
Philips Semiconductors

AN454
Interfacing the 83C576/87C576
to the ISA bus

December 21, 1994

MICROCONTROLLER PRODUCTS

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

21994 Dec 21

INTRODUCTION
The most interesting feature of the Philips 83C576, and the principal
subject of this application note is its Universal Peripheral Interface
(UPI). The UPI is a microprocessor slave interface which allows the
’576 to communicate with a microprocessor or microcontroller host
with minimal support logic. The UPI acts as a ”bus gasket” between
the 8051 core inside the ’576 and the host. Commands and Data
can easily be exchanged over this interface. Along with the
hardware interface, a simple, effective bidirectional software protocol
can be implemented for reliable data transfer. Each device can pace
the exchange of data using a double bi–directional data register
implemented as part of the UPI inside the ’576. As part of the UPI
definition, hardware flow control is supported so that both the host
and 8051 core can each establish whether the other has written or
read any data to the UPI. This flow control scheme is the heart of a
synchronous interface that is independent of the performance of the
host or 8051 core.

The UPI is ideal for the PC environment and provides an almost
seamless interface to the PC host via the ISA bus. This application
note demonstrates in both hardware and software terms how to
interface the ’576 to a PC host. The UPI interface occupies two
locations in the memory or IO space of each device. The first
location is the Data register and the second is the Status register.
The Data register is simply a pair of registers one directed to the
host and the other directed to the 8051 core. This allows both the
host and 8051 core to write to the data register simultaneously
without effecting each–others data. The write cycle events are
recorded as ‘buffer flags’ (IBF and OBE) in the Status register. One
further unique feature of this interface is the concept of ‘Commands
and Data’ in that any data written to the Status register address is
directed to the Data register and a flag is set in the Status register
recording this cycle as a Command. This flag is known as the ‘AF’
flag and indicates that a write cycle has been performed on the
Status register.

From a software perspective the host device is the ‘master’ of the
UPI. Even though from a hardware sense, each device can pace the
cycles, the provision of a single AF flag precludes the
implementation of a multi–master protocol. This limitation, however,
is not severe, in that this provides a simple scheme for exchanging
data between the devices. This interface provides the mechanisms

for many protocol schemes, the most effective one is used in PCs
over the keyboard interface and operates as follows:

HOST (Master) SLAVE (’576 core)

Write a command to the Status
register.

AF flag set, the byte in the data
register is a Command

Poll the IBF flag in the Status
register; wait for it to be 0.

Read the command.

Write the Information byte to
the Data register.

AF=0, read the information byte
from the Data register;
Execute the Command.

Poll OBE, wait for it to be
cleared in the Status register;
this means that a response is
available in the data register.

Write a Response byte to the
data register.

Read the Response byte.

DESCRIPTION
The purpose of this Application Note is to demonstrate the use of
the ’576 in a PC environment. This example shows the use of a ’576
as a peripheral to the PC/AT. The example shows the
implementation of a data acquisition card with digital IO and analog
IO. Some software is described to show how to exchange data and
commands between the PC and the ’576. In this example, the PC is
the host of the transfers and the ’576 is the slave. An example circuit
is also described which details the electrical interface to the PC/AT
ISA bus.

Figure 1 shows the basic configuration of the acquisition system.

PC
ISA
BUS

ADDRESS DECODER

A0

CONTROL BUS

DATA BUS

576

ADC

DIGITAL IO

PWM (ANALOG OUT)

ANALOG IN

SU00519

Figure 1. Block Diagram

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 3

UPI DEFINITION
The Universal Peripheral Interface (UPI) functions as a
microprocessor slave interface. This allows the ’576 to interface
directly to a microprocessor bus as a slave or peripheral device.

The UPI is an 8–bit bidirectional data register, P0, with an
associated status register, UCS. The data buffer is comprised of two
registers; the input register and, the output register. The input
register can be written by the host and read by the ’576. The output
register can be written by the ’576 and read by the host. The status
register may be read or written by the ’576 core but may only be
read by the host. The Status register bits can also be affected by
hardware events, for example, a host write cycle to the data register
will set the IBF flag.

