
Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

Author: Greg Goodhue

1June 1993

The following program contains routines that
will allow an 8xC751 or 8xC752 to implement
a software UART that can send and receive
serial data simultaneously. Other published
software UARTs only allow either transmit or
receive to occur at any one time. The demo
application shown in the code listing waits for
data to be received, then echoes it and
follows this with a hexadecimal interpretation
of the data plus a space. For instance, if the
program receives the character “$”, it echoes
back the string “$24”. The reason for echoing
these additional characters is to make it easy
to force the receiver buffer to fill up in order to
test the handshaking. If the program simply
echoed what was received, it would likely
never use more than the very first receiver
buffer location since it can normally transmit
just as fast as it can receive.

CHIP RESOURCES
The UART routines use about 400 bytes of
code space and use the timer to provide a
constant time interrupt to synchronize both
transmit and receive operations. The
hardware connections require four device
pins to accomplish serial I/O with RTS/CTS
handshaking. Only two pins would be needed
if handshaking is not required. Three of the
four pin functions may be assigned to any
port pin. The serial input pin must be
assigned as one of the external interrupt pins.
Another two pins are used in the demo
application to input a selection of one of four
baud rates (1200, 2400, 4800, or 9600).

LIMITATIONS
To obtain duplex operation, a fairly large
portion of the chip’s time is used. The
routines were tested up to 9600 baud running
on a 16 MHz 87C751. When serial input and
output were both occurring at the same time,
the routines could not support continuous
operation with no pauses between
characters. At 4800 baud, full speed tight
reception and transmission worked flawlessly.
In other words, 4800 baud should work with
all applications, while 9600 baud may not
work with all applications.

THEORY OF OPERATION
There are three possible sequences of
events when serial transmit and receive may
both be operating at once: transmit and
receive begin simultaneously; transmit is
requested while the receiver is busy; and
receive starts while the transmitter is busy.
The first 2 cases could be handled fairly
simply with only one interrupt for each bit
time. In the first case, everything is already in

synch and only one timer and one interrupt
per bit is needed to do both operations. In the
second case (transmit is requested while the
receiver is busy) the program could just wait
for the next bit time to start transmitting.
Unfortunately, the third case presents a
problem. If the program is already
transmitting, it cannot always wait for the next
bit time to start sampling the serial data if the
application is not to lose bits. Also, the timer
cannot be adjusted to the incoming data
since this would distort the duration of one of
the transmitted bits.

The method used here to deal with this
problem is to always divide all bit times into 4
sub-bit times. When transmission and/or
reception is in progress, the timer runs at 4X
the bit rate for the selected baud rate. The
variables TxTime and RxTime are used to
count sub-bit times for the transmitter and the
receiver, respectively. Both are initialized to a
negative value and count up to simplify
testing for an active sub-bit time. The
maximum baud rate that can be supported is
essentially determined by the maximum
amount of time that it might take the
microcontroller to do all of the operations
associated with transmitting one bit and
receiving one bit . This must be done within
the time between timer interrupts.

When both transmit and receive operations
are scheduled for the same timer interrupt,
priority is given to the transmitter routine. The
reason for this is that a great deal of jitter can
be tolerated in the timing of the received bit
sampling, but the transmitted data must
“look” good to the outside world.

The actual bit times for transmit and receive
are counted by the variables TxCnt and
RxCnt, respectively. When an active sub-bit
time slice occurs, these variables tell the
transmit and receive routines what to do in
the current time slice. The value 11 hex
indicates a start bit, 10 hex indicates a stop
bit, and the values 8 through F hex indicate a
data bit. The values were chosen to allow
quick determination of the appropriate action
by the code.

