
Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I 2C extender on long cables

Author: Don Sherman, Sunnyvale

1June 1993

The P82B715 I2C Buffer was designed to
extend the range of the local I2C bus out to
50 Meters. This application note describes
the results of testing the buffer on several
different types of cables to determine the
maximum operating distances possible. The
results are summarized in a table for easy
reference.

The I2C bus was originally conceived as a
convenient 2 wire communication method
between Integrated Circuits located within a
common chassis, such as inside a TV set or
inside a VCR. The serial protocol contains an
address, or identifying code, for each type of
device and additional internal addresses, if
needed within the addressed device. Each
device has its own decoding circuitry to allow
it to recognize its own unique address or
identifying code. To communicate, a device
watches the bus activity and jumps in when it
sees a stop. Once a Master gets control of
the bus, it sends the address of the particular
device with which it wants to communicate.
Communication will then transpire between
the Master and the Slave device. The
existence of many types of ICs which have
built-in I2C interface capabilities makes
system design almost as easy as drawing a
block diagram. Real-time clocks, RAM, A/D
converters, EEPROMs, Microcontrollers,
Keyboard encoders, LCD display drivers, and
many other I2C supported chips all
communicate over two wires rather than
needing 16 Address lines, 8 data lines and
Address decoders along with handshake
signals, which more conventional designs
would require to be routed all over the Printed
Circuit board.

Now, with the introduction of the I2C buffer
chip, it is easy to branch out beyond the
single chassis mode and use this convenient
local area network to tie together whole
systems without the need to convert from the
“internal” I2C protocol to an external
communication medium such as RS-232 and
then RS-485. By using the new Philips I2C
buffer, the external systems’ components can
be accessed as easily as the internal I2C
connected components.

The P82B715 is an 8 pin IC which contains 2
identical amplifier sections to allow for the
current amplification and buffering of both the
SDA and the SCL signals on the I2C bus.
Each section in the P82B715 contains a
bipolar times 10 current amplifier which
senses the direction of current flow through
an internal 30 ohm series resistor in the I2C
line. The P82B715 then boosts the current,
while keeping the voltage gain at unity, and
continues to maintain the voltage drop
direction across the resistor. This

configuration results in different waveforms
as the P82B715 starts to do its job. If the
driving source has a strong current sink
capability, then it will start to drive the
buffered I2C line immediately through the 30
ohm resistor. A microsecond later the
P82B715’s amplified pull down current kicks
in and pulls the line down even harder. If the
driving IC is only capable of the I2C specified
3 milliamp pull down current, the buffered bus
will fall a little and then just wait at that
voltage level for the propagation delay of the
amplifier to finally turn on and bring the
buffered bus down to a logic low. Thus, there
will always be some form of a step in the
falling edge of the buffered output waveform,
see Figure 1. A weak source will have a step
(plateau) up near 4 volts and a strong source,
such as the Philips Semiconductors 87C751
microcontroller, will have the step occur
below 2 volts. The position of the step will be
determined by the current sink capability of
the I2C bus driver versus the value of the
pull-up resistor which is used on the buffered
I2C bus, Vstep = 5V – (Isink × Rbuf). For
example: Vstep = 5V – (3mA × .165 k ohms)
= 5 – .495 = 4.5Volts; another example:
Vstep = 5V – (20mA × .165 k ohms) = 5 – 3.3
= 1.7Volts.

Running the I2C signals over long distances
poses several problems. The I2C SDA and
SCL lines are monitored by all of the ICs
connected on the I2C bus. These ICs each
have their own circuitry to decipher the
information on the bus. In normal operation, a
Start occurs when there is a high to low
transition on the SDA line while SCL is high.
Obviously, if any external noise is coupled
into the SDA line, it could be mistakenly
perceived as a Start. Because of this, some
form of shielding will be preferred to protect
the two I2C signals from external noise
sources. During the transmission of data
there are signals which are active on both
SDA and SCL. If these normal signals are
cross-coupled, then data can be corrupted.
Thus, although the standard telephone
twisted pair cable is the most commonly
available built in cable, it is not recommended
for long I2C runs. This cable maximizes
crosstalk, due to the twisted pair
configuration and, since there is no shielding,
is very vulnerable to adjacent wire telephone
signal coupling and to any stray external
electromagnetic interference. This effect can
be somewhat reduced by running a signal
wire and a grounded wire as adjacent pairs.

Long distance cables present capacitive
loading which must be overcome with the
driver chips. The limiting factor is the amount
of pull-up current which is available to charge
the line capacitance. With the simple resistor

pull-up recommended by I2C standards,
three milliamps is available for charging this
line capacitance. The rise time of the signal
will increase linearly with the increase in
capacitive loading and the specified
maximum capacitive loading is only 400 Pico
Farads for guaranteed 100kHz
communication rates. The P82B715 current
buffer allows for 30 milliamps of pull-up
current, with a resulting maximum capacitive
loading of 4,000 Pico Farads (4 Nano
Farads).

The I2C hardware inputs look at the I2C
signals and act when those signals pass
through the active linear region at about 1.2
to 1.4 volts, and are detected as digital levels.
Thus, there is a delay between when an
output transistor turns off and when the rising
signal is detected as a logic one at the
receiver. This time depends on the value of
the pull-up resistor, the perceived
capacitance at the transmitting end, the delay
through the cable, and finally the delay
through the receiver’s amplifier to its output
stage. The maximum allowable time is limited
by the characteristic that the I2C master
provides the clock signal which must travel
down the cable and be received by the slave.
This slave must act on the clock signal and
produce data information which is sent back
to the master with an additional set of delays.
Upon reception the data must be put in its
proper place before the master starts its next
clock signal, or an error will occur.

Different types of cable were tested and the
results are shown in Table 1. Keep in mind
that the results are based on cable runs in a
low electrical noise environment. If reliable
operation is desired in a high electrical noise
environment, shielded cable must be used.
For “short” runs, flat cable with every other
conductor grounded, seems to provide a
good, low capacitance medium for I2C
transmission, otherwise, the shielded audio
cable seemed to provide the best
price/performance. Note that for long runs, it
is desirable to have a separate power supply
at each end of the cable, and the shield or
ground wire will provide a common reference
between the two supplies. The voltage drop
due to the resistance of the wire usually is the
limiting factor for very long runs of cable
where the power to the remote system must
also come through the cable. Table 1 shows
the results of testing with longer and longer
cable lengths until failures were detected.
The values in the table represent the
maximum cable lengths which still provided
error free code from a modified version of the
Ping-pong program which is listed in
Application Note AN430.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 2

Figure 1. P82B715 Output Waveform on Long Cable

time in microseconds
0 2 4 6 8 10 12

step
V

ol
ts

4

3

2

1

0

Table 1. Test Results with P82B715 Over Long Cables
CABLE TYPE Ohms/m pF/m Total Length Total Ohms Total Cap.