The host control interface for these registers is comprised of four
signals, –RD, –WR, an address line A0, and a chip select –CS. Data
transfer is directed to the UPI as shown below:

–CS A0 –RD –WR CONDITION

0 0 0 1 Read Output Data Register

0 1 0 1 Read Status Register

0 0 1 0 Write Input Data Register, AF=0

0 1 1 0 Write Input Data Register, AF=1

1 X X X Disable IO

Write cycles to the data register with A0 = 1 cause the AF flag to be
set in the status register. These cycles are generally interpreted as
commands. Write cycles to the data register with A0 = 0 cause the
AF flag to be cleared in the status register. These cycles are usually
interpreted as data.

The status register has 4 control bits and 4 user defined status bits.
They are defined as follows:

UCS

7 6 5 4 3 2 1 0

ST7 ST6 ST5 ST4 UE AF IBF OBE

UCS.7 ST7 User defined status bit
UCS.6 ST6 User defined status bit
UCS.5 ST5 User defined status bit
UCS.4 ST4 User defined status bit
UCS.3 UE UPI enable bit. 0 = Disabled, 1 = Enabled.
UCS.2 AF Address Flag – contains the state of the A0

(Address) pin on the last write cycle.
0 = write cycle with A0 cleared
1 = write cycle with A0 set

UCS.1 IBF Input Buffer Full Flag – set by hardware on the
rising edge of a write command to the Input Data
Register. Cleared by hardware on the completion
of a read cycle of the Input Data Register by the
’576.

UCS.0 OBE* Output Buffer Empty Flag – Cleared by hardware
on the completion of a write cycle to the Output
Data Register by the ’576. Set by hardware on
the rising edge of the read command of the
Output Data Register by the host.

* NOTE: This flag is OBE when read by the MCU, but is inverted or
OBF (Output Buffer Full) when read by an external host.

General Handshaking Protocol
Host write cycles with A0 set are directed to the Input Data Register.
The ’576 can distinguish the cycles by monitoring the AF flag
(Address Flag) in the status register.

STATUS REGISTER

A0

A0

INPUT DATA
REGISTER

OUTPUT DATA
REGISTER

576 INTERNAL DATA BUS

P0

SU00520

Figure 2. Internal Structure of the UPI Registers

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 4

ISA BUS INTERFACE
The data acquisition system is comprised of the ’576 microcontroller
and an address decoder. The ’576 provides an almost seamless
interface to the PC/AT IO channel. The interface to the PC is known
as the ISA (Industry Standard Architecture) bus. This bus is an
asynchronous, command driven bus. Most notebook and PDA
chipsets provide programmable or fixed address decoders assigned
to an output pin. This pin is used to control the –CS input of the ’576
thus providing a completely seamless interface to the ISA bus.

Address Path
In this application the ’576 is interfaced as an IO device. The IO
space on a PC is 0 to 03FFH (1Kbytes), therefore SA0 to SA9 must
be decoded to locate the ’576 in a single region. SA0, however, is
used to select between the Data and Status registers, thus the ’576
occupies two locations in IO space. For the acquisition card we
selected 0300H for the Data register and 0301H for the Status
register. 300H and 301H have been chosen because they are
assigned to a ”prototyping area” in the PC ISA IO space map. The
address decoder must reject the address during DMA cycles. For
this purpose, AEN is used in the decoder and qualified for its low,
inactive state (AEN, when active indicates that the current cycle is a
DMA cycle). Output Y0 of U2 is asserted (low) when SA5 to SA7 are
low, SA8 is high and AEN is low. U3 further decodes the address
and output Y0 is asserted (low) when Y0 of U2 is low together with
SA1 to SA4 low and SA9 high. Output Y0 of U3 is fed to the –CS
input of the ’576, it is asserted (low) when the address is 300H with
AEN low or 301H with AEN low.

