
Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

Author: Greg Goodhue

1June 1993

The following program allows an 80C51
family microcontroller to load most of its code
into a RAM over a serial link after power up
and execute out of the RAM for normal
operation. This can allow a final product to
have firmware updates done by a simple
diskette mailing. Such a program is often
called a “bootstrap loader”.

For this example, it is assumed that the code
download is done via a serial communication

link, although the program could be adapted
to other forms of download. The comments at
the beginning of the listing are intended to
document the program and its use
completely.

An additional comment would be that any
static routines (low level routines that are
unlikely to change over time) can probably be
put into the permanent program memory
(on-chip or off-chip ROM or EPROM) along

with the bootstrap loader to save program
RAM space for other things.

The source code file for this program is
available for downloading from the Philips
computer bulletin board system. This system
is open to all callers, operates 24 hours a
day, and can be accessed with modems at
2400, 1200, and 300 baud. The telephone
numbers for the BBS are: (800) 451-6644 (in
the U.S. only) or (408) 991-2406.

Basic Diagram of RAM Connections for the Boot Loader

80/87C51
Program

RAM
containing the boot

loader program (or use
external EPROM)

P2

ALE

P0

WR

RD

PSEN

WR RD CE

RxD

TxD

high
address

low
address

data

serial
communication

to host

addr
latch

(decode from
high order

address lines)

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 2

;===

; Bootstrap Loader for Hexadecimal Files
; written by G. Goodhue, Philips Electronics

; This program allows downloading a hexadecimal program file over an
; asynchronous serial link to a code RAM in an 80C51 system. The downloaded
; code may then be executed as the main program for the system. This technique
; may be used in a system that normally connects to a host PC so that the code
; may come from a disk and thus be easily updated. The system RAM must be
; wired to the 80C51 system so that it appears as both data and program memory
; (wire the RAM normally, but use the logical AND of RD and PSEN for the
; output enable.)

; To use the bootstrap program, an Intel Hex file is sent through the serial
; port in 8–N–1 format at 9600 baud. The baud rate and format may be altered
; by making small changes in the serial port setup routine (SerStart).

; Note that there is no hardware handshaking (e.g. RTS/CTS or XON/XOFF)
; implemented between the host and the bootstrap system. This was done to keep
; the protocol between the two systems as simple as possible.

; Since the bootstrap program does not echo the data file, there is no chance
; of an overrun unless the 80C51 is running very slowly and/or the
; communication is very fast. An 80C51 running at 11.0592 MHz (the most
; commonly used frequency in systems with serial communication) will be able
; to easily keep up with 38.4K baud communication without handshaking.

;===

; The download protocol for this program is as follows:

; – When the bootstrap program starts up, it sends a prompt character (”=”)
; up the serial link to the host.

; – The host may then send the hexadecimal program file down the serial link.
; At any time, the host may send an escape character (1B hex) to abort and
; restart the download process from scratch, beginning from the ”=” prompt.
; This procedure may be used to restart if a download error occurs.

; – At the end of a hex file download, a colon (”:”) prompt is returned. If
; an error or other suspicious circumstance occurred, a flag value will
; also be returned as shown below. The flag is a bit map of possible
; conditions and so may represent more than one problem. If an error
; occurs, the bootstrap program will refuse to execute the downloaded
; program.

; Exception codes:
; 01 – non–hexadecimal characters found embedded in a data line.
; 02 – bad record type found.
; 04 – incorrect line checksum found.
; 08 – no data found.
; 10 – incremented address overflowed back to zero.
; 20 – RAM data write did not verify correctly.

; – If a download error occurs, the download may be retried by first sending
; an escape character. Until the escape is received, the bootstrap program
; will refuse to accept any data and will echo a question mark (”?”) for
; any character sent.

; – After a valid file download, the bootstrap program will send a message
; containing the file checksum. This is the arithmetic sum of all of the
; DATA bytes (not addresses, record types, etc.) in the file, truncated to
; 16 bits. This checksum appears in parentheses: ”(abcd)”. Program
; execution may then be started by telling the bootstrap program the
; correct starting address. The format for this is to send a slash (”/”)
; followed by the address in ASCII hexadecimal, followed by a carriage
; return. Example: ”/8A31<CR>”

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 3

; – If the address is accepted, an at sign (”@”) is returned before executing
; the jump to the downloaded file.

; The bootstrap loader can be configured to re–map interrupt vectors to the
; downloaded program if jumps to the correct addresses are set up. For
; instance, if the program RAM in the system where this program is to be used
; starts at 8000 hexadecimal, the re–mapped interrupts may begin at 8003 for
; external interrupt 0, etc.