Belden 8723 45 Ohm Audio
2 each 2—24AWG wire stranded Beldfoil Aluminum-
polyester shielded with common drain wire
SDA & ground on one pair; SCL & ground on other pair

.049 115 305M (1000’) 11.5 48.2nF

Belden 8723 45 Ohm Audio
using 1 shielded pair, SDA on Red, SCL on Black .049 115 330M (1100’) 12.7 53nF

RG-174/U 50 Ohm Video Cable
SDA and grounded shield in one cable
SCL and grounded shield in one cable

.318 101 150M (500’) 47.7 15.2nF

“Telephone Cable”
22&24 AWG Solid Copper Twisted Pair, Level 3 LAN &
Medium Speed Data
SDA and ground in one twisted pair
SCL and ground in one twisted pair

.0286 66 95M (310’) 2.7 6.4nF

Flat “Ribbon” Cable, every other conductor grounded .20 52 400M (1320’) 80.5 21nF

In all of the tests, the power supply voltage
was 4.5 volts. The ground for the remote test
fixture was through the long cable. Since 4.5
volts is the recommended minimum voltage
for both the 87C751 and the P82B715, it was
not possible to operate the remote unit on
power supplied through the long cable, since
any ohmic drop would place the ICs out of
their specified range. However, it is
necessary to connect the grounds between
the two units for the best noise immunity.

The P82B715 is designed to drive a 4 nF
capacitive load at 100kHz. However, the
actual total capacitances of the long cables
which worked were substantially greater than
this. The loading did effect the software
driven hardware part of the 87C751. To
achieve a true 100kHz data rate, it was
necessary to shorten the ’751 Timer values
for the I2C drivers. This resulted in an
asymmetrical waveform, but did achieve a 10
microsecond period (100kHz). This

asymmetry in duty cycle can be easily seen
in the Figure 1 waveform.

The test with the Belden 8723 Audio Cable
worked if one of the shielded pair was
connected to a signal and the other was
connected to ground or +5volts. When both
wires were connected in parallel as signal
wires, the capacitance to ground doubled and
the test failed. Also note that the adjacent
wire mutual inductive coupling of the SDA
and SCL signals did not seem to cause any
problems even out to 1000 feet. This
indicated that possibly the Belden 9452 45
ohm beldfoil shielded audio cable with a
single set of twisted pair wires would be a
good candidate to also try.

Flat ribbon cable provided a good
compromise between shielding and
reasonable capacitance. It is possible to
increase the shielding effect by using flat
cable with an etched copper foil layer on the
back side of the cable. Noise can be induced

into the cable by folding it back over itself for
mutual induction effects, and also by
operating a noise source close to the cable. A
transformer type of soldering iron and
florescent light transformers seemed to be
good noise sources.

The P82B715 can drive multiple P82B715
remote units. The line should have some
form of pull-up resistor at each driver. If only
two drivers are used, as shown in Figure 2,
the load should be split between the two
drivers. For example, if the pull-up current is
to be 30 milliamps and the voltage is 5 volts,
the pull-up resistance should be: 5V/.030
amps = 165 ohms. This should be
implemented by placing a 330 ohm resistor at
each end of the cable so that the parallel
resistance is 165 ohms and each end of the
line is terminated. Remembering that the
current gain can be as low as 8 and that most
runs will not be to the maximum possible
distance, lower values of pull-up current can

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 3

be used with the appropriate modifications to
the above equations.

For larger fan-out with fixed locations, the
load resistance should also be evenly divided
so that the parallel combination of all of the
pull-up resistors will provide the desired D.C.
pull-up current.

If some of the remote units will be pluggable,
it will be necessary to divide the pull-up load
to accommodate all of the possible
combinations of possible fanout. Figure 3
shows an example of driving up to 30 remote,
pluggable peripherals. On the 3 milliamp side
of the P82B715 a complete I2C system may
exist. In Figure 3, a local I2C network cluster
could be joined to other local network clusters
through the P82B715 buffered bus so that
hundreds of I2C devices could potentially be
interconnected.

The ease of connecting I2C clusters into a
complete LAN opens the door for many new
uses of components which have an I2C bus
connection. Now an electronic instrument can
have access to remote keyboards and
remote sensors by using the I2C bus. The
instrument’s output can easily be shown on
multiple remote displays all connected with
the I2C bus. Multiple instruments can also
pass data back and forth over the I2C bus.
Thus, we see that the I2C bus can become
an effective and inexpensive Local Area
Network by using the P82B715 I2C bus
extender.

THE TEST SETUP
These tests were run on two identical test
boards which each use a Philips
Semiconductors 87C751 microcontroller that
drives the I2C buffer which has a 330 ohm
pull-up resistor. The schematic is shown in
Figure 4. The software is a modified version
of the “Ping-Pong” program which is
described in the Philips Semiconductors
Application Note, AN430, “Using the
8XC751/752 in Multimaster applications”.
This program sends a number down the I2C
line and, when received, the receiving unit
becomes a master and increments the
number and sends it back to the first unit
where it is checked and then the process

repeats itself. The software has extensive
error detection capability and monitors for
corruption of data, false starts, over run of
data, stuck lines and about anything else
which might indicate a problem. If any errors
did occur, a software counter was
incremented. In this setup, the counter was
stopped at Hex 07F to prevent wrap around
and the contents of the counter are displayed
on a bank of 8 LEDs. The MSB of the counter
register was used as an indicator that the unit
was working. The MSB LED flashes at about
a 1 Hz rate when the unit is operating
normally. When a cable length was reached
which was too long, the MSB LED would stop
flashing and the counter would rapidly fill up
and stop with all 7 LEDs on (LED on
indicates a logic “1” in this application).