Data Path
The ’576 interfaces to the least significant 8 bits of the data bus,
SD0 to SD7. When the ’576 is configured in UPI mode, PORT0 is
configured as push–pull outputs for host read cycles. ISA requires
24mA IOL for this interface. The ’576 can only handle 15mA. The
24mA requirement goes back to the XT–TTL days and with current
CMOS motherboards 12mA is probably sufficient with a fully loaded
system.

Interrupt
An interrupt is employed to completely demonstrate the integration of
the ’576 to the PC. The first free interrupt is IRQ10. For this reason
alone, we need to connect to the extended AT ISA slot where this
interrupt line is available. Interrupts on PCs are edge sensitive,
sometimes shared and are usually pulled–up on the motherboard
just to make life more complicated. If we want to generate an
interrupt, port pin P2.3 must be driven low then high. The 8259
interrupt controller in the PC will see the interrupt on the rising edge.
Once the host acknowledges the interrupt by say, reading the Data
register (detected by the assertion of OBE) the ’576 must drive P2.3
high, returning IRQ10 to a high impedance state.

Timing
Another aspect of the design is to consider the timing implications of
the UPI. The diagrams below show the relationships of the control,
address and data signals.

SYMBOL PARAMETER LIMITS

tAS Address Setup time 21ns MIN

tPW Command pulse width 600ns MIN
(assumes 8.33MHz bus)

tDS Data setup time 15ns MIN

tDH Data hold time 15ns MIN

tCR Cycle recovery time 55ns MIN

The address setup time is lengthened by the two 3 to 8 line
decoders, U2 and U3. The ISA worst case is 9ns, we are adding 2
further delays of 6ns giving 21ns of address setup. If the ISA bus is
clocked at a higher rate as in some PDAs and some notebooks, the
Command pulse width will be shortened. The ISA bus can be
clocked as high as 11.1MHz, yielding a minimum command pulse
width of 450ns.

tAS

tPW

tDS

tCR

tDH

SA

–CS

–IOR

SD

SU00522

Figure 3. ISA Cycle IO Read Timing

tAS

tPW tCR

tDH

SA

–CS

–IOW

SD

SU00523

Figure 4. ISA Cycle IO Write Timing

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 5

SOFTWARE
The example below shows a typical protocol employed here to
exchange data between the PC and the ’576.

The protocol that we are employing is only a subset of what can be
achieved with this Command / Data, two byte protocol. To complete
a transaction, the PC sends two bytes, a Command and Information
byte, then the ’576 returns two bytes; a response and information
byte. Sometimes the information bytes will be meaningless; that’s
okay, as long as we stick to the protocol.

COMMANDS

Command Information

01H Get Analog Channel Channel [0, 1, 2, 3]

02H Get Digital Byte NULL

03H Put Digital Byte Data Byte

04H Increase PWM Channel [0, 1]

RESPONSES

Response Information

01H Get Analog Channel
Complete

M.S. 8 bits of ADC
conversion

02H Get Digital Byte
Complete

Data Byte

03H Put Digital Byte
Complete

NULL

04H Increase PWM
Complete

NULL

DRIVERS

PC Driver
The PC must write a command. This is done by making an IO cycle
to port 0301H. This sets the AF flag in the status register and
causes an IBF interrupt in the ’576. The PC can poll the status
register to see when the IBF flag has cleared, this means that the
’576 has read the Command in the Input Data Register. The PC then
sends the Information byte; this is done in the same way except that
the cycle is made to 300H.

576 Driver
Communication from the ’576 to the PC is established by driving the
interrupt request line, IRQ10, high. The PC first reads the status
register to check if the interrupt was from the ’576 instead of some
other external device. If the OBF flag is set, the PC knows that the
data in the Output Data Register is valid. The PC then reads to
Output Data Register which causes the OBF flag to become
cleared. Once the ’576 detects this read cycle, the interrupt line,
P2.3, can be returned to its low state. The AF bit in the Status
register indicates whether the data is a Response byte to a previous
command (AF set) or an associated Information byte (AF cleared).