;===

$Title(Bootstrap Loader for Hexadecimal Files)
$Date(04–13–92)
$MOD51

;===

; Definitions

;===

LF EQU 0Ah ; Line Feed character.
CR EQU 0Dh ; Carriage Return character.
ESC EQU 1Bh ; Escape character.
StartChar EQU ’:’ ; Line start character for hex file.
Slash EQU ’/’ ; Go command character.
Skip EQU 13 ; Value for ”Skip” state.

Ch DATA 0Fh ; Last character received.
State DATA 10h ; Identifies the state in process.
DataByte DATA 11h ; Last data byte received.
ByteCount DATA 12h ; Data byte count from current line.
HighAddr DATA 13h ; High and low address bytes from the
LowAddr DATA 14h ; current data line.
RecType DATA 15h ; Line record type for this line.
ChkSum DATA 16h ; Calculated checksum received.
HASave DATA 17h ; Saves the high and low address bytes
LASave DATA 18h ; from the last data line.
FilChkHi DATA 19h ; File checksum high byte.
FilChkLo DATA 1Ah ; File checksum low byte.

Flags DATA 20h ; State condition flags.
HexFlag BIT Flags.0 ; Hex character found.
EndFlag BIT Flags.1 ; End record found.
DoneFlag BIT Flags.2 ; Processing done (end record or some
 ; kind of error.

EFlags DATA 21h ; Exception flags.
ErrFlag1 BIT EFlags.0 ; Non–hex character embedded in data.
ErrFlag2 BIT EFlags.1 ; Bad record type.
ErrFlag3 BIT EFlags.2 ; Bad line checksum.
ErrFlag4 BIT EFlags.3 ; No data found.
ErrFlag5 BIT EFlags.4 ; Incremented address overflow.
ErrFlag6 BIT EFlags.5 ; Data storage verify error.
DatSkipFlag BIT Flags.3 ; Any data found should be ignored.

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 4

;===

; Reset and Interrupt Vectors

;===

; The following are dummy labels for re–mapped interrupt vectors. The
; addresses should be changed to match the memory map of the target system.

ExInt0 EQU 8003h ; Remap address for ext interrupt 0.
T0Int EQU 800Bh ; Timer 0 interrupt.
ExInt1 EQU 8013h ; External interrupt 1.
T1Int EQU 801Bh ; Timer 1 interrupt.
SerInt EQU 8023h ; Serial port interrupt.

 ORG 0000h
 LJMP Start ; Go to the downloader program.

; The following are intended to allow re–mapping the interrupt vectors to the
; users downloaded program. The jump addresses should be adjusted to reflect
; the memory mapping used in the actual application.

; Other (or different) interrupt vectors may need to be added if the target
; processor is not an 80C51.

 ORG 0003h
; LJMP ExInt0 ; External interrupt 0.
 RETI

 ORG 000Bh
; LJMP T0Int ; Timer 0 interrupt.
 RETI

 ORG 0013h
; LJMP ExInt1 ; External interrupt 1.
 RETI

 ORG 001Bh
; LJMP T1Int ; Timer 1 interrupt.
 RETI

 ORG 0023h
; LJMP SerInt ; Serial port interrupt.
 RETI

;===

; Reset and Interrupt Vectors

;===

Start: MOV IE,#0 ; Turn off all interrupts.
 MOV SP,#5Fh ; Start stack near top of ’51 RAM.
 ACALL SerStart ; Setup and start serial port.
 ACALL CRLF ; Send a prompt that we are here.
 MOV A,#’=’ ; ”<CRLF> =”
 ACALL PutChar
 ACALL HexIn ; Try to read hex file from serial port.

 ACALL ErrPrt ; Send a message for any errors or
 ; warnings that were noted.
 MOV A,EFlags ; We want to get stuck if a fatal
 JZ HexOK ; error occurred.

ErrLoop: MOV A,#’?’ ; Send a prompt to confirm that we
 ACALL PutChar ; are ’stuck’. ” ? ”
 ACALL GetChar ; Wait for escape char to flag reload.
 SJMP ErrLoop

HexOK: MOV EFlags,#0 ; Clear errors flag in case we re–try.
 ACALL GetChar ; Look for GO command.
 CJNE A,#Slash,HexOK ; Ignore other characters received.

 ACALL GetByte ; Get the GO high address byte.
 JB ErrFlag1,HexOK ; If non–hex char found, try again.
 MOV HighAddr,DataByte ; Save upper GO address byte.