THE TEST HARDWARE
A general purpose test rig was designed so
that future needs of a general I2C platform
could also be met. All of the port pins on the
’751 were used. The inputs to the system
were a toggle switch with a pull-up resistor
connected to P0.2 (because this pin is Open
Drain) and an octal DIP switch connected to
port 1 (the internal pull ups of the port were
used, so no external pull-up resistors were
needed). The output is displayed through an
octal buffer connected to port 3. A logical “1”
on the pin will light up the LED. The I2C
signals, SDA and SCL, are connected to the
I2C buffer chip and the outputs of the buffer
are pulled up by 330 ohm resistors. The
parallel combination of the buffered
transmitting end pull-up and the receiving end
pull-up resistors is 330/2 ohms, which results
in a pull-up load current of 30 milliamps. This
current from the two pull-up resistors must be
sunk by the single driving transistor of the
acting sender. The effective loading seen by
the ’751 is the I2C buffer’s load divided by 10.
Thus, the ’751’s I2C outputs will sink 3
milliamps when driving the I2C buffer which is
sinking 30 milliamps on the buffered bus.

The software monitor routine allows the user
to monitor any internal ’751 RAM location and
display the contents on the LEDs. The
monitor routine also allows the user to modify
the contents of any RAM location including

SFR space. The Ping-Pong program needed
the first 8 locations in RAM, so the stack
pointer for this application was changed from
the default location of 07H to location 09H.
This starts the stack at 0AH.

To read the contents of RAM, set the DIP
switches to the desired RAM address. The
toggle switch is set to a “1”. Pressing the
Reset switch causes the microprocessor to
reset and then enter the monitor program
where the program then waits until the toggle
switch is changed. Upon closing the toggle
switch (a “1” to “0” transition) the program
loads the DIP switch selection into R0 of
bank 1 (RAM location 08H). The program
then loads the contents of the RAM location
pointed to by R0 (bank 1) and copies it into
port 3, where it is displayed on the 8 LEDs.
Thus, the Address is seen by looking at the
DIP switches and the contents pointed to are
displayed on the LEDs. Note that this indirect
Address latch location (R0,bank 1) would
have been the normal beginning of the stack,
had it not been changed.

The contents of an internal RAM location can
also be modified with this program. First, set
the DIP switches to the desired Address and
set the toggle switch to “0”. Reset the
processor and then set the toggle switch to
“1”. This transfers the address to R0 (bank
1). Next, load the desired new data, which is
to be stored in RAM, into the DIP switches,
and then set the toggle switch to “0”. At this
time the LEDs will now show the Address of
RAM and the DIP switches show what was
written into the selected RAM location. To
verify that the data was actually written into
the RAM, follow the read RAM sequence.

Although this may seem to be a bit
cumbersome, it is a workable way to see
what is happening inside of the ’751.
Remember that it is necessary to re-enter the
monitor program, or at least to duplicate the
read RAM of R0 (bank 1) and output to
port 3, to see the latest version of the
contents of the RAM location. Since this
experiment only looked at the contents of one
RAM location, the above method was easy to
use and the display always showed the
current status of the desired RAM location
because it is updated often by the software.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 4

VCC

30 mA Buffered I2C

330Ω

P82B715 P82B715

3mA
local I2C 3mA

local I2C

VCC

330Ω

Figure 2. P82B715 Driving Long Line

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 5

Up to 30 stations

15 to 30 mA

Buffered I2C

330Ω

Rmaster

3mA
local I2C

3mA
local I2C

3mA
local I2C

3mA
local I2C

P82B715

P82B715

P82B715

P82B715

10kΩ
Rslave

10kΩ
Rslave

VCC

VCC

VCC

VCC

10kΩ
Rslave

Figure 3. Large Fan-Out Configuration for P82B715

Note that VCC is 5 volts for these values of load resistors. If a
different voltage is desired, the calculations are as follows:

The pluggable units would be calculated as follows:

Parallel combination of Rslave = Rmaster

Rslave = Rmaster × Fan out

example: Rslave = 330Ω × 30 = 9900Ω = 10k

Rmaster = example: Rmaster = = 0.33k = 330ΩVCC
15mA

5V
15mA

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 6

7
P0.1

P0.0

P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0

20 MSB

19

18

17

16

15

14

13 LSB

 DIP SWITCH

BUFFERED SDA

BUFFERED SCLX1

X2

11

10

.01µF

30pF

30pF

9
RST

2.2µF

P82B715

87C751

24

P0.2
6

10k

+5 VOLTS

GROUND

18

17

16

15

14

13

12

11
P3.7

21

P3.6 22

P3.5 23

P3.4
1

P3.3 2

P3.2 3

P3.1
4

P3.0
5

1
19

10

74HCT245

20

GND
T/R OE

LED

RESET

SWITCH

6

VCC
VCC

VCC

16MHz

330Ω

330Ω

8

4

3

78 SCL

Figure 4. Schematic

330Ω

SDA 2

VCC

2

3

4

5

6

7

8

9

LSB

MSB

VCC

VCC

VCC

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 7

;

;***

; Multimaster Code for 83C751/83C752
; 4/14/1992 MODIFIED BY DON SHERMAN 5–21–92
; ;; is used to show where original code was modified

;***

; This code was written to accompany an application note. The I2C routines
; are intended to be demonstrative and transportable into different
; application scenarios, and were NOT optimized for speed and/or memory
; utilization.
;
; Yoram Arbel

$TITLE(83C751 Multi Master I2C Routines)
$DATE(4/14/1992)
$MOD751 ;;NEED TO USE $MOD752 FOR 752 EMULATOR
;;EI2 EQU ES NEED ENABLE FOR EMULATOR
$DEBUG

;***

; 8XC751 MULTIMASTER I2C COMMUNICATIONS ROUTINES
; Symbols and RAM definitions

;***

; Symbols (masks) for I2CFG bits.

BTIR EQU 10h ; TIRUN bit.
BMRQ EQU 40h ; MASTRQ bit.

; Symbols (masks) for I2CON bits.

BCXA EQU 80h ; CXA bit.
BIDLE EQU 40h ; IDLE bit.
BCDR EQU 20h ; CDR bit.
BCARL EQU 10h ; CARL bit.
BCSTR EQU 08h ; CSTR bit.
BCSTP EQU 04h ; CSTP bit.
BXSTR EQU 02h ; XSTR bit.
BXSTP EQU 01h ; XSTP bit.