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 6

/*
 Code to demonstrate the use of the UPI to the ’576
 in an interrupt driven mode.

 Written in Microsoft C7.0 for PC AT

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>
#include <conio.h>

#define UC unsigned char
#define UL unsigned long
#define UI unsigned int

#define P8259A_IMR 0x21 /* ;interrupt mask register i/o address */
#define P8259B_IMR 0xa1 /* ;interrupt mask register i/o address */
#define EOI 0x20
#define P8259A 0x20
#define P8259B 0xa0

#define ENABLE_IRQ10 ~0x04
#define ENABLE_IRQ2 ~0x04

#define UPI_DATA_REG 0x300
#define UPI_STATUS_REG 0x301
#define IBF 0x02
#define OBF 0x01

unsigned char interrupt_received = 0;

/* declare a variable to store the pointer of the current interrupt service routine */
void (_interrupt _far *old_int)();

/*Module put_byte().

put_byte() has two parameters; the address of the IO port (port) and the value to be written to the IO
port (data). A dummy variable is declared for lint purposes, since the C function outp() returns an
unsigned short. First put_byte() uses the C oupt() function to write the byte to the IO port then,
put_byte() monitors the IBF flag in the status register to see if the ’576 has read the byte. When the PC
writes the byte to the input register, the ’576 automatically sets the IBF flag. When the ’576 core reads
the input register, the IBF flag is automatically cleared. The while() loop breaks when the IBF is 0. The
C function inp() is used to read the status register, the returned value is logically ANDed with the
constant IBF (0x02) and the result is complemented and evaluated by the while() statement. */

void
put_byte (
 unsigned short port,
 unsigned char data) {

 unsigned short dummy;

 dummy = outp(port, UPI_DATA_REG); // send the byte
 while (~(inp(UPI_STATUS_REG) && IBF)); // check to see if ’576 has read it

}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 7

/*Module get_byte()

get_byte() has 1 parameter and 1 return value. The parameter is used to pass the address of the IO port
to read. The return value is used to pass back the contents of the read port as a byte. get_byte first
waits for the byte to be written to the UPI port by the ’576. This is achieved by monitoring the OBE flag
in the status register. The C function inp() is used to read the contents of the status register. The
returned word is masked (ANDed) with the constant OBF (0x01) and the negated result is evaluated by the
while() statement. If the IBF flag is 0, the while loop continues to read and evaluate the status
register, if the IBF flag is set the while loop breaks.
When the while loop breaks, there must be something to read in the output data register, the C function
inp() is used to read the input data register whose address is past in the variable ’port’. The result is
cast as a byte and returned to the calling routine. */

unsigned char
get_byte (

 unsigned short port) {

 while (!(inp(UPI_STATUS_REG) && OBF)); // wait for the byte
 return ((byte)inp(port));
}

/*Module send_command()

send_command assembles a two byte message comprising of a command byte follwed by an information byte. If
we direct the first byte to the address of the status register, it will appear in the output data
register and the AF flag will automatically be set. The ’576 will read the status register before the
data register, the set AF flag will tag the data as a command. The information byte is directly written
to the output data register, thus the AF flag will be cleared and the ’576 will interpret the byte as
information. */

void
send_command (
 unsigned char command,
 unsigned char information) {

 put_byte(UPI_STATUS_REG,command);
 put_byte(UPI_DATA_REG,information);
}

/* Module get_response()

This module has no parameters and 1 return value. get_response strips out the information byte from a
two–byte message from the ’576. The first byte is always the echoed command and is discarded by assigning
it to a dummy variable. The send byte is always the information and is read using the get_byte() function
and returned to the calling function. */

unsigned char
get_response (
 void) {

 unsigned char dummy;

 dummy = get_byte(UPI_DATA_REG); // get the response
 return(get_byte(UPI_DATA_REG)); // return the info byte
}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 8