 ACALL GetByte ; Get the GO low address byte.
 JB ErrFlag1,HexOK ; If non–hex char found, try again.
 MOV LowAddr,DataByte ; Save the lower GO address byte.

 ACALL GetChar ; Look for CR.
 CJNE A,#CR,HexOK ; Re–try if CR not there.

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 5

; All conditions are met, so hope the data file and the GO address are all
; correct, because now we’re committed.

 MOV A,#’@’ ; Send confirmation to GO. ” @ ”
 ACALL PutChar
 JNB TI,$; Wait for completion before GOing.
 PUSH LowAddr ; Put the GO address on the stack,
 PUSH HighAddr ; so we can Return to it.
 RET ; Finally, go execute the user program!

;===

; Hexadecimal File Input Routine

;===

HexIn: CLR A ; Clear out some variables.
 MOV State,A
 MOV Flags,A
 MOV HighAddr,A
 MOV LowAddr,A
 MOV HASave,A
 MOV LASave,A
 MOV ChkSum,A
 MOV FilChkHi,A
 MOV FilChkLo,A
 MOV EFlags,A
 SETB ErrFlag4 ; Start with a ’no data’ condition.

StateLoop: ACALL GetChar ; Get a character for processing.
 ACALL AscHex ; Convert ASCII–hex character to hex.
 MOV Ch,A ; Save result for later.
 ACALL GoState ; Go find the next state based on
 ; this char.
 JNB DoneFlag,StateLoop ; Repeat until done or terminated.

 ACALL PutChar ; Send the file checksum back as
 MOV A,#’(’ ; confirmation. ” (abcd) ”
 ACALL PutChar
 MOV A,FilChkHi
 ACALL PrByte
 MOV A,FilChkLo
 ACALL PrByte
 MOV A,#’)’
 ACALL PutChar
 ACALL CRLF
 RET ; Exit to main program.

; Find and execute the state routine pointed to by ”State”.

GoState: MOV A,State ; Get current state.
 ANL A,#0Fh ; Insure branch is within table range.
 RL A ; Adjust offset for 2 byte insts.
 MOV DPTR,#StateTable
 JMP @A+DPTR ; Go to appropriate state.

StateTable: AJMP StWait ; 0 – Wait for start.
 AJMP StLeft ; 1 – First nibble of count.
 AJMP StGetCnt ; 2 – Get count.
 AJMP StLeft ; 3 – First nibble of address byte 1.
 AJMP StGetAd1 ; 4 – Get address byte 1.
 AJMP StLeft ; 5 – First nibble of address byte 2.
 AJMP StGetAd2 ; 6 – Get address byte 2.
 AJMP StLeft ; 7 – First nibble of record type.
 AJMP StGetRec ; 8 – Get record type.
 AJMP StLeft ; 9 – First nibble of data byte.
 AJMP StGetDat ; 10 – Get data byte.
 AJMP StLeft ; 11 – First nibble of checksum.
 AJMP StGetChk ; 12 – Get checksum.
 AJMP StSkip ; 13 – Skip data after error condition.
 AJMP BadState ; 14 – Should never get here.
 AJMP BadState ; 15 – ” ” ” ”

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 6

; This state is used to wait for a line start character. Any other characters
; received prior to the line start are simply ignored.

StWait: MOV A,Ch ; Retrieve input character.
 CJNE A,#StartChar,SWEX ; Check for line start.
 INC State ; Received line start.
SWEX: RET

; Process the first nibble of any hex byte.

StLeft: MOV A,Ch ; Retrieve input character.
 JNB HexFlag,SLERR ; Check for hex character.
 ANL A,#0Fh ; Isolate one nibble.
 SWAP A ; Move nibble too upper location.
 MOV DataByte,A ; Save left/upper nibble.
 INC State ; Go to next state.
 RET ; Return to state loop.

SLERR: SETB ErrFlag1 ; Error – non–hex character found.
 SETB DoneFlag ; File considered corrupt. Tell main.
 RET

; Process the second nibble of any hex byte.

StRight: MOV A,Ch ; Retrieve input character.
 JNB HexFlag,SRERR ; Check for hex character.
 ANL A,#0Fh ; Isolate one nibble.
 ORL A,DataByte ; Complete one byte.
 MOV DataByte,A ; Save data byte.
 ADD A,ChkSum ; Update line checksum,
 MOV ChkSum,A ; and save.
 RET ; Return to state loop.

SRERR: SETB ErrFlag1 ; Error – non–hex character found.
 SETB DoneFlag ; File considered corrupt. Tell main.
 RET

; Get data byte count for line.

