
Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I 2C applications

1June 26, 1992 Revision date: June 1993

INTRODUCTION
The Philips Semiconductors 83C751/87C751
offers the advantages of the 80C51
architecture in a small package and at a low
cost. It combines the benefits of a high
performance microcontroller with on-board
hardware supporting the Inter Integrated
Circuit (I2C) bus interface.

The Inter IC (I2C) bus developed by Philips
allows integrated circuits to communicate
directly with each other via a simple
bidirectional 2-wire bus. The comprehensive
family of CMOS and bipolar ICs incorporating
the on-chip I2C interface offers many
advantages to designers of digital control for
industrial, consumer and telecommunications
equipment.

Interfacing the devices in an I2C based
system is very simple as they connect
directly to the two bus lines: a serial data line
(SDA) and a serial clock line (SCL). System
design can rapidly progress from block
diagram to final schematics, as there is no
need to design bus interfaces. In addition,
functional blocks on the block diagram
correspond to actual ICs. A prototype system
or a final product version can be easily
modified or upgraded by ‘clipping’ or
‘unclipping’ ICs to or from the bus. The
simplicity of designing with the I2C bus does
not reduce its effectiveness: it is a reliable,
multimaster bus with integrated addressing
and data-transfer protocols. The I2C-bus
compatible ICs give cost reduction benefits
through smaller IC packages and a
minimization of PCB traces and glue logic.

The availability of microcontrollers, like the
83C751, with on-board I2C interface is a very
powerful tool for system designers. The
integrated protocols allow systems to be
completely software defined. Software
development time of different products can
be reduced by assembling a library of
re-usable software modules. In addition, the
multimaster capability allows rapid testing
and alignment of end-products via external
connections to an assembly-line computer.

The mask programmable 83C751 and its
EPROM version, 87C751, can operate as a
master or a slave device on the I2C small
area network. In addition to the efficient
interface to the dedicated function ICs in the
I2C family the on-board interface facilitates
I/O and RAM expansion, access to
EEPROM, and processor-to-processor
communications.

The 83C752 and its EPROM version,
87C752, are essentially the 83C751/87C751
with the addition of a five channel multiplexed
8-bit A/D converter and an 8-bit PWM output.
As the I2C bus interface is identical, the
programming example and the discussion
relates to both processors. The multimaster
capability of the I2C bus allows easy
integration and expansion of relatively
complex systems, in which different devices
can independently initiate data transfers.
Integration of a multimaster system is easy
as a Master on the bus does not have to
coordinate its data transfer with other
potential Master devices—arbitration and
synchronization are taken care of by the

hardware and bus protocols. Expanding a
system with a new device is trivial—it is
“clipped” onto the two serial bus lines, and
the new device may act as a Master without
any modification to the other devices (see
Figure 1). Microcontrollers like the
S8XC751/752 on the I2C bus are extremely
powerful, as they can be programmed to be
both Masters and Slaves in the same system.
This way the microcontroller may initiate
communication on the bus, and when
requested, will respond to a data transfer
request by another device.

In this Application Note we shall discuss the
most important technical features of the I2C
bus and describe the special I2C hardware
interface of the 8XC751/752. We shall
demonstrate with an example how the
microcontroller can be programmed for a
multimaster environment. The
communications routines of the example are
quite general, and can be ported to many
applications—so we shall discuss in detail
the software interface to these routines.

The description of the 8XC751 I2C interface
hardware and part of the general discussion
of the I2C bus is similar to Application Note
AN422 which dealt with the microcontroller in
a single-master environment. Most of the
added discussions relate to the multimaster
aspects of the bus. Additional information for
the I2C bus and the 83C751/752
Microcontroller can be found in the Philips
Semiconductors Microcontroller Data
Handbook (IC20).

Figure 1. Example of an I 2C-bus Configuration

MICRO-
CONTROLLER
A

LCD
DRIVER

STATIC
RAM OR
EEPROM

GATE
ARRAY ADC

MICRO-
CONTROLLER
B

SDA

SCL

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 2

Figure 2. Connection of I 2C-bus Devices to the I 2C-bus

+VD
D

RPRP

• •

•
•

Pull-up
Resistors

•

•

DATA1
Out

•

•

SCLK1
Out

(Serial Data Line)

(Serial Clock Line)

SDA

SCL

SCLK

DATA
In

SCLK
In

•

•

DATA2
Out

•

•

SCLK2
Out

SCLK

DATA
In

SCLK
In

THE I2C BUS
The two lines of the I2C bus are a serial data
line (SDA) and a serial clock line (SCL). A
typical system configuration is shown in
Figure 2. Each device is recognized by a
unique address—whether it is a
microcomputer, LCD driver, memory or
keyboard interface—and can operate as
either a transmitter or a receiver, depending
on the function of the device. A device
generating a message or data is a
transmitter, and a device receiving the
message or data is a receiver. Obviously, a
passive function like an LCD driver could only
be a receiver, while a microcontroller or a
memory can both transmit and receive data.

Every device connected to the bus must have
an open-drain or an open-collector output for
both the data (SDA) and the clock (SCL)
lines. Each one of the lines is connected to
the positive supply via a common pull-up
resistor (see Figure 2). This implements a
wired-AND function, and each of the bus
lines which will have the HIGH level only if all
the output transistors tied to it are switched
off.

Data on the I2C bus can be transferred at a
rate up to 100kbit/s. The number of devices
connected to the bus is limited only by the
maximum bus capacitance of 400pF. As
different technology devices can be
connected to the I2C bus, the levels of the
logical 0 (Low) and logical 1 (High) are not
fixed and depend on the appropriate level of
VDD.

MASTERS AND SLAVES
When a data transfer takes place on the bus,
a device can be either a master or a slave.
The device which initiates the transfer, and
generates the clock signals for this transfer is
the master. At that time any device
addressed is considered a slave. It is
important to note that a master could be
either a transmitter or a receiver: a master
microcontroller may send data to a RAM
acting as a transmitter, and then interrogate
the RAM for its contents acting as a
receiver—in both cases being the master
initiating the transfer. In the same manner, a
slave could be both a receiver and a
transmitter.

The I2C is a multimaster bus. It is possible to
have in one system more than one device
capable of initiating transfers and controlling
the bus. A microcontroller may act as a
master for one transfer, and then be the slave
for another transfer, initiated by another
processor on the network. The master/slave
relationships on the bus are not permanent,
and exist per transfer.