/* Module EnableIRQ10()

This module enables the hardware interrupt, IRQ10 via the 8259 programmable interrupt controller (PIC)
insude the PC. IRQ 10 is a cascaded interrupt driven by a sencond PIC attached to IRQ2 of the first.
Therefore both PICs need to be unmasked. The C function disable() issues a CLI instruction to the
processor disabling interrupts. The current value of the interrupt mask for PICA is read and ANDed with
the mask cleared for IRQ2. The current value of the interrupt mask for PICB is read and ANDed with the
mask cleared for IRQ10. The new masks are written to the PICs consecutively. Interrupts are re–enabled
using the C function enable() which issues an STI instruction to the processor. */

void
EnableIRQ10 (void) {

 unsigned short mask;

 _disable();
 mask = _inp(P8259A_IMR);
 mask &= ENABLE_IRQ2
 _outp (P8259A_IMR,mask);

 mask = _inp(P8259B_IMR);
 mask &= ENABLE_IRQ10;
 _outp (P8259B_IMR,mask);
 _enable();
}

/* Module Irq10_isr()

This module is the service routine for an IRQ10 interrupt. It simply sets a global flag which is
monitored by the main loop and then issues a ”non specific end–of–interrupt (EOI)” to each PIC. The EOI
flags are written to reset the interrupt signal that the PICs assert to each other and the processor.”

void
__cdecl __interrupt __far Irq10_isr(void) {

 interrupt_recieved = 1;

 _outp(P8259A,EOI);
 _outp(P8259B,EOI);
}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 9

void
main(void) {

 printf(”\n576 Interrupt Interface Utility\n”);

/* save the pointer of the current interrupt service routine using the C function _dos_getvect() */
 old_int = _dos_getvect(0x12);

/* store the pointer of our interrupt service routine (Irq10_isr) using the C function _dos_setvect() */
 _dos_setvect(0x12, Irq10_isr);

/* clear the global flag */
 interrupt_received = 0;

/* unmask and enable interrupts */
 EnableIRQ10();

 printf(”\nGet Analog Channel 01 00 returned ”);
/* send the command */
 send_command(1,0);
/* wait for an interrupt */
 while(~interrupt_received);
/* print the result on sdtio (the screen) */
 printf(”%02x”,get_response());
/* clear the global interrupt flag */
 interrupt_received = 0;

 printf(”\nGet Digital Byte 02 00 returned ”);
 send_command(2,0);
 while(~interrupt_received);
 printf(”%02x”,get_response());
 interrupt_received = 0;

 printf(”\nPut Digital Byte 03 55 returned ”);
 send_command(3,0x55);
 while(~interrupt_received);
 printf(”%02x”,get_response());
 interrupt_received = 0;

 printf(”\nSet PWM 04 01 returned ”);
 send_command(4,1);
 while(~interrupt_received);
 printf(”%02x”,get_response());
 interrupt_received = 0;

/* restore the old interrupt vector */
 _dos_setvect(0x12, old_int);

}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 10

/*
 Code to demonstrate the use of the UPI
 on the ’576.

 Written in Franklin C for the ’576.
*/

#include <reg51.h>

// Constants

#define UC unsigned char
#define UI unsigned int

// Special Function Registers

sbit IRQ = P2^3;

sfr UCS = 0x86;

sbit UE = UCS^3;
sbit AF = UCS^2;
sbit IBF = UCS^1;
sbit OBE = UCS^0;

sfr ADC = 0xB1;
sbit ADF = ADC^7;
sbit ADCE = ADC^6;
sbit AD8M = ADC^5;
sbit AMOD1 = ADC^4;
sbit AMOD0 = ADC^3;
sbit ASCA2 = ADC^2;
sbit ASCA1 = ADC^1;
sbit ASCA0 = ADC^0;
sfr ADC0H = 0xAA;
sfr ADC1H = 0xAB;
sfr ADC2H = 0xAC;
sfr ADC3H = 0xAD;
sfr ADC4H = 0xAE;
sfr ADC5H = 0xAF;
sfr PWM0 = 0xBE;
sfr PWM1 = 0xBF;
sfr PWMP = 0xBD;
sfr PWCON = 0xBC;