StGetCnt: ACALL StRight ; Complete the data count byte.
 MOV A,DataByte
 MOV ByteCount,A
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get upper address byte for line.

StGetAd1: ACALL StRight ; Complete the upper address byte.
 MOV A,DataByte
 MOV HighAddr,A ; Save new high address.
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get lower address byte for line.

StGetAd2: ACALL StRight ; Complete the lower address byte.
 MOV A,DataByte
 MOV LowAddr,A ; Save new low address.
 INC State ; Go to next state.
 RET ; Return to state loop.

; Get record type for line.

StGetRec: ACALL StRight ; Complete the record type byte.
 MOV A,DataByte
 MOV RecType,A ; Get record type.
 JZ SGRDat ; This is a data record.
 CJNE A,#1,SGRErr ; Check for end record.
 SETB EndFlag ; This is an end record.
 SETB DatSkipFlag ; Ignore data embedded in end record.
 MOV State,#11 ; Go to checksum for end record.
 SJMP SGREX

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 7

SGRDat: INC State ; Go to next state.
SGREX: RET ; Return to state loop.

SGRErr: SETB ErrFlag2 ; Error, bad record type.
 SETB DoneFlag ; File considered corrupt. Tell main.
 RET

; Get a data byte.

StGetDat: ACALL StRight ; Complete the data byte.
 JB DatSkipFlag,SGD1 ; Don’t process the data if the skip
 ; flag is on.
 ACALL Store ; Store data byte in memory.

 MOV A,DataByte ; Update the file checksum,
 ADD A,FilChkLo ; which is a two–byte summation of
 MOV FilChkLo,A ; all data bytes.
 CLR A
 ADDC A,FilChkHi
 MOV FilChkHi,A
 MOV A,DataByte
SGD1: DJNZ ByteCount,SGDEX ; Last data byte?
 INC State ; Done with data, go to next state.
 SJMP SGDEX2

SGDEX: DEC State ; Set up state for next data byte.
SGDEX2: RET ; Return to state loop.

; Get checksum.

StGetChk: ACALL StRight ; Complete the checksum byte.
 JNB EndFlag,SGC1 ; Check for an end record.
 SETB DoneFlag ; If this was an end record,
 SJMP SGCEX ; we are done.

SGC1: MOV A,ChkSum ; Get calculated checksum.
 JNZ SGCErr ; Result should be zero.
 MOV ChkSum,#0 ; Preset checksum for next line.
 MOV State,#0 ; Line done, go back to wait state.
 MOV LASave,LowAddr ; Save address byte from this line for
 MOV HASave,HighAddr ; later check.
SGCEX: RET ; Return to state loop.

SGCErr: SETB ErrFlag3 ; Line checksum error.
 SETB DoneFlag ; File considered corrupt. Tell main.
 RET

; This state used to skip through any additional data sent, ignoring it.

StSkip: RET ; Return to state loop.

; A place to go if an illegal state comes up somehow.

BadState: MOV State,#Skip ; If we get here, something very bad
 RET ; happened, so return to state loop.

; Store – Save data byte in external RAM at specified address.

Store: MOV DPH,HighAddr ; Set up external RAM address in DPTR.
 MOV DPL,LowAddr
 MOV A,DataByte
 MOVX @DPTR,A ; Store the data.

 MOVX A,@DPTR ; Read back data for integrity check.
 CJNE A,DataByte,StoreErr ; Is read back OK?

 CLR ErrFlag4 ; Show that we’ve found some data.
 INC DPTR ; Advance to the next addr in sequence.
 MOV HighAddr,DPH ; Save the new address
 MOV LowAddr,DPL
 CLR A
 CJNE A,HighAddr,StoreEx ; Check for address overflow
 CJNE A,LowAddr,StoreEx ; (both bytes are 0).
 SETB ErrFlag5 ; Set warning for address overflow.

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 8

StoreEx: RET

StoreErr: SETB ErrFlag6 ; Data storage verify error.
 SETB DoneFlag ; File considered corrupt. Tell main.
 RET

;===

; Subroutines

;===

; Subroutine summary:

; SerStart – Serial port setup and start.
; GetChar – Get a character from the serial port for processing.
; GetByte – Get a hex byte from the serial port for processing.
; PutChar – Output a character to the serial port.
; AscHex – See if char in ACC is ASCII–hex and if so convert to hex nibble.
; HexAsc – Convert a hexadecimal nibble to its ASCII character equivalent.
; ErrPrt – Return any error codes to our host.
; CRLF – output a carriage return / line feed pair to the serial port.
; PrByte – Send a byte out the serial port in ASCII hexadecimal format.