The routines provide for a small amount of
data buffering for both the transmitter and the
receiver. As implemented here, the
transmitter buffer is only one byte deep,
allowing one data byte to be held while
another is being transmitted. The receiver
buffer is larger, allowing three bytes to be
held while a fourth is being received. If the
receiver buffer fills up (indicated by the flag
RxFull), the application code must retrieve
one byte before a fourth one finishes, or data
will be lost. If this happens, a flag will be set
(OverrunErr) to indicate that the receiver
buffer has been overrun. There is no similar

flag for the transmitter, since the transmit
request routine waits for the transmitter buffer
to be available (indicated by the TxFull flag)
before taking action. It is up to the application
code to check this flag in advance if it does
not want to stall execution while waiting to
transmit data.

As each routine finishes a whole data byte by
completing the send or receive of a stop bit, it
checks to see if there is something still
happening to warrant having the time slice
interrupt running. In the case of a received
stop, the transmit activity flag (TxOn) is
examined. If it is not set, the timer is turned
off. The timer will be turned back on if an
interrupt from a serial start bit is received or
the main code requests data to be
transmitted. In the case of a transmitted stop,
both the receiver activity flag (RxOn) and the
transmit buffer flag (TxFull) are examined. If
the receiver is active or there is more data to
transmit, the timer is left running.

All of the status flags are in the “Flags”
register. Other status flags found there are:
RxAvail, which indicates that the receiver
buffer contains unprocessed data; and
FramingErr which is set when the receiver
routines find an improper start or stop bit,
usually caused by mismatched baud rates.

Flow control handshaking is provided by the
RTS/CTS scheme. The transmit routine looks
at the incoming CTS line before beginning
each start bit transmission, and simply exits,
waiting for the next time slice, if CTS is not
asserted. The receive routine checks the
buffer status whenever a start bit interrupt
occurs and de-asserts the outgoing RTS line
if the buffer already contains two bytes (i.e., it
will be full when the current byte finishes). If
the device at the other end of the
communication line follows the same rules
(which may very well NOT be the case) the
program should be able to communicate
without buffer overflows in either direction.

Baud rates in both the send and receive
routines are determined by two things: the
timer interrupt rate; and the number of time
slices per bit. The method of calculating the
timer value for various baud rates is
discussed in the code listing at the BaudRate
routine. This discussion has centered on
there being four time slices per bit, but if the
user wants, either the transmitter or the
receiver can be set to run at a baud rate that
is a multiple of the other by adjusting the
value of the constant TxBitLen or RxBitLen.
The baud rate would be calculated as
indicated for the faster channel, and TxBitLen
or RxBitLen would be changed for the slower
channel. For example, the transmitter can be
set to run at half of the receiver baud rate by
setting TxBitLen to –8 + 1.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 2

The routines shown also make provision for
changing the baud rate “on the fly”, although
the application code given does not
implement this feature. If the application code
changes the baud rate for some reason, the
change will be effected when the next data
transmission or reception begins, if both the
transmitter and receiver were already idle.
This prevents the timer value from being
changed in the middle of a data byte.

THE CODE
There are a number routines in the code of
which the user should be aware:
– Intr0—Called (by interrupt) when a serial

start bit is received.
– Timer0—Called (by interrupt) for every

sub-bit time slice.
– RS232TX—Called by Timer0 when the

transmitter has business to conduct in the
current time slice.

– RS232RX—Called by Timer0 when the
receiver has business to conduct in the
current time slice.

– BaudRate—Sets the baud rate variables

BaudHigh and BaudLow based on the
accumulator value.

– TxSend—Called by the application code to
request that a data byte be transmitted.
The data to be transmitted is in the
accumulator.

– GetRx—Called by the application code to
request return of a received data byte from
the buffer. Data is returned in the
accumulator. This routine should not be
called unless the receiver buffer has data
available.

– Reset—Start of the initialization code to set
up the UART.

– MainLoop—Start of the mainline code of
the demo application.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 3

;***

; Duplex UART Routines for the 8xC751 and 8xC752 Microcontrollers

;***

; This is a demo program showing a way to perform simultaneous RS–232
; transmit and receive using only one hardware timer.