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 11

/* Module get_analog_channel

This module initializes the ADC for mode 0 and 8 bit conversions. This module has 1 parameter and 1
return value. The channel to be converted is passed as an unsigned char parameter and converted to 3
single bit values. The converted values are set in the ADC control register. The conversion is started by
setting the enable bit (ADCE). The conversion is monitored for completion by polling the ADF bit. The
result from the selected channel is returned to the calling function using the switch() statement */

UC
get_analog_channel(
 UC channel) {

 AMOD0 = 0; // Mode 0
 AMOD1 = 0;
 AD8M = 1; // 8 bit mode
 ASCA2 = channel^2;
 ASCA1 = channel^1;
 ASCA0 = channel^0;
 ADCE = 1; // start conversion

/* poll the ADF flag. This loop breaks when ADF = 1 */
 while(~ADF); // wait for conversion to complete

/* return the ADC value based on the selected channel */
 switch (channel) {
 case 0:
 return(ADC0H);
 break;
 case 1:
 return(ADC1H);
 break;
 case 2:
 return(ADC2H);
 break;
 case 3:
 return(ADC3H);
 break;
 case 4:
 return(ADC4H);
 break;
 case 5:
 return(ADC5H);
 break;
 default:
 return(0xFF);
 break;
 }
}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 12

/* Module get_digital_byte()

This module has 1 parameter and 1 return value. The parameter is included for consistency with the other
functions and has no meaning in this case. The return value is the combined result of reading 6 bits from
P3 and 2 bits from P2. */

UC
get_digital_byte (UC dummy) {

// declare a temporary variable
 UC byte;

// read P3 and strip the 2 M.S. bits
 byte = P3 && 0x3f;

// read P2, strip 6 M.S. bits, shift result 6 places left and OR with the temporary variable
 byte |= ((P2 && 0x03) << 6);

// return the result
 return (byte);
}

/* Module put_digital_byte()

This module take the byte, passed as a parameter, masks the unused bits of the ports and ORs the masked
result with the current port values. */

UC
put_digital_byte (
 UC byte) {

// clear the current port value
 P3 &= 0xc0;
// AND the parameter with a mask and OR the result with the cleared port value
 P3 |= (byte && 0x3f);
 P2 &= 0x3f;
 P2 |= ((byte && 0xc0) >> 6);
 return(byte);
}

/* Module increase_pwm()

This module increments the current PWM value of the selected channel. The channel is passed to this
function as a parameter */

UC
increase_pwm (
 UC channel) {

// test the channel parameter
 if (channel == 0)
// increase PWM0
 PWM0++;
 else
// increase PWM1
 PWM1++;

 return(channel);
}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 13

void
main () {
// declare temporary variables for the command and information bytes
 UC command;
 UC information;

// initialize the PWM controller
 PWMP = 0x80;
 PWCON = 0xFF;

// do forever
 while(1) {

// wait for a command from the PC ie, when the IBF flag is set
 while (~IBF); // wait for the command

// read the command byte. This read clears the IBF automatically
 command = P0;

// wait for the next byte from the PC
 while (~IBF); // wait for the information
 information = P0;

// echo the command
 P0 = command;
// wait for the PC to read it
 while (OBE);