As more than one master may be connected
to the bus it is possible that two devices will
try to initiate transfer at the same time.
Obviously, in order to eliminate bus collisions
and communications chaos, an arbitration
procedure is necessary. The I2C design has
an inherent arbitration and clock
synchronization procedure relying on the
wired-AND connection of the devices on the
bus. In a typical multimaster system, a

microcontroller program should allow it to
gracefully switch between master and slave
modes and preserve data integrity upon loss
of arbitration.

DATA TRANSFERS
One data bit is transferred during each clock
pulse (Figure 3). The data on the SDA line
must remain stable during the HIGH period of
the clock pulse in order to be valid. Changes
in the data line at this time will be interpreted
as control signals. A HIGH-to-LOW transition
of the data line (SDA) while the clock signal
(SCL) is HIGH indicates a Start condition,
and a LOW-to-HIGH transition of the SDA
while SCL is HIGH defines a Stop condition
(Figure 4). The bus is considered to be busy
after the Start condition and free again a
certain time after the Stop condition. The
Start and Stop conditions are always
generated by the master.

The number of data bytes transferred
between the Start and Stop condition from
transmitter to receiver is not limited. Each
byte, which must be eight bits long, is
transferred serially with the most significant
bit first, and is followed by an acknowledge
bit (Figure 5). The clock pulse related to the
acknowledge bit is generated by the master.
The device that acknowledges has to pull
down the SDA line during the acknowledge
clock pulse, while the transmitting device
releases the SDA line (HIGH) during this
pulse (Figure 6).

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 3

A slave receiver must generate an
acknowledge after the reception of each byte,
and a master must generate one after the
reception of each byte clocked out of the
slave transmitter. If a receiving device cannot
receive the data byte immediately, it can
force the transmitter into a wait state by
holding the clock line (SCL) LOW. When
designing a system it is necessary to take
into account cases when acknowledge is not
received. This happens, for example, when
the addressed device is busy in a real time
operation. In such a case the master, after an
appropriate “time-out”, should abort the

transfer by generating a Stop condition,
allowing other transfers to take place. These
“other transfers” could be initiated by other
masters in a multimaster system or by this
same master.

An exception to the “acknowledge after every
byte” rule occurs when a master is a receiver:
it must signal an end of data to the
transmitter by NOT signalling an
acknowledge on the last byte that has been
clocked out of the slave. The acknowledge
related clock, generated by the master,

should still take place but the SDA line will
not be pulled down. In order to indicate that
this is an active and intentional lack of
acknowledgement, we shall term this special
condition as a “Negative ACK”.

The bus design includes special provisions
for interfacing to microprocessors which
implement all the I2C communications in
software only—it is called “Slow Mode”.
When all the devices on the network have
built-in I2C hardware support the Slow Mode
is irrelevant.

SDA

SCL

Data Line
Stable:

Data Valid

Change
of Data
Allowed

Figure 3. Bit Transfer on the I 2C Bus

Figure 4. Start and Stop Conditions

SDA

SCL

Start Condition Stop Condition

S P

SDA

SCL

Figure 5. Data Transfer on the I 2C Bus

SCL

Start Condition Stop Condition

S

SDA

P

MSB Acknowledgment
Signal from Receiver

Acknowledgment
Signal from Receiver

Byte Complete,
Interrupt within Receiver

Clock Line Held Low While
Interrupts Are Serviced

1 2 7 8 9 1 2 3-8
ACK

9
ACK

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 4

Figure 6. Acknowledge on the I 2C Bus

Start Condition

S

MSB

Data Output
by Transmitter

1 2

Data Output
by Receiver

8 9

Clock Pulse for
Acknowledgment

SCL from
Master

START
CONDITION

ADDRESS R/W ACK DATA DATAACK ACK

CONDITION
STOP

PS

SDA

SCL

1–7 8 9 1–7 8 9 1–7 8 9

Figure 7. A Complete Data Transfer on the I 2C-Bus

MASTER WRITE:

S SLAVE ADDRESS W A DATA A DATA A P

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

MASTER READ:

S SLAVE ADDRESS R A DATA A DATA NA P

S SLAVE ADDRESS

COMBINED FORMATS:

R/W A ADATA S SLAVE ADDRESS R/W A DATA A P

DIRECTION OF TRANSFER MAY
CHANGE AT THIS POINT

S = START
STOP
WRITE
READ
READ OR WRITE
ACKNOWLEDGE
NEGATIVE ACKNOWLEDGE

P =
W =
R =
R/W =
A =
NA =

Figure 8. I 2C Data Formats

(n BYTES +
ACKNOWLEDGE)

(n BYTES +
ACKNOWLEDGE)

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 5

ADDRESSING AND TRANSFER
FORMATS
Each device on the bus has its own unique
address. Before any data is transmitted on
the bus, the master transmits on the bus the
address of the slave of this transaction. A
well-behaved slave, if it exists on the
network, should of course acknowledge the
master’s addressing. The addressing is done
with the first byte transmitted by the master
after the Start condition.

An address on the network is seven bits long,
appearing as the most significant bits of the
address byte. The last bit is a direction (R/W)
bit. A zero indicates that the master is
transmitting (WRITE) and a one indicates that
the master requests data (READ). A
complete data transfer, comprised of an
address byte indicating a WRITE and two
data bytes is shown in Figure 7.

When an address is sent, each device in the
system compares the first seven bits after the
Start with its own address. If there is a match,
the device will consider itself addressed by
the master and will send an acknowledge.
The device could also determine if in this
transaction it is assigned the role of a slave
receiver or slave transmitter, depending on
the R/W bit.

Each node of the I2C network has a unique
seven bit address. The address of a
microcontroller is, of course, fully
programmable, while peripheral devices
usually have fixed and programmable
address portions. In addition to the “standard”
addressing discussed here, the I2C bus
protocol allows for “general call” addressing
and interfacing to CBUS devices.

When the master is communicating with one
device only, data transfers follow the format
of Figure 8 where the R/W bit could indicate
either direction. After completing the transfer

and issuing a Stop condition, if a master
would like to address some other device on
the network, it could start another transaction
by issuing a new Start.