; The transmit and receive routines divide each bit time into 4 slices to
; allow synchronizing to incoming data that may be out of synch with outgoing
; data.

; The main program loop in this demo processes received data and sends it
; back to the transmitter in hexadecimal format. This insures that we can
; always fill up the receiver buffer (since the returned data is longer than
; the received data) for testing purposes. Example: if the letter ”A” is
; received, we will echo ”A41 ”.

;***

$Title(Duplex UART Routines for the 751/752)
$Date(8/20/92)
$MOD751

;***

; Definitions

;***

; Miscellaneous

TxBitLen EQU –4 + 1 ; Timer slices per serial bit transmit.
RxBitLen EQU –4 + 1 ; Timer slices per serial bit receive.
RxHalfBit EQU (RxBitLen / 4) + 1 ; Timer slices for a partial bit time.
 ; Used to adjust the input sampling
 ; time point.

; Note: TxBitLen and RxBitLen are kept separate in order to facilitate the
; possibility of having different transmit and receive baud rates. The timer
; would be set up to give four slices for the fastest baud rate, and the
; BitLen for the slower channel would be set longer for the slower baud rate.
; BitLen = –4 + 1 gives four timer interrupts per bit. BitLen = –8 + 1 would
; give 8 slices, BitLen = –16 + 1 would give 16 slices, etc.

TxPin BIT P1.0 ; RS–232 transmit pin (output).
RxPin BIT P1.5 ; RS–232 receive pin (input).
RTS BIT P1.3 ; RS–232 request to send pin (output).
CTS BIT P1.6 ; RS–232 clear to send pin (input).
; Note: P1.1 and P1.2 are used to input the baud rate selection.

; RAM Locations

Flags DATA 20h ; Miscellaneous bit flags (see below).
TxOn BIT Flags.0 ; Indicates transmitter is on (busy).
RxOn BIT Flags.1 ; Indicates receiver is on (busy).
TxFull BIT Flags.2 ; Transmit buffer (1 byte only) is full.
RxFull BIT Flags.3 ; Receiver buffer is full.
RxAvail BIT Flags.4 ; RX buffer is not empty.
OverrunErr BIT Flags.6 ; Overrun error flag.
FramingErr BIT Flags.7 ; Framing error flag.

BaudHigh DATA 21h ; High byte timer value for baud rate.
BaudLow DATA 22h ; Low byte timer value for baud rate.

TxCnt DATA 23h ; RS–232 byte transmit bit counter.
TxTime DATA 24h ; RS–232 transmit time slice count.
TxShift DATA 25h ; Transmitter shift register.
TxDat DATA 26h ; Transmitter holding register.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 4

RxCnt DATA 27h ; RS–232 byte receive bit counter.
RxTime DATA 28h ; RS–232 receive time slice count.
RxShift DATA 29h ; Receiver shift register.
RxDatCnt DATA 2Ah ; Received byte count.
RxBuf DATA 2Bh ; Receive buffer (3 bytes long).

Temp DATA 2Fh ; Temporary holding register.

;***

; Interrupt Vectors

;***

 ORG 00h ; Reset vector.
 AJMP RESET

 ORG 03h ; External interrupt 0
 AJMP Intr0 ; (received RS–232 start bit).

 ORG 0Bh ; Timer 0 overflow interrupt.
 AJMP Timer0 ; (4X the RS–232 bit rate).

 ORG 13h ; External interrupt 1.
 RETI ; (not used).

 ORG 1Bh ; Timer I interrupt.
 RETI ; (not used).

 ORG 23h ; I2C interrupt.
 RETI ; (not used).

;***

; Interrupt Handlers

;***

; External Interrupt Int0.
; RS–232 start bit transition.

Intr0: PUSH ACC ; Save accumulator,
 PUSH PSW ; and status.
 CLR IE.0 ; Disable more RX interrupts.

