logical data pointer (i.e., via instructions that contain ‘DPTR’ as an operand) are mapped
to one of the physical data pointers according to the state of the DPS bit in the AUXR1 SFR (address A2H).
Similarly, references to SFR addresses DPH (83H) and DPL (82H) access the currently selected data pointer.

7 6 5 4 3 2 1 0

— — — — — — — DPS

AUXR1#

SFR Address = A2H

RESET Value = xxxxxxx0B

DPS – Data Pointer Select
0 = DPTR0
1 = DPTR1

DPS

DPTR1

DPTR0

DPH
(83H)

DPL
(82H) EXTERNAL

DATA
MEMORY

BIT0
AUXR1

SU00816A

Figure 1. AUXR1# Definition

At RESET, DPS is set to ‘0’. To allow easy manipulation of DPS, undefined bits in AUXR1 can be written with any
value, but always read as 1. Whether a CPU has a single or dual data pointers can be determined at runtime by
checking for the presence of the DPS bit.

A special note for 80C51 (and only 80C51) users. The new 80C51 with dual data pointers has a slightly different
format for AUXR1. As shown in Figure 2, bit 3 serves as a WUPD (Wake-Up from Power Down) mode selection
bit. WUPD (along with DPS) is set to ‘0’ at RESET. Applications which use the CPU power-down mode can set
WUPD to ‘1’ after RESET to enable the wakeup feature if desired. Bit 2 is defined as ‘0’ to allow easy manipulation
of the DPS bit as described in the next section.

7 6 5 4 3 2 1 0

— — — — WUPD 0 — DPS

AUXR1#

SFR Address = A2H

RESET Value = xxxx00x0B

SU00817

Figure 2. AUXR1# Definition (80C51)

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 4

ASSEMBLY LANGUAGE
The additional data pointer can be used to speed code execution and reduce code size in a number of ways. For
example, many common ‘block’ operations (such as copy, compare, search, etc.) are well served by using one
data pointer as a ‘source’ pointer and the other as a ‘destination’ pointer.

; Block move using dual data pointers
; Destroys DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
;
00A2 AUXR1 EQU 0A2H
;
0000 909000 MOV DPTR,#SOURCE ; address of SOURCE
0003 05A2 INC AUXR1 ; switch data pointers
0005 90A000 MOV DPTR,#DEST ; address of DEST
0008 LOOP:
0008 05A2 INC AUXR1 ; switch data pointers
000A E0 MOVX A,@DPTR ; get a byte from SOURCE
000B A3 INC DPTR ; increment SOURCE address
000C 05A2 INC AUXR1 ; switch data pointers
000E F0 MOVX @DPTR,A ; write the byte to DEST
000F A3 INC DPTR ; increment DEST address
0010 70F6 JNZ LOOP ; check for 0 terminator
0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that
the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it.

In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence
matters, not its actual value. In other words, the block move routine works the same whether DPS is ‘0’ or ‘1’ on
entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

For the 80C51, bit 2 is defined to always read as ‘0’. Thus, repeated INCs will not propagate past bit 2 and cannot
affect the WUPD bit.

In certain situations (such as fault recovery or interrupts) toggling DPS may not be sufficient and DPS must be set
to a known value without depending on the current state.

53A27E ANL AUXR1,#7EH ; DPS=0
43A201 ORL AUXR1,#1 ; DPS=1

Each of these instructions requires 3 bytes and 24 clocks.

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 5

INTERRUPTS
Another way to exploit the additional data pointer is to dedicate it to one or more interrupt handlers. Traditionally
(i.e., single data pointer), the handler must save the current value of DPTR on entry (typically to the registers or the
stack), load DPTR with the handlers value and then reverse the process on exit.

Now, in a typical foreground/background interrupt scheme, each handler can be given exclusive use of a data
pointer. Switching between data pointers using DPS speeds the interrupt response, cuts interrupt overhead and
reduces code size by eliminating the instructions needed to share a single data pointer.

More general cases include those in which there are more than two interrupt handlers and/or it is desired to use
both data pointers in more than one handler. In these cases, data pointers can be shared using the traditional
single data-pointer approach of saving and restoring DPTR. Note that this is typically accomplished via physical
SFR access so any instruction that supports the ‘direct’ addressing mode (such as PUSH or MOV) can be used.

In some cases it may be necessary to save the state of DPS as well. This occurs anytime a routing that can
corrupt DPS is nested within (i.e., either by interrupt or subroutine call) a routine that uses DPTR. Should it be
necessary, the AUXR1 SFR (containing DPS) can be saved and restored using any instruction that supports the
‘direct’ addressing mode (such as PUSH or MOV).

Applying these techniques to the block move example, the contents of both data pointers is saved and restored.
Since this version of the clock move routine happens to exit with DPS equal to the value on entry, the state of DPS
(i.e., contents of AUXR1) need not be explicitly saved.

;
;
; Block move using dual data pointers
; This version saves & restores data pointer state
; Destroys only A & PSW
;
00A2 AUXR1 EQU 0A2H
;
0000 C083 PUSH DPH ; save first
0002 C082 PUSH DPL ; data pointer
0004 909000 MOV DPTR,#SOURCE ; use it for SOURCE address
0007 05A2 INC AUXR1 ; switch data pointers
0009 C083 PUSH DPH ; save second
000B C082 PUSH DPL ; data pointer
000D 90A000 MOV DPTR,#DEST ; use it for DEST address
0010 LOOP:
0010 05A2 INC AUXR1 ; switch data pointers
0012 E0 MOVX A,@DPTR ; get a byte from SOURCE
0013 A3 INC DPTR ; increment SOURCE address
0014 05A2 INC AUXR1 ; switch data pointers
0016 F0 MOVX @DPTR,A ; write the byte to DEST
0017 A3 INC DPTR ; increment DEST address
0018 70F6 JNZ LOOP ; check for 0 terminator
001A D082 POP DPL ; restore second
001C D083 POP DPH ; data pointer
001E 05A2 INCV AUXR1 ; switch data pointers
0020 D082 POP DPL ; restore first
0022 D083 POP DPH ; data pointer

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 6

‘C’ COMPILER
The operation of existing ‘C’ compilers is not affected by the additional data pointer. Assuming the DPS bit is not
changed following RESET, existing ‘C’ programs will continue to use a single data pointer.

In many cases, programs consist of a mixture of ‘C’ and assembly language. Using the previously mentioned
techniques, the assembly language portion (ex: custom library entry, interrupt handler, etc.) can be upgraded to
take advantage of the second data pointer without affecting the ‘C’ compiler’s use of the first.

Applications written in ‘C’ benefit most by upgrading to a compiler that exploits the dual data pointers. As shown in
Figure 3, noticeable (≈15–30%) speed-up is obtained simply by modifying the block oriented (copy and move)
library routines. Further optimization of code generators and parameter passing conventions offers the potential for
even greater performance improvement.

0

0.5

1.0

1.5

memcpy memmov memcmp strcpy strcmp Dhrystone

Single DPTR

Dual SPTR
P
E
R
F
O
R
M
A
N
C
E

SU00818

Figure 3. Dual DPTR ‘C’ Performance Improvement

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 7

NOTES

Philips Semiconductors Application note

AN458Dual data pointers for ’51 family

1996 Dec 18 8

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.

�������
��	���
�����
�

	INTRODUCTION
	DATA POINTER (DPTR) REVIEW
	DUAL DATA POINTERS
	ASSEMBLY LANGUAGE
	INTERRUPTS
	‘C’ COMPILER