Another way for a master to communicate
with several different devices would be by
using a “repeated start”. After the last byte of
the transaction was transferred, including its
acknowledge (or Negative ACK), the master
issues again a Start, followed by address
byte and data, without effecting a Stop. The
master may communicate with a number of
different devices, combining READS and
WRITES. Only after the transfer with the last
slave took place, the master issues a Stop
and releases the bus. Possible data formats
are demonstrated in Figure 8. Note that the
repeated start allows for both change of a
slave and a change of direction, without
releasing the bus. We shall see later on that
the change of direction feature can come in
handy even when dealing with a single
device.

In a single master system the repeated start
mechanism is more efficient than terminating
each transfer with a Stop and starting again.
In a multimaster environment the
determination of which format is more
efficient could be more complicated, as when
a master is using repeated starts it occupies
the bus for a long time and prevents other
devices from initiating transfers.

USE OF SUB-ADDRESSES
For some ICs on the I2C bus the device
address alone is not sufficient for effective
communications and a mechanism for
addressing the internals of the device is
necessary. A typical example is addressing
memories, when we want to access a
specific word inside the device or a sequence

of memory locations starting at a specific
internal address.

A typical I2C memory device like the
PCF8570 RAM contains a built-in word
address register that is incremented
automatically after each read or written data
byte. When a master communicates with the
PCF8570 it must send a sub-address in the
byte following the slave address byte. This
sub-address is the internal address of the
word the master wants to access for a single
byte transfer or the beginning of a sequence
of locations for a multi-byte transfer. A
sub-address is an eight bit byte, unlike the
device address it does not contain a direction
(R/W) bit, and like any byte transferred on the
bus it must be followed by an acknowledge.

A memory write cycle is shown in Figure 9(a).
The Start is followed by a slave byte with the
direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop
signal. The sub-address is loaded into the
word address memory. The data bytes which
follow will be written one after the other
starting with the sub-address location and the
register is incremented automatically.

The memory read cycle (Figure 9(b))
commences in a similar manner with the
master sending a slave address with the
direction bit set to WRITE with a following
sub-address. Then, in order to reverse the
direction of the transfer, the master issues a
repeated Start followed again by the memory
device address, but this time with the
direction bit set to READ. The data bytes
starting at the internal sub-address will be
clocked out of the device with each followed
by a master-generated acknowledge. The
last byte of the read cycle will be followed by
a Negative ACK, signalling the end of
transfer. The cycle is terminated by a Stop
signal.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 6

S SLAVE ADDRESS 0 A WORD ADDRESS A DATA A P

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

R/W
n BYTES

AUTO-INCREMENT
MEMORY WORD ADDRESS

MASTER TRANSMITS TO SLAVE RECEIVER

(a)

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

AUTO-INCREMENT
MEMORY WORD ADDRESS

S SLAVE ADDRESS 0 A WORD ADDRESS A 1 A

R/W

S SLAVE ADDRESS

A DATA 1 PDATA

NO ACKNOWLEDGE
FROM MASTER

LAST BYTEMASTER TRANSMITTER BECOMES
MASTER RECEIVER AND SLAVE

RECEIVER BECOMES SLAVE
TRANSMITTER AUTO-INCREMENT

MEMORY WORD ADDRESS

n BYTES

(b)

Figure 9. I 2C Sub-Address Usage

MASTER READS AFTER SETTING WORD ADDRESS
(WRITE WORD ADDRESS; READ DATA)

CLK
1

CLK
2

SCL

Wait
State

Start Counting
High Period

Counter
Reset

Figure 10. Clock Synchronization During the Arbitration Procedure

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 7

Transmitter 1 Loses Arbitration

Data
1

Data
2

SDA

SCL

Data 1 ≠ SDA

Figure 11. Arbitration Procedure of Two Masters

ARBITRATION IN A
MULTIMASTER SYSTEM
The decision about which master has control
over the I2C bus is based solely on the
address and data sent by competing
masters, and there is no central master or
any order of device priority on the bus. Any
device connected to the I2C bus is allowed to
become a master, but devices are not
supposed to “steal” the bus from other
devices when a transfer is in process. If a
device wishing to be a Master is aware that a
transaction (initiated by another master) is
taking place, it will wait until the transfer is
concluded with a Stop condition on the
bus—and only then try to seize it by sending
its own Start. It is possible, however, that two
or more masters may want to start a transfer
at exactly the same moment. A scenario that
may happen quite frequently in a loaded
system: two devices are waiting for a long
transaction to be completed, and
simultaneously try to get the bus when
detecting the Stop condition. An arbitration
procedure synchronizes the different clocks,
ensuring that the data is not corrupted, and
causes all masters except one to withdraw
from the bus, so only one master will control
the transfer. This procedure applies only
when masters initiate transfers
simultaneously.

The clock synchronization, illustrated in
Figure 10, ensures that only one defined
clock is generated on the bus. It occurs
naturally, as a result of the wired-AND
property of the SCL line. Suppose two
masters want to initiate a transfer on the bus.

Clk1 and Clk2 in Figure 10 illustrate the
desired clock outputs of each device, which
would actually occur on the bus if each were
the only master. The SCL waveform is the
resulting wired-AND of the two clocks. The
device that pulls the SCL down first will
succeed. The other masters continuously
monitor the clock line, and reset their internal
clock counter to start counting their own Low
clock period. This way, the first falling edge
will synchronize all clock generators to the
beginning of the Low time.

Once a device clock has gone Low it will hold
the SCL line in this state until its internal
clock High state is reached, and then will
release the line. The Low to High change in
this device will not change the state of the
SCL line if another device, which is still within
its Low period, is pulling down the line. This
way, SCL will be held Low by the device with
the longest Low period. A master that has
finished its Low time earlier will enter a wait
state until SCL is released by the slowest
master and goes high. Upon the rising edge
of SCL all masters start counting their High
period, the first device to complete its High
period will pull the SCL Low. In this way a
single, synchronized clock is generated on
the bus where the rising edge is being
defined by the slowest master and the falling
edge by the fastest master.

Arbitration between masters takes place on
the SDA line. A master which tries to transmit
a High while another device transmits a Low
will withdraw, shutting off its data output
stage and not interfering with the transfer
until a Stop condition is detected. Due to the

wired-AND property of the SDA line, a device
“knows” that it lost arbitration by the fact that
the Low SDA is different than its desired High
output. Arbitration starts by comparing the
address bits. When masters transmit different
addresses the one transmitting the address
with the lowest binary value wins. If all
masters in arbitration transmit to the same
address, arbitration continues into the
comparison of data. Figure 11 illustrates the
arbitration process between two masters.