 SETB RxOn ; Set receive active flag.
 MOV RxCnt,#11h ; Set bit counter to expect a start.
 MOV RxTime,#RxHalfBit ; First sample is at a partial bit time.
 JB TxOn,I0TimerOn ; If TX active then timer is on.

 MOV RTH,BaudHigh ; Set up timer for selected baud rate.
 MOV RTL,BaudLow
 MOV TH,BaudHigh
 MOV TL,BaudLow
 SETB TR ; Start timer 0.

I0TimerOn: MOV A,RxDatCnt ; Check for buffer about to be full:
 CJNE A,#2,Int0Ex ; one space left and a byte starting.
 SETB RTS ; If so, tell whoever is on the
 ; other end to wait.

Int0Ex: POP PSW ; Restore status,
 POP ACC ; and accumulator.
 RETI

; Timer 0 Interrupt
; This is used to generate time slices for both serial transmit and receive
; functions.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 5

Timer0: PUSH ACC ; Save accumulator,
 PUSH PSW ; and status.
 JNB TxTime.7,RS232TX ; Is this an active time slice
 ; for an RS–232 transmit?
 JNB TxOn,CheckRx ; If transmit is active,
 INC TxTime ; increment the time slice count.
CheckRx: JNB RxTime.7,RS232RX ; Is this an active time slice
 ; for an RS–232 receive?
 JNB RxOn,T0Ex ; If receive is active, increment
 INC RxTime ; the time slice count.

T0Ex: POP PSW ; Restore status,
 POP ACC ; and accumulator.
 MOV P3,Flags ; For demo purposes, output status
 ; on an extra port.

 RETI

;***

; RS–232 Transmit Routine

;***

RS232TX: JNB TxCnt.4,TxData ; Go if data bit.
 JNB TxCnt.0,TxStop ; Go if stop bit.

; Send start bit and do buffer housekeeping.

TxStart: JB CTS,TxEx1 ; Is CTS asserted (low) so can we send?
 ; If not, try again after 1 bit time.
 CLR TxPin ; Set start bit.
 MOV TxShift,TxDat ; Get byte to transmit from buffer.
 CLR TxFull
 MOV TxCnt,#08h ; Init bit count for 8 bits of data.
 ; (note: counts UP).

TxEx1: MOV TxTime,#TxBitLen ; Reset time slice count.
 SJMP CheckRx ; Restore state and exit.

; Send Next Data Bit.

TxData: MOV A,TxShift ; Get un–transmitted bits.
 RRC A ; Shift next TX bit to carry.
 MOV TxPin,C ; Move carry out to the TXD pin.
 MOV TxShift,A ; Save bits still to be TX’d.
 INC TxCnt ; Increment TX bit counter
 MOV TxTime,#TxBitLen ; Reset time slice count.
 SJMP CheckRx ; Restore state and exit.

; Send Stop Bit and Check for More to Send.

TxStop: SETB TxPin ; Send stop bit.
 JB TxFull,TxEx2 ; More data to transmit?
 CLR TxOn ; If not, turn off TX active flag, and
 CLR RTS ; make sure that whoever is on the
 ; other end knows it’s OK to send.

 JB RxOn,TxEx2 ; If receive active, timer stays on,
 CLR TR ; otherwise turn off timer.

TxEx2: MOV TxCnt,#11h ; Set TX bit counter for a start.
 MOV TxTime,#TxBitLen–1 ; Reset time slice count, stop bit
 ; > 1 bit time for synch.
 SJMP CheckRx ; Restore state and exit.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 6

;***

; RS–232 Receive Routine

;***

RS232RX: MOV C,RxPin ; Get current serial bit value.
 JNB RxCnt.4,RxData ; Go if data bit.
 JNB RxCnt.0,RxStop ; Go if stop bit.

;Verify start bit.

RxStart: JC RxErr ; If bit=1, then not a valid start.
 MOV RxCnt,#08h ; Init counter to expect data.
 MOV RxTime,#RxBitLen ; Reset time slice count.
 SJMP T0Ex ; Restore state and exit.