; Note:
;
; Specific bits of the I2CON register are set by writing into this register a
; combination of the masks defined above using the MOV command.
; The SETB command should not be used with I2CON, as it is implemented by
; reading the contents of the register, setting the appropriate bit and
; writing it back into the register. As the functionality of the Read and
; Write portions of the I2CON register is different, using SETB may cause
; unwanted results.

; Message transaction status indications in MSGSTAT:

SGO EQU 10h ; Started Slave message processing.
SRCVD EQU 11h ; as a slave, received a new message
SRLNG EQU 12h ; received as slave a message which is too
 ; long for the buffer
STXED EQU 13h ; as slave, completed message transmission.
SRERR EQU 14h ; bus error detected when operating as a slave.

MGO EQU 20h ; Started Master message processing.
MRCVED EQU 21h ; As Master, received complete message from
 ; slave.
MTXED EQU 22h ; As Master, completed successful message
 ; transmission (slave acknowledged all data
 ; bytes).
MTXNAK EQU 23h ; As Master, truncated message since slave did
 ; not acknowledge a data byte.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 8

MTXNOSLV EQU 24h ; AS Master, did not receive an acknowledgement
 ; for the specified slave address.

TIMOUT EQU 30h ; TIMERI Timed out.
NOTSTR EQU 32h ; Master did not recognize Start.

; RAM locations used by I2C interrupt service routines.

MASCMD DATA 20h
SUBADD BIT MASCMD.0
RPSTRT BIT MASCMD.1
SETMRQ BIT MASCMD.2

 DSEG AT 24h

MSGSTAT: DS 1 ; I2C communications status.
MYADDR: DS 1 ; Address of this I2C node.
DESTADRW: DS 1 ; Destination address + R/W (for Master).
DESSUBAD: DS 1 ; Destination subaddress.
MASTCNT: DS 1 ; Number of data bytes in message (Master,
 ; send or receive).

TITOCNT: DS 1 ; Timer I bus watchdog timeouts counter.
StackSave: DS 1 ; SP save location (used when returning from
 ; bus recovery routine).

MasBuf: DS 4 ; Master receive/transmit buffer, 8 bytes.
SRcvBuf: DS 4 ; Slave receive buffer, 8 bytes.
STxBuf: DS 4 ; Slave transmit buffer, 8 bytes.

RBufLen EQU 4h ; The length of SRcvBuf

;***

; APPLICATION output pins and RAM definitions

;***

; Outputs used by the application:

;;TogLED BIT P1.0 ; Toggling output pin, to confirm
 ; that the ping–pong game proceeds fine.
;;ErrLED BIT P1.1 ; Error indication.

;;OnLED BIT P1.3 ;

; Application RAM
APPFLAGS DATA 21h
 TRQFLAG BIT APPFLAGS.0
 ; Flag for monitoring I2C transmission success.
 SErrFLAG BIT APPFLAGS.1

FAILCNT: DS 1

TOGCNT: DS 1 ; Toggle counter.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 9

;***

;
; Program Start
;

;***

 CSEG
; Reset and interrupt vectors.

 AJMP DONMON ;;JUMP TO MONITOR
 ;Reset vector at address 0.

; A timer I timeout usually indicates a ’hung’ bus.

 ORG 1Bh ; Timer I (I2C timeout) interrupt.
TimerI: SETB CLRTI
 AJMP TIISR ; Go to Interrupt Service Routine.

;**

; I2C Interrupt Service Routine

;**

;
; Notes on the interrupt mechanism:
;
; Other interrupts are enabled during this ISR upon return from XRETI.
; Limitations imposed on other ISR’s:
; – Should not be long (close to 1000 clock cycles). A long ISR will cause
; the I2C bus to ’hang”, and a TIMERI interrupt to occur.
; – Other interrupts either do not use the same mechanism for allowing
; further interrupts, or if they do – disable TIMERI interrupt beforehand.
;
; The 751 hardware allows only one level of interrupts. We simulate an
; additional level by software: by performing a RETI instruction (at location
; XRETI) the interrupt–in–progress flip–flop is cleared, and other interrupts
; are enabled. The second level of interrupt is a must in our implementation,
; enabling timeout interrupts to occur during ”stuck” wait loops in the I2C
; interrupt service routine.

 ORG 23h

I2CISR: CLR EI2 ; Disable I2C interrupt.
 ACALL XRETI ; Allow other interrupts to occur.
 PUSH PSW
 PUSH ACC
 MOV A,R0
 PUSH ACC
 MOV A,R1
 PUSH ACC
 MOV A,R2
 PUSH ACC

 MOV StackSave, SP
 CLR TIRUN
 SETB TIRUN

 JB STP,NoGo
 JNB MASTER, GoSlave
 MOV MSGSTAT,#MGO
 JB STR,GoMaster
NoGo: MOV MSGSTAT,#NOTSTR
 AJMP Dismiss ; Not a valid Start.

XRETI: RETI

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 10

;***

; Main Transmit and Receive Routines

;***

; SLAVE CODE –
; GET THE ADDRESS

GoSlave: MOV MSGSTAT,#SGO
AddrRcv: ACALL ClsRcv8
 JNB DRDY, SMsgEnd ; Must be some strange Start or Stop
 ; before the address byte was completed.
 ; Not a valid address.
STstRW: MOV C,ACC.0 ; Save R/W~ bit in carry.
 CLR ACC.0 ; Clear that bit, leaving ”raw” address
 JZ GoIdle ; If it is a General Address
 ; – ignore it.

 ; NOTE:
 ; One may insert here a different
 ; treatment for general calls, if
 ; these are relevant.

 JC SlvTx ; It’s a Read – (requesting slave
 ; transmit).

; It is a Write (slave should receive the message).

; Check if message is for us

SRcv2: CJNE A,MYADDR,GoIdle ; If not my address – ignore the
 ; message.
 MOV R1,#SRcvBuf ; Set receive buffer address.
 MOV R2,#RbufLen+1 ;
 SJMP SRcv3
SRcvSto: MOV @R1,A ; Store the byte
 Inc R1 ; Step address.
SRcv3: ACALL AckRcv8
 JNB DRDY,SRcvEnd ; Exit loop –end reception.
 DJNZ R2,SRcvSto ; Go to store byte if buffer not full.