By definition, the transfer that forces the
wired-AND result is the one that wins the
arbitration, so the address and data of a
winning device are not corrupted and no
information is lost in the arbitration process. A
master losing arbitration may generate clock
pulses until the end of the byte. Thus it may
affect the clock speed, but not the data on the
bus.

If a master loses arbitration during the
addressing stage it is possible that the
winning master is trying to address it. In an
efficient design, the losing master should
switch immediately to its slave receiver
mode, receive the data transmitted and
acknowledge it—otherwise the message will
have to be re-transmitted or is lost. A well
designed master will take into account
“illegal” protocol situations and will determine
that it lost arbitration when it detects a Stop
or a Start which are not synchronized with its
own transmission. Electrical interference or a
malfunctioning device may cause such a
situation which actually corrupts the message
transfer.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 8

HANDSHAKE BY CLOCK
SYNCHRONIZATION
The clock synchronization mechanism as
described above actually implements a
handshake mechanism, enabling receiving
devices to “slow down” fast transfers when
necessary.

On the bit level, a slow slave device like a
microcontroller that does not have hardware
I2C interface port, can extend each clock
period and slow down the bus clock. The
speed of any master is adapted to the
operating rate of this device as long as it is
active on the bus.

On the byte level the synchronization
mechanism takes effect as a “handshake”
mechanism when a slave device that was
fast enough to receive or transmit a byte still
needs extra time to store the received byte or
prepare the next byte for transmission. The
slave can hold the SCL line low after the
reception and acknowledge of a byte, thus
forcing the Master into a wait state—until the
slave is ready for the next transfer.

8XC751 I2C HARDWARE
The on-chip I2C bus hardware support of the
8XC751 allows operation on the bus at full
speed and simplifies the software needed for
effective communications on the network.
The hardware activates and monitors the
SDA and SCL lines, performs the necessary
arbitration and framing error checks, and
takes care of clock stretching and
synchronization. The hardware support
includes a bus timeout timer, called Timer I.
The hardware is synchronized to the software
either through polled loops or interrupts.

Two of the port 0 pins are multi-functional.
When the I2C is active, the pin associated
with P0.0 functions as SCL, and the pin
associated with P0.1 functions as SDA.
These pins have an open drain output.

Two of the five interrupt sources may be used
for I2C support. The I2C interrupt is enabled
by the EI2 flag of the interrupt enable register,
and its service routine should start at address
023h. An I2C interrupt is usually requested (if

enabled) when a rising edge of SCL indicates
new data on the bus or a special condition
occurs: Start, Stop or arbitration loss. The
interrupt is induced by the ATN flag, (see
below for the conditions for setting this flag).
The Timer I overflow interrupt is enabled by
the ETI flag, and the service routine starts at
01Bh.

The I2C port is controlled through four special
function registers: I2C Control (I2CON), I2C
Configuration (I2CFG), I2C Data (I2DAT) and
I2C Status (I2STA). The register addresses
are shown in the 8XC751 section of the
Philips Semiconductors Microcontroller Data
Handbook (IC20). Although the following
discussion of the hardware and register
details is not complete, it should give a better
understanding of the programming examples.

Timer I
In I2C applications, Timer I is dedicated to the
port timing generation and bus monitoring. In
non-I2C applications, it is available for use as
a fixed rate timer.

For the bus monitoring function, Timer I is
being used as a “watchdog timer” for bus
hang-ups. It creates an interrupt when the
SCL line stays in one state for an extended
period of time between a Start condition and
a following Stop condition. SCL “stuck low”
indicates a faulty master or slave. SCL “stuck
high” may mean a faulty device or that noise
induced into the I2C caused all masters to
withdraw from the I2C arbitration.

The time-out interval of Timer I is fixed: it
carries out and interrupts (if enabled) when
about 1024 machine cycles have elapsed
since a change on SCL within a frame. In
other words, whenever I2C is active we let
Timer I run, but clear it whenever a frame is
not in progress (reset or Stop occurred more
recently than the last Start condition) or SCL
changes within a frame. (Note: we wrote
“about 1024 machine cycles” for the sake of
accuracy—this number may slightly change
according to the setting of the CT0 and CT1
bits mentioned below. In any case, the exact
number of cycles for a time out does not have
any practical significance).

In addition to the interrupt upon Timer I
overflow, the I2C port hardware is reset. This
is useful for multiple master systems in
situations where this same 8XC751 caused
the bus hang-up due to a lack of software
response. SCL will be released and I2C
operation between other devices could
continue.

I2CON Register
The I2C Control register can be read or
written to (see Figure 12).

When writing to the I2CON register one
should use bit masks as demonstrated in the
examples. Trying to clear or set the bits in the
register using the bit addressing capabilities
of the 8XC751 may lead to undesirable
results. The reason is that a command like
CLRB reads the register, sets the bit and
writes it back—and the write-back may affect
other bits.

I2CFG Register
The configuration register is a read/write
register (see Figure 13).

I2DAT Register
The I2C data register is a read/write register,
where the msb represents the data received
or data to be sent. The other seven bits are
read as 0 (see Figure 14).

I2CSTA Register
The I2C STAtus Register is a read-only
register reflecting the internal status of the
I2C interface hardware (see Figure 15).

Transmit Active State
The transmit active state—Xmit Active—is an
internal state in the I2C interface that is
affected by the I2C registers as explained
above. The I2C interface will only drive the
SDA line low when Xmit Active is set. Xmit
Active is set by writing the I2DAT register or
by writing I2CON with XSTR = 1 or XSTP =
1. The ARL bit will be set to 1 only when Xmit
Active is set—in such a case Xmit Active will
be automatically reset upon ARL. Xmit Active
is cleared by writing 1 to CXA at I2CON
register or by reading the I2DAT register.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 9

Figure 12. I2CON Register

I2CON READ RDAT ATN

RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to
RDAT in I2DAT register. Reading the received data here allows doing so without clearing DRDY and
releasing SCL.

ATN An “ATteNsion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit
testing for terminating “wait loops”, indicating a meaningful event on the bus. This same flag actually
activates the I2C interrupt request.

DRDY Data ReaDY flag, set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is
cleared by reading or writing the I2DAT register, or by writing a 1 to CDR (same address, I2CON write).

ARL ARbitration Loss flag. Indicates that this device lost the arbitraion while trying to take control of the bus.

STR STaRt flag is set when a Start condition is detected, except at an idle slave.

STP SToP flag is set when a Stop condition is detected, except at an idle slave.

MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).

DRDY ARL STR STP MASTER —

I2CON WRITE CXA IDLE CDR CARL CSTR CSTP XSTR XSTP

CXA “Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.

IDLE Setting this bit will cause a slave to idle—ignore the I2C until the next Start is detected. If the software
sets the MASTRQ flag the device may stop idling by turning into a master.

CDR Clear Data Ready—clears the DRDY flag.

CARL Clear Arbitration Loss—clears ARL flag.

CSTR Clear STaRt—clear STR flag

CSTP Clear STop—clear STP flag.

XSTR “Xmit repeated STaRt”. writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A
side effect will be setting the internal Xmit Active state. This should be used only when the device is a
master.

XSTP “Xmit SToP”. Issue a Stop condition. The Xmit Active state is being set.

Figure 13. I2CFG Register

SLAVEN MASTREQ

SLAVEN Writing a 1 to this flag enables the slave functions of the I2C interface.

MASTREQ Request control of the bus as a master.

CLRTI Clear the Timer I interrupt flag. This bit is always read as 0.

TIRUN Writing a 1 will let Timer I run. When I2C is active, it will run only inside frames, and will be cleared by
SCL transitions, Start and Stop. Writing a 0 will stop and clear the timer.

CT1, CT0 These bits should be programmed according to the frequency of the crystal oscillator used in the
hardware. They control a frequency devider which determines the timing on the bus, and are used to
optimize performance at different oscillator speeds.

CLRTI TIRUN — — CT1 CT0

I2DAT READ RDAT —

RDAT Received DATa bit, captured from SDA every rising edge of SCL. Reading I2DAT clears DRDY and
Xmit Active state. If it is necesary to read the data without affecting the flags, it can be read out of RDAT
in I2CON register.

— — — — — —

Figure 14. I2DAT Register

I2DAT WRITE XDAT —

XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the I2C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.

— — — — — —

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 10

I2CSTA READ IDLE XDATA

IDLE Indicates when the I2C hardware is in the Idle mode.

XDATA Reflects the contents of the I2C transmitter buffer.

XACTV Indicates that the I2C transmitter is active.

MAKSTR Indicates that the hardware is effecting a Start.

MAKSTP Indicates that the hardware is effecting a Stop.

XSTR Hardware effecting a Repeated Start.

XSTP Hardware effecting a Stop.

XACTV MAKSTR MAKSTP XSTR XSTP —

Figure 15. I2CSTA Register

I2C COMMUNICATIONS
SOFTWARE
The software listing demonstrates
programming the 8XC751/752 for a
multimaster I2C environment where the
device can be both a Master or a Slave
responding to other Masters on the I2C
network. The bulk of the software is
communications routines which are not only
for demonstration but could be ported to
other user programs with minimal or no
modifications. The routines are quite general
and could be useful in most applications. We
have tried to design a well-defined software
interface, enabling most users to copy the
routines as they are, modifying only the
pre-defined interface elements to fit the
specific applications. We encourage users to
use the routines without modifications
whenever possible, as the lower levels of the
hardware-software integration could be quite
involved.

The rest of this application note will relate to
the programming example. We shall discuss
the general operation of the routines and how
they are integrated into an application. Then
we shall describe in detail all the software
interface elements and how to use them.

I2C COMMUNICATIONS
ROUTINES—OVERVIEW
In order to function well in a multimaster
environment the microcontroller must be able
to take control of the I2C bus as a Master,
“tolerate” message transactions between
other Masters and other devices, and
respond efficiently as a Slave to other bus
Masters. The communications routines
should allow a Master “graceful” recovery
from an arbitration loss and other situations
when a message transaction is not
completed, allowing for communication
re-tries.

For Slave operation the microcontroller must
be interrupt driven relative to an I2C frame

Start, as any Master on the bus could request
a transaction at any moment, not
synchronized to the application program
executing on the controller. An interrupt
service routine monitors the address
transmitted on the bus. When the
microcontroller is addressed it takes care to
either read the data from the bus into a buffer
or write buffer data onto the bus. When such
a transaction is successfully completed, one
of several “Slave Event Routines” is called
prior to returning to the main application
program. Such an “Event Routine” is a part of
the application, allowing an immediate
response to the data received, or the fact that
data was transmitted to a requesting Master.
This allows “synchronization” of the
application to a “slave” bus transaction.
Typical uses of the Event Routine
mechanism will be a computation based on
new data, or re-loading the transmit buffer
with new data getting ready for the next
random request. The actual Event Routines
will be programmed differently for different
applications, but the names and the calls will
remain the same as long as the
communications routines are left unmodified.

A transaction as a Master is initiated by the
application program. Our implementation
uses the interrupt mechanism for the Master
communications as well. The application
issues a request for the bus by setting the
MASTRQ bit of the I2C port control, and
when the bus is available an interrupt occurs.
This way, if the bus is free there will be an
immediate response. If the bus is busy, the
application may go on executing (if so
programmed) until this controller can get
control of the bus. When the microcontroller
gets mastership of the bus it initiates a bus
transaction according to “directives” set by
the application program. The most important
directives are the address (and subaddress if
relevant) of the slave device addressed, and
the length of the message to be transmitted
or received.

When a Master transaction is concluded, a
Master Event Routine (called MastNext) is
called to perform whatever task the
application demands. As with the Slave Event
Routines it will typically respond to a
successful transmission or reception of data.
In addition, it could handle situations where a
slave does not respond at all, or does not
acknowledge a data byte (thus causing data
transfer to terminate). A program might react
to the fact that a slave does not respond by
re-trying to communicate at a later time, by
issuing a message to another peripheral
device or just ignoring it. The handling of
such cases is application dependent, and
should be programmed into the routine called
“MastNext”. The MastNext routine is invoked
when the Master terminates the transaction
“willingly”, but not upon arbitration loss.

The microcontroller operating as a bus
Master may lose arbitration to another Master
which happens when two Masters transmit in
synchronization, commencing with the same
Start signal. If arbitration is lost while
transmitting or receiving data, our processor
withdraws from the bus and turns itself into a
slave—an active Slave upon a Start, or
returning to the calling program as an idle
slave. When the arbitration loss occurs while
transmitting an address, our processor turns
itself immediately into an active slave,
“listening” to the rest of the address
transmitted by the new Master. If our
processor reads its own address from the
bus (as transmitted by the new Master) our
processor responds as a willful slave. If this
mechanism would not have been
implemented, there could be potential
inefficiency when a device that happened to
be synchronized to another Master loses
arbitration, but is not able to respond to the
winning device.