// parse the command and call the appropriate function, passing the information as a parameter
 switch (command) {
 case 1 : {
 P0 = get_analog_channel(information);
 break;
 }
 case 2: {
 P0 = get_digital_byte(information);
 break;
 }
 case 3: {
 P0 = put_digital_byte(information);
 break;
 }
 case 4: {
 P0 = increase_pwm(information);
 break;
 }
 default: {
 P0 = 0xFF;
 break;
 }
 }
// wait for the PC to read the information.
 while (OBE);
 }
}

Philips Semiconductors Application note

AN454Interfacing the 83C576/87C576 to the ISA bus

1994 Dec 21 14

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

GND
RESDRV
+5V
IRQ9
–5V
DREQ2
–12V
–OWS
+12V
GND
–SMEMW
–SMEMR
–IOW
–IOR
–DACK347

48
49
50
51
52
53
54
55
56
57
58
59
60

DREQ3
–DACK1
DREQ1
–REFSH
SYSCLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
–DACK2
TC
ALE
+5V61

62 14.3MHZ
GND

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

–IOCHCK
D7
D6
D5
D4
D3
D2
D1
D0

IOCHRDY
AEN
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

EDGE_CON

P1

SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0

SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0

VCC

–IOW
–IOR

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

–MEMCS16
–IOCS16
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14
–DACK0
DREQ0
–DACK5
DREQ5
–DACK6
DREQ6
–DACK7
DREQ734

35
36

+5V
–MASTER
GND

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

–SBHE
SA23
SA22
SA21
SA20
SA19
SA18
SA17

–MEMR
–MEMW

SD8
SD9

SD10
SD11
SD12
SD13
SD14
SD15

P2

EDGE_CON

C75
4.7uF 6V

GND

+ 1

2

GND

VCC

GND

VCC

C72
0.1uF

1
2
3

6
4
5

A
B
C

G1
G2A
G2B

15
14
13
12
11
10

9
7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U2

74HCT138

1
4

2
3

Y2

MA–506

C65

27P

GND

GND

VCC

C74
0.1uF

GND

C66
27P

SA5
SA6
SA7

SA8
AEN

1
2
3

6
4
5

A
B
C

G1
G2A
G2B

15
14
13
12
11
10

9
7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U3

74HCT138 GND

VCC

C73
0.1uF

SA1
SA2
SA3

SA9

19

18

9

10
11
12
13
14
15
16
17

XTAL1

XTAL2

RST

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

1

4
5
6
7
8
2

AVCC
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
AVSS

39
38
37
36
35
34
33
32

21
22
23
24
25
26
27
28

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0

PC BUS INTERFACE

ADDRESS DECODER

SA4

C69
1uF 6V

+ 1

2

GND

DIG0
DIG1
DIG2
DIG3
DIG4
DIG5

GND

GND

C67
0.1uF

R2

10

1 2
VCC

DIG6
DIG7

IRQ10
–CS
SA0
PWM0
PWM1

87C576DIP

1
2
3

6
7
8

J1

CON8

4
5

GND

A
L
E

3
0

P
S
E
N

2
9

V
S
S

2
0

GND

GND

VCC

C71
0.1uF

ANALOG

VCC

GND
VR1
10K

1
2

3

POT

C68
1uF 6V

+ 1

2

GND

R3

10

1 2PWM0

MOAT GND PLAND

DIG0
DIG1
DIG2
DIG3
DIG4
DIG5
DIG6
DIG7

1
2
3
4
5
6
7
8
9
10

J2

GND

VCC

1
2
3

J3

CON4

4

GND

CON10

DIGITAL
IO

VCC

PWM
PWM1

3

–CS

V
C
C

V
P
P

3
1

4
0

C70
4.7uF 6V

+ 1

2

GND

VCCVCC

U1

–IOW
–IOR

SU00521

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation
register eligible circuits under the Semiconductor Chip Protection Act.

 Copyright Philips Electronics North America Corporation 1994
All rights reserved. Printed in U.S.A.

	INTRODUCTION
	DESCRIPTION
	UPI DEFINITION
	ISA BUS INTERFACE
	SOFTWARE
	DRIVERS