; Get Next Data Bit.

RxData: MOV A,RxShift ; Get partial received byte.
 RRC A ; Shift in new received bit.
 MOV RxShift,A ; Store partial result in buffer.
 INC RxCnt ; Increment received bit count.
 MOV RxTime,#RxBitLen ; Reset time slice count.
 SJMP T0Ex ; Restore state and exit.

; Store Data Byte, ”push”ing it into the FIFO buffer.

RxStop: CLR EA ; Don’t interrupt the following.
 MOV A,RxBuf ; ”PUSH” the receive buffer.
 XCH A,RxBuf+1
 XCH A,RxBuf+2
 MOV RxBuf,RxShift ; Add just completed data to buffer.
 INC RxDatCnt ; Increment the received byte count.
 SETB EA ; Re–enable interrupts.

 SETB RxAvail ; There is data in the RX buffer.
 PUSH PSW ; Save Carry (received bit)for later.
 MOV A,RxDatCnt ; Check receiver buffer status.
 CJNE A,#4,RxChk1 ; Is RX buffer overrun?
 SETB OverrunErr ; Set status reg overrun error flag.
 MOV RxDatCnt,#3 ; Re–set buffer counter to ”full”.

RxChk1: CJNE A,#3,RxChk2 ; Is RX buffer full?
 SETB RxFull ; Set buffer full status.

RxChk2: POP PSW ; Retrieve last received bit in Carry.
 JC RxEx ; If bit=0, then not a valid stop.
RxErr: SETB FramingErr ; Remember bad start or stop status.

RxEx: JB TxOn,RxTimerOn ; If transmit active, timer stays on,
 CLR TR ; otherwise turn timer off.
RxTimerOn: CLR RxOn ; Turn off receive active.
 SETB RxTime.7 ; Set bit for no service to
 ; RX Time Slice Branches.
 SETB IE.0 ; Re–enable RS–232 receive interrupts.
 AJMP T0Ex ; Restore state and exit.

;***

; Subroutines

;***

; BaudRate – Determine and set the baud rate from switches.
; Note: if the baud rate is altered, the actual change will only occur when
; a transmit or receive is begun while the timer was not already running
; (i.e.: not already busy transmitting or receiving).

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 7

BaudRate: MOV DPTR,#BaudTable ; Set pointer to baud rate table.
 ANL A,#03h ; Limit displacement for lookup.
 RL A ; Double the table index since these
 ; are 2 byte entries.
 PUSH ACC ; Save the table index for second byte.
 MOVC A,@A+DPTR ; Get first byte, and save as the high
 MOV BaudHigh,A ; byte of the baud rate timer value.
 POP ACC ; Get back the table index.
 INC A ; Advance to next table entry.
 MOVC A,@A+DPTR ; Get second byte, and save as the low
 MOV BaudLow,A ; byte of the baud rate timer value.
 RET

; Entries in BaudTable are for a timer setting of 1/4 of a bit time at the given
; baud rate. The two values per entry are the high and low bytes of the value
; respectively.

; Values are calculated as follows:
; Osc Frequency
; 1/4 Bit cell time (in machine cycles) = –––––––––––––––––
; Baud Rate * 48

; Example for 9600 baud with a 16MHz crystal:
; 16,000,000 / 9600 * 48 = 34.7222... machine cycles per quarter bit time.
; Rounded, this is 35. The hexadecimal value for 35 is 23.
; 10000 hex – 23 hex (truncated to 16 bits) = FFDD. Thus, the BaudTable entry
; for 9600 baud is FF, DD hex.

BaudTable: DB 0FEh,0EAh ; 1200 baud.
 DB 0FFh,75h ; 2400 baud.
 DB 0FFh,0BBh ; 4800 baud.
 DB 0FFh,0DDh ; 9600 baud.
; TxSend – Initiate RS–232 Transmit.