; Too many bytes received – do not acknowledge.
 MOV MSGSTAT,#SRLNG ; Notify main that (as slave) we
 ; have received too long a message.
 ACALL SLnRCvdR ; Handle new data – slave event routine.
 SJMP GoIdle

; Received a byte, but not DRDY – check if a legitimate message end.

SRcvEnd: CJNE R0,#7,SRcvErr ; If bit count not 7, it was not
 ; a Start or a Stop.

; Received a complete message

 MOV MSGSTAT,#SRCVD
 ; Calculate number of bytes received
 MOV A,R1
 CLR C
 SUBB A,#SRcvBuf ; number of bytes in ACC
 ACALL SRCvdR ; Handle new data – slave event routine.
 SJMP SMsgEnd

; It is a Read message, check if for us.

SlvTx: NOP

STx2: CJNE A,MYADDR,GoIdle ; Not for us.
 MOV I2DAT,#0 ; Acknowledge the address.
 JNB ATN,$; Wait for attention flag.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 11

 JNB DRDY,SMsgEnd ; Exception – unexpected Start
 ; or Stop before the Ack got out.
 MOV R1,#STxBuf ; Start address of transmit buffer.
STxlp: MOV A,@R1 ; Get byte from buffer
 INC R1
 ACALL XmByte
 JNB DRDY,SMsgEnd ; Byte Tx not completed.
 JNB RDAT,STxlp ; Byte acknowledge, proceed trans.
 MOV I2CON,#BCDR+BIDLE ; Master Nak’ed for msg end.
 MOV MSGSTAT,#STXED
 ACALL STXedR ; Slave transmitted event routine.
 AJMP Dismiss

SRcvErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
 ACALL SRErrR ; Slave error event routine.
 SJMP SMsgEnd
StxErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
 ACALL SRErrR
SMsgEnd: JB MASTER,SMsgEnd2
 JB STR,GoSlave ; If it was a Start, be Slave
SMsgEnd2:
 AJMP Dismiss

; End of Slave message processing

GoIdle:
 AJMP Dismiss

;
;

GoMaster:

; Send address & R/W~ byte

 MOV R1,#MasBuf ; Master buffer address
 MOV R2,MASTCNT ; # of bytes, to send or rcv
 MOV A,DESTADRW ; Destination address (including
 ; R/W~ byte).
 JB SUBADD,GoMas2 ; Branch if subaddress is needed.

 ACALL XmAddr

 JNB DRDY,GM2
 JNB ARL,GM3
GM2: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.
GM3: JB RDAT,Noslave ; No Ack for address transmission.
 JB ACC.0, MRcv ; Check R/W~ bit
 AJMP MTx

; Handling subaddress case:

GoMas2: NOP ; Subaddress needed. Address in ACC.
 CLR ACC.0 ; Force a Write bit with address.
 ACALL XmAddr
 JNB DRDY,GM4
 JNB ARL,GM5
GM4: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.

GM5: JB RDAT,Noslave ; No Ack for address transmission.
 MOV A,DESSUBAD
 ACALL XmByte ; Transmit subaddress.
 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
 JB ARL,SMsgEnd2 ; Arbitration loss occurred.
 JB RDAT,NoAck ; Subaddress transmission was not ack’ed.
 MOV A,DESTADRW ; Reload ACC with address.
 JNB ACC.0, MTx ; It’s a Write, so proceed
 ; by sending the data.
 ; Read message, needs rp. Start and add. retransmit.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 12

 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
 JNB ATN,$
 MOV I2CON,#BCDR ; Clear useless DRDY while preparing
 ; for Repeated Start.
 JNB ATN,$; expecting an STR.
 JNB ARL,GM6
 AJMP MArlEnd ; oops – lost arbitration.
GM6: ACALL XmAddr ; Retransmit address, this time with the
 ; Read bit set.
 JNB DRDY,GM7
 JNB ARL,GM8
GM7: AJMP AdTxArl ; Arbitration loss while transmitting
 ; the address.
GM8: JB RDAT,Noslave ; No Ack – the slave disappeared.
 SJMP MRcv ; Proceed receiving slave’s data.

; A Write message. Master transmits the data.

MTx: NOP

MTxLoop: MOV A,@R1 ; Get byte from buffer.
 INC R1 ; Step the address.
 ACALL XmByte
 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
 JB ARL,SMsgEnd2 ; Arbitration loss.
 JB RDAT,NoAck
 DJNZ R2,MTxLoop ; Loop if more bytes to send.

 MOV MSGSTAT,#MTXED ; Report completion of buffer
 ; transmission.
 SJMP MTxStop
NoSlave: MOV MSGSTAT,#MTXNOSLV
 SJMP MTxStop
NoAck: MOV MSGSTAT,#MTXNAK
 SJMP MTxStop

; Master receive – a Read frame

MRcv: ACALL ClaRcv8 ; Receive a byte.
 SJMP MRcv2
MRcvLoop: ACALL AckRcv8
MRcv2: JNB DRDY,MArl ; Other’s Start or Stop.
 MOV @R1,A ; Store received byte.
 INC R1 ; Advance address.
 DJNZ R2,MRcvLoop

; Received the desired number of bytes – send Nack.

 MOV I2DAT,#80h
 JNB ATN,$
 JNB DRDY,MArl
 MOV MSGSTAT,#MRCVED
 SJMP MTxStop ; Go to send Stop or Repeated Start.
; Conclude this Master message:
; Send Stop, or a Repeated Start

MTxStop: JNB RPSTRT,MTxStop2 ; Check if Repeated Start needed
 ; Around if not RPSTRT.
 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
 SJMP MTxStop3
MTxStop2: MOV C,SETMRQ ; Set new Master Request if demanded
 MOV MASTRQ,C ; by SETMRQ bit of MASCMD.
 MOV I2CON,#BCDR+BXSTP ; Request the HW to send a Stop.

MTxStop3: JNB ATN,$; Wait for Attention
 MOV I2CON,#BCDR ; Clear the useless DRDY, generated
 ; by SCL going high in preparation
 ; for the Stop or Repeated Start.
 JNB ATN,$; Wait for ARL, STP or STR.
 JB ARL,MarlEnd ; Lost arbitration trying to send
 ; Stop or a ReStart.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 13

; Master is done with this message. May proceed with new messages, if any,
; or exit.