Another situation for arbitration loss could be
a bus exception resulting from a device
operating not according to the bus protocol or

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 11

interference on the bus lines. In addition to
“regular” arbitration loss detected with the
ARL hardware flag, such a situation may
occur with detecting a Start or a Stop in the
middle of transmitting an address or data
byte. In such a situation the microcontroller
withdraws from the bus as well—active Slave
upon a Start detection, or returning as an idle
slave in other cases.

When a Master transaction is terminated by
an arbitration loss, the Master Request flag
(MASTRQ) of the hardware I2C port remains
in effect. As a result when the bus gets free,
our device will take control, issue a Start, and
the transaction that was cut will start again.
This restart will happen automatically, without
any application involvement (unlike
non-acknowledgement, where the MastNext
routine determines what shall be done).

The I2C communications routines are
structured as an interrupt service routine
responding to an I2C port interrupt upon a
frame Start. Within a frame the I2C
processing is continuous, where the I2C port
is polled for hardware response, and the I2C
interrupts are disabled. Other interrupts are
enabled during the service routine. The
set-up requirements from the mainline
program are minimal, and interfacing is done
via RAM buffers and some pre defined RAM
locations. The lower level interface with the
hardware is done inside the service routine,
and can typically be ignored by the
application programmer.

BUS WATCHDOG AND ERROR
RECOVERY
A malfunctioning device (in hardware or
software) may hold the SCL line low, thus
causing the bus to be “stuck”. It might even
be possible that a transient protocol violation
(due to hardware interference, such as a
device turning on) may cause some devices
(non programmable, or even microcontrollers
which were not carefully programmed) to hold
the bus. Since within a frame the bus is
software-polled, a “stuck” bus might cause
the application software to “hang forever”.
Here the TIMERI watchdog comes to the
rescue, interrupting when there is no bus
activity for a long period of time.

When the I2C service routine is interrupted by
the watchdog timer, the processing of the
current frame is not completed and the event
routines are not called. The software returns
to execute the mainline application, and will
be interrupted again for the next frame (next
Start, received as a slave or induced as a
Master). A status flag and a counter report on
the watchdog interrupt, so the application
program can be made to inhibit the I2C port if

there are too many occurrences of a
“hanging” bus.

Bus protocol errors and “hangups” might be
an issue in systems which are susceptible to
noise, temporary bus line shorts, “hot plug in”
of devices or even erroneously programmed
devices—and a “fail safe” controller program
should be able to detect bus problems and
possibly assist in resolving them. The
RECOVER routine resets the I2C interface of
the microcontroller, and attempts to release
some other devices on the bus by toggling
the clock line. The I2C interface of the
8XC751 is reset by letting TimerI run and
expire, since this circuitry does not feature a
software controlled reset. This “extreme”
measure is needed in some cases of bus
protocol violation.

The bus and interface circuit recovery routine
can be automatically invoked whenever
TimerI detects a timeout. In addition, for
systems where potential bus failures are a
concern and reliability is an issue, one may
implement mechanisms to invoke bus and
interface recovery from the application code.
This may help in cases where the bus gets
“stuck” when there is no I2C frame in
progress. In such an instance the watchdog
timer will not give any timeout indications, as
it has not been activated. Another case
emanates from a design peculiarity of the
interface circuitry on the 8XC751: if the SCL
line is externally grounded when there is a
Start condition, this Start might be ignored,
and the watchdog may not be activated. Our
programming example deals with potential
failures by testing for transaction completion
and retrying transmissions when necessary
(these are explicit retries, in addition to an
“automatic” retry after a Master’s arbitration
loss, invoked by the MASTRQ bit). Too many
transmission failures activate the RECOVER
routine.

I2C COMMUNICATIONS
ROUTINES—INTERFACE
The I2C service routine deals with the
transmission and reception of messages,
without any concern for the contents of the
message. In order to provide a general
interface for different applications the data is
transferred via buffers. The service routine
does not have to “know” where the data goes
to or comes from—as long as the application
program specifies the required pointers for
these buffers. The interface to the actual
application (which “cares” about message
contents, timing, addressing and so forth) is
done in a well defined manner, allowing
usage of the same service routine with
different application programs.

The interface is carried out with the use of
buffers, pre-defined names for Application
Event Routines, interface RAM locations for
transferring parameters, pointers and flags,
and constants. A more detailed discussion of
the interface follows.

Buffers
There are three buffers for data transfers
between the I2C bus and the application
program.

MasBuf is used for Master transmission and
reception. The number of data bytes for each
Master message—reception or transmission,
is specified by the memory location
MASTCNT. The value in MASTCNT should
be less than the length of MasBuf. For Master
transmission the message is placed in
MasBuf before the transmission is initiated. In
Master reception, the received message will
be contained in the same buffer. There is only
one Master message transaction occurring at
the same time, so we may use the same
buffer both for transmission and reception.

For Slave operation we must accommodate
data transfers which may come randomly,
asynchronous to each other or to possible
operation of the same device as a Master.
Therefore it is necessary to allocate
additional RAM area as buffers dedicated to
Slave operation: SRcvBuf for receiving data,
STxBuf for transmission.

The length of the Slave receive buffer is
defined by the symbol RBufLen. It is used by
the code for protection, avoiding overwriting
RAM beyond the allocated buffer size in case
a Master sends a message which is too long.
There is no need for RAM protection for
transmission, but the Master should not
request more data than STxBuf can supply.

Interface RAM Locations
RAM location MyAddr contains the address
of this processor.

Status flag MSGSTAT is used for reporting to
the application on I2C communications
status—mainly on the successful, or
unsuccessful, completion of a message
transaction. The contents of MSGSTAT may
be used by the mainline application code or
by the Event Routines. The different codes
that could be placed by the I2C service
routine are described later in the text. When
the message processing commences, a code
indicating Slave or Master processing is
inserted to MSGSTAT, and is updated as we
go along. There could be many applications
that will not need to use MSGSTAT contents,
as the very fact of calling a certain event
routine implies completion of a processing
stage.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 12

For Master transactions, in addition to the
data buffer MasBuf, there are several RAM
locations into which the application inserts
Master message “directives”. These
directives provide the service routine with the
information necessary to carry out the next
Master transaction. The one byte RAM
locations used for directives are DESTADRW,
DESSUBAD, MASTCNT and MASCMD.