TxSend: JB TxFull,$; Make sure TX buffer is free.
 SETB TxFull ; Reserve the buffer for our use.
 MOV TxDat,A ; Put character in buffer.
 JB TxOn,TSTimerOn ; Exit if transmitter already running.

 SETB TxOn ; Transmit active flag set.
 MOV TxCnt,#11h ; Init bit counter to expect a start.
 MOV TxTime,#TxBitLen ; Reset time slice count.
 JB RxOn,TSTimerOn ; Exit if receiver already active.

 MOV RTH,BaudHigh ; Set up timer for selected baud rate.
 MOV RTL,BaudLow
 MOV TH,BaudHigh
 MOV TL,BaudLow
 SETB TR ; Start up the bit timer.
TSTimerOn: RET

; PrByte – Output a byte as ASCII hexadecimal format.

PrByte: PUSH ACC ; Print ACC contents as ASCII hex.
 SWAP A
 ACALL HexAsc ; Print upper nibble.
 ACALL TxSend
 POP ACC
 ACALL HexAsc ; Print lower nibble.
 ACALL TxSend
 RET

; HexAsc – Convert a hexadecimal nibble to its ASCII character equivalent.

HexAsc: ANL A,#0Fh ; Make sure we’re working with only
 ; one nibble.
 CJNE A,#0Ah,HA1 ; Test value range.
HA1: JC HAVal09 ; Value is 0 to 9.

Philips Semiconductors Microcontroller Products Application Note

AN446A software duplex UART for the 751/752

June 1993 8

 ADD A,#7 ; Value is A to F, needs pre–adjustment.
HAVal09: ADD A,#’0’ ; Adjust value to ASCII hex.
 RET

; GetRx – Retrieve a byte from the receive buffer, and return it in A.

GetRx: CLR EA ; Make sure this isn’t interrupted.
 DEC RxDatCnt ; Decrement the buffer count.
 MOV A,RxDatCnt ; Get buffer count.
 JNZ GRX1 ; Test for empty receive buffer.
 CLR RxAvail ; If empty, clear data available status.
GRX1: ADD A,#RxBuf ; Create a pointer to end of buffer.
 MOV Temp,R0 ; Save R0.
 MOV R0,A ; Put pointer where we can indirect.
 MOV A,@R0 ; Get last buffer data.
 MOV R0,Temp ; Restore R0.
 CLR RxFull ; Buffer can’t be full anymore.
 SETB EA ; Re–enable interrupts.
 RET

;***

; Reset

;***

Reset: MOV SP,#2Fh ; Initialize stack start.
 MOV TCON,#0 ; Set timer off, INT0 to level trigger.
 MOV P3,#0 ; Turn off all status outputs.

; For this demo, we only set up the baud rate once at reset:

 MOV A, P1 ; Read baudrate bits from P1.
 RR A ; The switches are on bits 2 and 1.
 ACALL BaudRate ; Set up the selected baud rate.

 MOV FLAGS,#0 ; Init all status flags.
 MOV RxDatCnt,#0 ; Clear buffer count.
 MOV IE,#93h ; Turn on timer 0 interrupt and
 ; external interrupt 0.
 CLR RTS ; Assert RTS so we can receive.

; The main program loop processes received data and sends it back to the
; transmitter in hexadecimal format. This insures that we can always fill
; up the receiver buffer (since the returned data is longer than the
; received data) for testing purposes. Example: if the letter ”A” is
; received, we will echo ”A41 ”.

MainLoop: JNB RxAvail,$; Make sure an input byte is available.
 ACALL GetRx ; Get data from the receiver buffer.
 ACALL TxSend ; Echo original character.
 ACALL PrByte ; Output the char in hexadecimal format,
 MOV A,#20h ; followed by a space.
 ACALL TxSend
 SJMP MainLoop ; Repeat.

 END

	CHIP RESOURCES
	LIMITATIONS
	THEORY OF OPERATION
	THE CODE