 ACALL MastNext ; Master Event Routine. May Prepare
 ; the pointers and data for the
 ; next Master message.

 JNB MASTRQ,MMsgEnd ; Go end service routine if MASTRQ
 ; does not indicate that the master
 ; should continue (was set according
 ; to SETMRQ bit, or by MastNext).

 JNB STR,MMsgEnd ; Return from the ISR, unless Start
 ; (avoid danger if we do not return:
 ; if there was a Stop, the watchdog
 ; is inactive until next Start).
 AJMP GoMaster ; Loop for another Master message
 ;
MMsgEnd: ; End of Master messages,
 SJMP Dismiss

; Terminate mastership due to an arbitration loss:

MArl:

 JNB STR,MArl2 ; If lost arbitration due to other
 ; Master’s Start, go be a slave.
 AJMP GoSlave

Marl2:

 AJMP Dismiss
; Switch from Master to Slave due to arbitration loss after completing
; transmission of a message. The MASTRQ bit was cleared trying to write a
; Stop, and we need to set it again on order to retry transmission when the
; bus gets free again.

MArlEnd:
 SETB MASTRQ ; Set Master Request – which will get
 ; into effect when we are done as a
 ; slave.
 ACALL MORERR ;;INCREASE ERROR COUNT
 AJMP MArl

; Handling arbitration loss while transmitting an address

AdTxArl: JB STR,MArl ; Non–synchronous Start or Stop.
 JB STP,MArl

; Switch from Master to Slave due to arbitration loss while transmitting
; an address – complete receiving the address transmitted by the new Master.

 CJNE R0,#0,AdTxArl2
 ; Arl on last bit of address
 ; (R0 is 0 on exit from XmAddr).
 DEC A ; The lsb sent, in which arl occurred
 ; must have been 1. By decrementing
 ; A we get the address that won.
 SJMP AdAr3

AdTxArl2:
 RR A ; Realign partially Tx’ed ACC
 MOV R1,A ; and save itin R1
 MOV A,R0 ; Pointer for lookup table
 MOV DPTR,#MaskTable
 MOVC A,@A+DPTR
 ANL A,R1 ; Set address bits to be received,
 ; and the bit on which we lost
 ; arbitration to 0
 ; Now we are ready to receive the rest
 ; of the address.

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 14

 MOV I2CON,#BCXA+BCARL ; Clear flags and release the clock.

 ACALL RBit3 ; Complete the address using reception
 ; subroutine.
 JB DRDY,AdAr3 ; Around if received address OK
 AJMP SMsgEnd ; Unexpected Start or Stop – end
 ; as a slave.
AdAr3: AJMP STstRW ; Proceed to check the address
 ; as a slave.

MaskTable: DB 0ffh,7Eh,3Eh,1Eh,0Eh,06h,02h,00h, ; 0ffh is dummy

; End I2C Interrupt Service Routine:

Dismiss: ACALL I2CDONE
 MOV I2CON,#BCARL+BCSTP+BCDR+BCXA+BIDLE
 CLR TIRUN
 POP ACC
 MOV R2,A
 POP ACC
 MOV R1,A
 POP ACC
 MOV R0,A
 POP ACC
 POP PSW
 SETB EI2

 RET ; Return from I2C interrupt Service Routine

;***

; Byte Transmit and Receive Subroutines

;***

; XmAddr: Transmit Address and R/W~
; XmByte: Transmit a byte

XmAddr: MOV I2DAT,A ; Send first bit, clears DRDY.
 MOV I2CON,#BCARL+BCSTR+BCSTP
 ; Clear status, release SCL.
 MOV R0,#8 ; Set R0 as bit counter
 SJMP XmBit2
XmByte: MOV R0,#8
XmBit: MOV I2DAT,A ; Send the first bit.
XmBit2: RL A ; Get next bit.
 JNB ATN,$; Wait for bit sent.
 JNB DRDY,XmBex ; Should be data ready.
 DJNZ R0,XmBit ; Repeat until all bits sent.
 MOV I2CON,#BCDR+BCXA ; Switch to receive mode.
 JNB ATN,$; Wait for acknowledge bit.
 ; flag cleared.
XmBex: RET

;
; Byte receive routines.
;
; ClsRcv8 clears the status register (from Start condition)
; and then receives a byte.
; AckRcv8 Sends an acknowledge, and then receives a new byte.
; If a Start or Stop is encountered immediately after the
; ack, AckRcv8 returns with 7 in R0.
; ClaRcv8 clears the transmit active state and releases clock
; (from the acknowledge).
;
; A contains the received byte upon return.
; R0 is being used as a bit counter.
;

ClsRcv8: MOV I2CON,#BCARL+BCSTR+BCSTP+BCXA
 ;Clear status register.
 JNB ATN,$
 JNB DRDY,RCVex
 SJMP Rcv8

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 15

AckRcv8: MOV I2DAT,#0 ; Send Ack (low)
 JNB ATN,$
 JNB DRDY,RCVerr ; Bus exception – exit.
ClaRcv8: MOV I2CON,#BCDR+BCXA ; clear status, release clock
 ;from writing the Ack.
 JNB ATN,$

Rcv8: MOV R0,#7 ; Set bit counter for the first seven
 ; bits.
 CLR A ; Init received byte to 0.
RBit: ORL A,I2DAT ; Get bit, clear ATN.
RBit2: RL A ; Shift data.
 JNB ATN,$; Wait for next bit.
 JNB DRDY,RCVex ; Exit if not a data bit (could be Start/
 ; Stop, or bus/protocol error)
RBit3: DJNZ R0,RBit ; Repeat until 7 bits are in.
 MOV C,RDAT ; Get last bit, don’t clear ATN.
 RLC A ; Form full data byte.
RCVex: RET

RCVerr: MOV R0,#9 ; Return non legitimate bit count
 RET

;***

; Timer I Interrupt Service Routine
; I2C us Timeout

;***

; In addition to reporting the timeout in MSGSTAT, we update a failure
; counter, TITOCNT. This allows different types of timeout handling by the
; main program.