DESTADRW contains the destination slave
address in bits 7-1, while bit 0 is the R/W bit.
Bit 0 contains 0 for a Write operation (the
message is to be transmitted to the salve)
and 1 for a Read operation (message is
being read from the slave and received by
this Master).

DESSUBAD contains the 8 bit sub-address
of the slave, if necessary. For transactions
without a sub-address, the contents of
DESSUBAD is ignored.

MASTCNT contains the number of data bytes
in the message to be sent from or received
into MasBuf. This number should not be
bigger than the length of MasBuf.

MASCMD byte contains the bit flags
SUBADD, RPSTRT and SETMRQ. SUBADD
is 0 (cleared) for a message with a regular
address, and 1 (set) when a subaddress is
required. When SUBADD is set, the service
routine takes care of all the protocol required
for sub-addressing, which includes a
Repeated Start for Read operations. A
message with a subaddress is considered to
be a single message, even if it includes a
Repeated Start.

The RPSTRT and SETMRQ are kept cleared
in regular applications, and will be used only
for “tailoring” the bus transfers in special
cases. When RPSTRT is cleared the
message will terminate, as usually required,
with a Stop. When RPSTRT is set a
Repeated Start will be sent on the bus, and
Master operation will resume. The RPSTRT
directive relates to terminating the message
after all the data was transferred, and not to
the mandatory Repeated Start in the middle
of sub-addressed Read operation. A single
message with a subaddress will typically
have RPSTRT cleared. SETMRQ indicates
what will be loaded into the MASTRQ flag of
the hardware when Stop is transmitted.
Typically it will be cleared. When SETMRQ
is 1, MASTRQ will be set, thus trying to issue
a new Start immediately following the Stop. In
such a case the service routine will not return
upon Stop, but will continue as a Master.

TITOCNT is used to count time-outs of the
watchdog timer. Whenever such a timeout
invokes the TIMER I interrupt service routine
the contents of the location TITOCNT are

incremented, and the timeout is reported in
MSGSTAT. The count is saturated at 0FFh.
This mechanism may be used in an
application that is very much “concerned”
with potential bus failures, allowing some
type of “failure monitoring” by the application
even for Slave transactions.

APPLICATION EVENT ROUTINES
The service routine calls Event Routines with
pre-defined names (Figure 16), and these
routines must be provided by the application
program. The actual code of the routines will
differ from application to application, but the
routine names are being kept the same.

These routines are being called when
successful processing of a message (send or
receive) is completed. The routines may
perform whatever action the application was
designed for, which is not necessarily related
to the I2C communications mechanism. In
addition, the routines may perform the data
interface tasks for the I2C port, like emptying
buffers from received data or preparing the
next message by setting up the buffers.

The mechanism of calling the event routines
out of the service routine allows an
immediate reaction to the event of message
processing completion, before any new
activity happens on the bus. In some simple
applications this may not be necessary. For
example, one may have a main program for a
slave which is just a wait loop monitoring a
flag set by the service routine when a
message transfer, initiated by some master,
is completed. In such a case the application
could react to the message completion after
the interrupt service routine returns.
However, in the general case this will not be
sufficient. An example could be a slave with
an application which is constantly busy doing
another task, in an environment where the
communication requests on the I2C bus are
frequent. If there is a new message request
shortly after the current message is
completed, having to wait for the application
until it “has time” may result in not reacting, or
sending the same data again, or overwriting
the received data in the buffer. Another
obvious case demanding event routine calls
is a Master sending different messages with
a Repeated Start—the new data for the
following message must be prepared in the
interrupt service routine as the current
message is completed (there is no return
from interrupt prior to the new data
transmission).

The programmer has the flexibility to decide
where to prepare the next message
according to the requirements of the

application. This can be done after return
from the event routine, in the application code
after the return from interrupt, or a
combination of both, where the time critical
events are performed in the event routines.
The application may monitor the MSGSTAT
flag for message processing completion. If
the event routines are not used, it is
recommended to simply code them as a
“RET” instruction, thus turning them into
dummy routines (this an easier and better
practice than changing the service routine
itself, eliminating the calls).

Master Event Routine:

MastNext
This routine is called by the service routine
when the processing of the current Master
message is completed. For an indication on
the type of message processing completion,
MastNext may inspect the contents of
MSGSTAT RAM location.

When MastNext is called, MSGSTAT will
contain one of the following codes for
message processing completion:

MRCVED (= 21h)—a complete message
(with number of data bytes indicated by
MASTCNT) was received from the slave.

MTXED (= 22h)—the number of data bytes
indicated by MASTCNT were successfully
sent and acknowledged by the slave.

MTXNAK (= 23h)—the slave did not
acknowledge a data byte of the message,
even though it had acknowledged its
address. The message transmission was
terminated upon the NAK.

MTXNOSLV (= 24h)—no slave
acknowledged the address indicated by
memory location DESTADDR.

The MastNext routine may perform any
task(s) necessary for the application. Data
handling tasks will typically be dependent on
the MSGSTAT indication. One possible task
could be setting the directives for the next
message. The necessity for executing this
task here (versus the main-line code initiating
the transfer) is of course application
dependent.

Slave Event Routines:
These routines are called when a message
transaction as a slave has been completed.
In many cases it could be important to utilize
the calls to such routines as the requests for
message transactions as a slave can come
randomly, asynchronous to the application
program. The application may demand that
new data coming in should immediately

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 13

TRANSACTION
SUCCESSFULLY

COMPLETED

TRANSACTION
SUCCESSFULLY

COMPLETED

INITIALIZE AND SET UP
I2C COMMUNICATIONS

RUN APPLICATION

APPLICATION INITIATES
MASTER TRANSACTION

INTERRUPT

INTERRUPT

TRANSACTION
NOT

COMPLETED

TRANSACTION
NOT

COMPLETED

I2C INTERRUPT
ROUTINE (ISR)-MASTER

MASTER ROUTINE
Mastnext

CONTINUE
APPLICATION

I2C INTERRUPT
ROUTINE (ISR)-SLAVE

SLAVE EVENT ROUTINE
STxedR/ScvdR/SLnRcvdR

NOTE:
This is a simplified diagram to assist
the text. It is not a flow chart.

Figure 16. Typical Communications Scenario—A Simplified Diagram

initiate some tasks (e.g. control an output
port)—and the event routine can be used to
process the result of the slave interrupt.