; SerStart – Serial port setup and start.

SerStart: MOV A,PCON ; Make sure SMOD is off.
 CLR ACC.7
 MOV PCON,A
 MOV TH1,#0FDh ; Set up timer 1.
 MOV TL0,#0FDh
 MOV TMOD,#20h
 MOV TCON,#40h
 MOV SCON,#52h ; Set up serial port.
 RET

; GetByte – Get a hex byte from the serial port for processing.

GetByte: ACALL GetChar ; Get first character of byte.
 ACALL AscHex ; Convert to hex.
 MOV Ch,A ; Save result for later.
 ACALL StLeft ; Process as top nibble of a hex byte.
 ACALL GetChar ; Get second character of byte.
 ACALL AscHex ; Convert to hex.
 MOV Ch,A ; Save result for later.
 ACALL StRight ; Process as bottom nibble of hex byte.
 RET

; GetChar – Get a character from the serial port for processing.

GetChar: JNB RI,$; Wait for receiver flag.
 CLR RI ; Clear receiver flag.
 MOV A,SBUF ; Read character.
 CJNE A,#ESC,GCEX ; Re–start immediately if Escape char.
 LJMP Start
GCEX: RET

; PutChar – Output a character to the serial port.

PutChar: JNB TI,$; Wait for transmitter flag.
 CLR TI ; Clear transmitter flag.
 MOV SBUF,A ; Send character.
 RET

; AscHex – See if char in ACC is ASCII–hex and if so convert to a hex nibble.
; Returns nibble in A, HexFlag tells if char was really hex. The ACC is not
; altered if the character is not ASCII hex. Upper and lower case letters
; are recognized.

Philips Semiconductors Microcontroller Products Application note

AN440RAM loader program for 80C51 family applications

June 1993 9

AscHex: CJNE A,#’0’,AH1 ; Test for ASCII numbers.
AH1: JC AHBad ; Is character is less than a ’0’?
 CJNE A,#’9’+1,AH2 ; Test value range.
AH2: JC AHVal09 ; Is character is between ’0’ and ’9’?

 CJNE A,#’A’,AH3 ; Test for upper case hex letters.
AH3: JC AHBad ; Is character is less than an ’A’?
 CJNE A,#’F’+1,AH4 ; Test value range.
AH4: JC AHValAF ; Is character is between ’A’ and ’F’?

 CJNE A,#’a’,AH5 ; Test for lower case hex letters.
AH5: JC AHBad ; Is character is less than an ’a’?
 CJNE A,#’f’+1,AH6 ; Test value range.
AH6: JNC AHBad ; Is character is between ’a’ and ’f’?
 CLR C
 SUBB A,#27h ; Pre–adjust character to get a value.
 SJMP AHVal09 ; Now treat as a number.

AHBad: CLR HexFlag ; Flag char as non–hex, don’t alter.
 SJMP AHEX ; Exit
AHValAF: CLR C
 SUBB A,#7 ; Pre–adjust character to get a value.
AHVal09: CLR C
 SUBB A,#’0’ ; Adjust character to get a value.
 SETB HexFlag ; Flag character as ’good’ hex.
AHEX: RET

; HexAsc – Convert a hexadecimal nibble to its ASCII character equivalent.

HexAsc: ANL A,#0Fh ; Make sure we’re working with only
 ; one nibble.
 CJNE A,#0Ah,HA1 ; Test value range.
HA1: JC HAVal09 ; Value is 0 to 9.
 ADD A,#7 ; Value is A to F, extra adjustment.
HAVal09: ADD A,#’0’ ; Adjust value to ASCII hex.
 RET

; ErrPrt – Return an error code to our host.

ErrPrt: MOV A,#’:’ ; First, send a prompt that we are
 CALL PutChar ; still here.
 MOV A,EFlags ; Next, print the error flag value if
 JZ ErrPrtEx ; it is not 0.
 CALL PrByte
ErrPrtEx: RET

; CRLF – output a carriage return / line feed pair to the serial port.

CRLF: MOV A,#CR
 CALL PutChar
 MOV A,#LF
 CALL PutChar
 RET

; PrByte – Send a byte out the serial port in ASCII hexadecimal format.

PrByte: PUSH ACC ; Print ACC contents as ASCII hex.
 SWAP A
 CALL HexAsc ; Print upper nibble.
 CALL PutChar
 POP ACC
 CALL HexAsc ; Print lower nibble.
 CALL PutChar
 RET

;===

 END