TIISR: CLR MASTRQ ; ”Manual” reset.
 MOV I2CON,#BXSTP ;
 MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP

TI1: MOV MSGSTAT,#TIMOUT ; Status Flag for Main.
TI2: ACALL MORERR ;;INC TITOCNT
TI4: ACALL RECOVER

 SETB CLRTI ; Clear TI interrupt flag.
 ACALL XRETI ; Clear interrupt pending flag (in
 ; order to re–enable interrupts).
 MOV SP,StackSave ; Realign stack pointer, re–doing
 ; possible stack changes during
 ; the I2C interrupt service routine.
 ; TimerI interrupts in other ISR’s
 ; were not allowed !
 AJMP Dismiss ; Go back to the I2C service routine,
 ; in order to return to the (main)
 ; program interrupted.

;**

; Bus recovery attempt subroutine

;**

RECOVER: CLR EA
 CLR MASTRQ ; ”Manual” reset.
 MOV I2CON,#BCXA+BIDLE+BCDR+BCARL+BCSTR+BCSTP
 CLR SLAVEN ; Non I2C TimerI mode
 SETB TIRUN ; Fire up TimerI. When it overflows, it
 ; will cause I2C interface hardware reset.
 MOV R1,#0ffh
DLY5: NOP
 NOP
 NOP
 DJNZ R1,DLY5
 CLR TIRUN
 SETB CLRTI

 SETB SCL ; Issue clocks to help release other devices.
 SETB SDA
 MOV R1,#08h

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 16

RC7: CLR SCL
 DB 0,0,0,0,0
 SETB SCL
 DB 0,0,0,0,0
 DJNZ R1,RC7
 CLR SCL
 DB 0,0
 CLR SDA
 DB 0,0
 SETB SCL
 DB 0,0,0,0,0
 SETB SDA
 DB 0,0,0,0,0 ; Issue a Stop.

Rex: MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP ; clear flags
 SETB EA
 RET

;***

;
; Main Program
;

;***

; Message ping pong game. Each message is transmitted by
; a processor that is a master on the I2C bus, and it contains one byte
; of data. A processor that receives this data byte as a slave increments
; the data by one and transmits it back as a master. The data received is
; confirmed to be a one increment of the data formerly sent, unless
; it is a ”reset” value, chosen to be 00h.
; The two participating processors have similar code, where the node
; address of the second processor is the destination address of this
; one, and vice versa.
; The first data byte each processor tries to send is 00h. One of the
; processors will acquire the bus first, and the second processor that will
; receive this ”resetting” 00h will not attempt tp confirm it against an
; expected value. It will simply increment and transmit it. Subsequent
; receptions will be confirmed against the expected value, until 0ffh data
; bytes are sent and the game is effectively reset by the 00h resulting from
; the next increment.
; A toggling output (TogLED) tells the outer world that the ”ping pong”
; proceeds well. If something unexpected happens we temporarily activate
; another output, ErrLED.
; The different tasks of the code are performed in a combination of main–
; line program and event routines called from the I2C interrupt service
; routine.

; Initial set–ups:
; Load CT1,CT0 bits of I2CFG register, according to the clock
; crystal used.
; Load RAM location MYADDR with the I2C address of this processor.
; We load these values out of ROM table locations (R_CTVAL and R_MYADDR).
; One may, instead, load with a MOV <immediate> command.

;;Reset: MOV SP,#07h ;Set stack location.
RESET: CLR A
 MOV DPTR,#R_CTVAL
 MOVC A,@A+DPTR
 MOV I2CFG,A ; Load CT1,CT0 (I2C timing, crystal
 ; dependent).
 CLR A
 MOV DPTR,#R_MYADDR
 MOVC A,@A+DPTR ; Get this node’s address from ROM table
 MOV MYADDR,A ; into MYADDR RAM location.

;; CLR OnLED

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 17

;;Reset2: CLR ErrLED ; Flash LED.
RESET2: ACALL LDELAY
;; SETB ErrLED
 CLR SErrFLAG
 CLR TRQFLAG
 MOV FAILCNT,#50h
;; SETB TogLED
 MOV TOGCNT,#050h ; Initialize pin–toggling counter

; Enable slave operation.
; The Idle bit is set here for a restart situation – in normal
; operation this is redundant, as this bit is set upon power_up reset.
 MOV I2CON,#BIDLE ; Slave will idle till next Start.
 SETB SLAVEN ; Enable slave operation.

; Enable interrupts.
; This is necessary for both Slave and Master operations.
 SETB ETI ; Enable timer I interrupts.
 SETB EI2 ; Enable I2C port interrupts.
 SETB EA ; Enable global interrupts.

; Set up Master operation.

 MOV MASCMD,#0h ; ”Regular” master transmissions.
 MOV DPTR,#PongADDR
 CLR A
 MOVC A,@A+DPTR
 MOV DESTADRW,A ; The partner address. The LSB is
 ; low, for a Write transaction.
 MOV MASTCNT,#01h ; Message length – a single byte.

PPSTART:
 MOV MasBuf,#00h

; ”Ping” transmission:

PP2:

 SETB TRQFLAG
 SETB MASTRQ
 MOV R1,#0ffh
PP22: JNB TRQFLAG,PP3 ; Transmitted OK
 DJNZ R1,PP22
MFAIL1: DJNZ FAILCNT,PP2
 ACALL MORERR ;;INCREMENT TITOCNT
 ACALL RECOVER
 SJMP Reset2

; ”Pong” reception:

PP3: MOV R0,#0ffh ; Software timeout loop count.
PP31: MOV R1,#0ffh
PP32: JB TRQFLAG,PP2 ; Rcvd ok as slave, go transmit.
 JB SErrFLAG,PP5
 DJNZ R1,PP32
 DJNZ R0,PP31
PPTO: ACALL RECOVER ; Software timeout.
 AJMP Reset2

;;PP5: CLR ErrLED ; Receive error.
;; ACALL LDELAY
;; SETB ErrLED
PP5: CLR SErrFLAG
 AJMP PPSTART

LDELAY: MOV R2,#030h ;LONG DELAY
LDELAY1: MOV R1,#0ffh
 DJNZ R1,$
 DJNZ R2,LDELAY1
 RET

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 18

;***

; Slave and Master Event Routines.

;***

;
; Invoked upon completion of a message transaction.
; This is the part of the application program actually dealing
; with the data communicated on the I2C bus, by responding to
; new data received and/or preparing the next transaction.

; Slave Event Routines
;
; These routines are invoked by the I2C interrupt service routine when a
; message transaction as a slave has been completed. Our ”application”
; reacts to a message received as a slave with the routine SRCvdR.
; The calls that indicate erroneous reception are treated the same way as
; erroneous data reception in the ”ping pong” game.

; SRcvdR
; Invoked when a new message has been received as a Slave.

SRcvdR: NOP
 MOV A,SRcvBuf
 JNZ SR2
 MOV MasBuf,#01h ; It was ping–pong reset value
 SJMP SR3

SR2: INC MasBuf ; The expected data.
 CJNE A,MasBuf,ErrSR
 INC MasBuf ; Data for next transmission – the data
 ; received incremented by 1.

; A successful two way data exchange. Let the outside world know by
; toggling an output pin driving a LED. We actually toggle only
; when a number of such exchanges is completed, in order to
; slow down the changes for a good visual indication.

 DJNZ TOGCNT,SR3
;; CPL TogLED ; Toggle output
 XRL TITOCNT, #80H ;;TOGGLE MSB LED
 MOV TOGCNT,#050h ;
 SETB PSW.3 ;;RS TO 1
 MOV LED, @R0 ;;RAM POINTED TO BY R0
 CLR PSW.3 ;;RS BACK TO 0
SR3: CLR SErrFLAG
 SETB TRQFLAG ; Request main to transmit
 RET

ErrSR: SETB SErrFLAG
 RET

; SLnRcvdR
; Invoked when a message received as a Slave is too long
; for the receive buffer.

; STXedR
; Invoked when a Slave completed transmission of its buffer.
; We do not expect to get here, since we do not plan to have
; in our system a master that will request data from this node.
;

; SRErrR
; Slave error event subroutine.
; In most applications it will not be used.
;

SLnRcvdR:
STXedR:
SRErrR: JMP ErrSR

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 19

;
; MastNext – Master Event Routine.
;
; Invoked when a Master transaction is completed, or terminated
; ”willingly” due to lack of acknowledge by a slave.
;

MastNext:
 MOV A,MSGSTAT
 CJNE A,#MTXED,MN1
 MOV FAILCNT,#50h
 CLR TRQFLAG
 RET
MN1:
 RET

; I2CDONE
; Called upon completion of the I2C interrupt service routine.
; In this example it monitors exceptions, and invokes the bus
; recovery routine when too many occurred.

I2CDONE:
 MOV A,MSGSTAT
 CJNE A,#NOTSTR,I2CD1
 ACALL MORERR ;;INCREMENT TITOCNT
 DJNZ FAILCNT,I2CD1
 MOV FAILCNT,#01h ; Too many ”illegal” i2c interrupts
 CLR EI2 ; – shut off.
I2CD1: RET

;***

; I2C Communications Table:

;***

; We used table driven values for clarity. One may use immediates to load
; these values and save several lines of code.

; Contents is used in the beginning of the main program to load
; RAM location MYADDR and the I2CFG register.
; The node address, in R_MYADDR, is application specific, and unique for
; each device in the I2C network.
; R_CTVAL depends on the crystal clock frequency.

R_MYADDR: DB 4Ah ; This node’s address
 ;;NOTE THAT R_MYADDR AND PongADDR
 ;;MUST BE SWITCHED ON THE OTHER
 ;;’751
R_CTVAL: DB 02h ; CT1, CT0 bit values

;***

; Application Code Definitions

;***

PongADDR: DB 4Eh ; The address of the ”partner” in
 ; the ping–pong game.

;;I2CMON THIS PROGRAM RUNS THE MONITOR ON
;; THE SMALL TEST BOARD DESIGNED TO
;; TEST THE I2C DRIVER CHIP.
;; IT USES A ’751.
;
;
LED EQU P3
LDEL EQU 022H
HDEL EQU LDEL + 1

Philips Semiconductors Microcontroller Products Application Note

AN444Using the P82B715 I2C extender on long cables

June 1993 20

SWITCH EQU P1
TOG EQU P0.2 ;TOGGLE SWITCH
RNAME EQU R0 ;R0 RAM POINTER
;
;
;
;
DONMON: MOV SP, #09H ;SP=09,STARTS AT 0AH
 SETB PSW.3 ;RS = 01
 CLR PSW.1 ;PSW.1 FLAG=0
 JB TOG, ONLYAD ;IF TOG 1, PSW1=0
 SETB PSW.1 ;WRITE DESIRED
ONLYAD: JNB TOG, ONLYAD ;WAIT FOR HI
HIWAIT: JB TOG, HIWAIT ;NOW WAIT FOR LOW
 MOV LDEL, #0 ;DELAY TIMER
 MOV HDEL, #0
SDELAY: DJNZ LDEL, SDELAY ;DELAY LOOP
 DJNZ HDEL, SDELAY ;UPPER DELAY
 JB TOG, HIWAIT ;FALSE ALARM,GO BACK
 MOV RNAME, SWITCH ;VALID HI TO LO
 MOV LED, @RNAME ;DISPLAY CONTENTS OF
 ; RAM OF RNAME
 JNB PSW.1, DONE ;PSW1 FLAG, 0=DONE
STAYLO: JNB TOG, STAYLO ;NOW WAIT FOR HI
HDELAY: DJNZ LDEL, HDELAY ;LDEL=HDEL=0
 DJNZ HDEL, HDELAY
 JNB TOG, STAYLO ;FALSE ALARM
 MOV @RNAME, SWITCH ;SUCCESSFUL LO TO HI
 ; SWITCH TO RAM
 MOV LED, RNAME ;DISPLAY WHICH RAM
 ;LOCATION FOR SWITCH
DONE: CLR PSW.3 ;RS BANK BACK TO 0
 AJMP RESET ;STARTS PING PONG
;
;
MORERR: PUSH ACC
 MOV A, #7FH ;;INCREMENT TITOCNT
 ANL A, TITOCNT
 XRL A, #7FH ;;STOP AT 7F
 JZ NOUP
 INC TITOCNT
 SETB PSW.3 ;;RS TO 1
 MOV LED, @R0 ;;DISPLAY NEW TITOCNT
 CLR PSW.3 ;;RS BACK TO 0
NOUP: POP ACC
 RET
;
 END

	THE TEST SETUP
	THE TEST HARDWARE