In most cases it will be necessary for a slave
to react immediately to a message received
simply in order not to lose the data. As a new
message may come randomly, it may
overwrite the reception buffer before the data
has been transferred out of it or acted upon.

For applications in which the reaction for
slave events is performed after the return
from the service routine, the event is reported
by placing an appropriate code in the
MSGSTAT flag. The programmer may use
event routines, other mainline routines
inspecting MSGSTAT, or both. If the event
routines are not used, it is recommended to
code them as a “RET” instruction.

SRcvdR:
Called by the service routine when a new,
complete message has been received into
SRcvBuf. When SRcvdR is called, R1 points

to the address of the last byte received into
the buffer. In a typical application SRcvdR will
transfer the new data out of SRcvBuf, so it
will not be written over by a subsequent slave
reception.

The equivalent MSGSTAT indication for this
event is SRCVD (= 11h).

SLnRcvdR:
Called when a slave message has been
received into SRcvBuf, but the message was
longer than the SRcvBuf buffer (as specified
by RbufLen).

The equivalent MSGSTAT indication for this
event is SRLNG (= 12h).

If the program is supposed to react to a too
long a message the same way as to a
message that can be contained in the buffer,
one may code SLnRcvdR simply as a call to
SRcvdR.

STXedR:
Called by the service routine when data has
been transmitted out of the slave STxBuf
buffer according to a master’s request. This
routine may insert new data into the buffer,
preparing it for the next slave transmission.

The equivalent MSGSTAT indication for this
event is STXED (= 13h).

Note that we do not have a separate routine
for the case that the master requested too
many bytes—more than STxBuf length—and
we sent out meaningless bytes. It is the
master’s responsibility to specify the
message length, and it should be able to
request messages with the appropriate length
from each slave on the bus.

SRErrR:
This routine relates more to bus
communications than to the application itself.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 14

It can be called when we positively detect a
bus error upon reception as a slave, in case
the application is supposed to know about it.
In most cases this call will not be used, as
dealing with bus communications difficulties
is usually left to the Master.

Just prior to calling SRErrR, the code
SRERR (= 14h) is placed in MSGSTAT.

0Completion Routine:
I2CDONE
This routine is called every time, before
returning from the I2C interrupt service
routine, whether the transaction was
successful or not. It can be used to “safely”
monitor MSGSTAT without any risk of a new
interrupt modifying the current indication.
Simple application programs will not make
use of this routine. A more sophisticated
application implementing a fail-safe
communications protocol may use it to count
errors of a certain type in order to determine
a recovery scheme. In our programming
example, I2CDONE inhibits I2C interrupts
when it is evident that as a result of protocol
errors interrupts are not caused by legitimate
Starts.

CONSTANTS
RBufLen—the length of SRcvBuf, the slave
receive buffer. This constant may be used
both by the I2C routines and the application
program, and it is the responsibility of the
application programmer to define the correct
buffer length.

MYNUM—This ROM constant is dependent
on the application environment. It is a small
integer defining a “serial number” of the node,
out of all the processors running the same
code. This constant is used only when
recovering from a timeout, in order to
“de-synchronize” masters from each other
when trying to recover the bus.

CTVAL1 is a constant defined in ROM. It is
used by the application code portion which

initializes the I2C, for loading CT0 and CT1
with a value appropriate for the crystal being
used.

MYADDR1 is a ROM constant containing the
address of the processor’s I2C node. This
value is used by the application demo to load
the RAM location MyAddr.

USING THE COMMUNICATIONS
SUBROUTINES
In order to use the I2C Communications
Routines an application program should take
care of the following:
– Upon initialization, load bits CT1, CT0 of

I2CFG register according to the clock
crystal used (refer to the table of CT1, CT0
values in the 8XC751 section of the Philips
Semiconductors Microcontroller Data
Handbook (IC20)).

– Load MyAddr RAM location with the
address of this node.

– For Slave operation, load STxBuf with the
initial data to be transmitted.

– For slave operation, set the SLAVEN bit in
the I2CFG register.

– Enable I2C and watchdog interrupts by
setting the ETI, EI2 and EA bits of the
interrupt enable register.

– For Master operation, set up the next
transaction by loading the appropriate
directives into MASCMD, DESTADRW,
DESSUBAD (if applicable) and MASTCNT,
and load MasBuf with the appropriate data
if it is a Write message.

– For Master operation, initiate the next
transaction by setting MASTRQ bit in
I2CFG.

– For both Master and Slave operation,
handle data transmission and reception via
the buffers in main-line code or the Event
Routines.

PROGRAMMING EXAMPLE
The assembler listing includes the I2C
Communications Routines and a demo
application exercising these routines. In most
real-life applications the code of the routines
could be used without modifications. For
those who follow the coding of the routines,
one should note that in many instances code
speed and program space have been slightly
compromised in order to improve readability.
The almost “general purpose” interface to the
routines affects efficiency as well, and it is
possible to write more compact and
somewhat faster code for specific
applications. The reader is encouraged,
though, to use the code “as is” whenever
possible.

The “application” demo is simple—two
microcontrollers exchange messages in a
“ping-pong” game. In addition to trivial
message exchange, the code demonstrates
recovery mechanisms from communications
errors and bus “hangups”. We tried this code
with two pairs of controllers exchanging
messages on the same bus. The message
exchange could repeatedly recover and
restart when the SCL and SDA lines were
temporarily shorted to ground or between
themselves. Simpler versions, without the
“protection” mechanisms, could “hang up”
under such conditions.

Source Code Available On BBS

The source code file for this program is
available for download from the Philips
computer bulletin board system. This
system is open to all callers, operates 24
hours a day, and can be accessed with
modems at 2400, 1200, and 300 baud. The
telephone numbers for the BBS are: (800)
451-6644 (in the U.S. only) or (408)
991-2406.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 15

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 1

1 ;
2
3 ;***
4 ; Multimaster Code for 83C751/83C752
5 ; 4/14/1992
6 ;***
7 ; This code was written to accompany an application note. The I2C routines
8 ; are intended to be demonstrative and transportable into different
9 ; application scenarios, and were NOT optimized for speed and/or memory
10 ; utilization.
11 ;
12 ; Yoram Arbel
13
14 $TITLE(83C751 Multi Master I2C Routines)
15 $DATE(4/14/1992)
16 $MOD751
17 $DEBUG
18
19 ;***
20 ; 8XC751 MULTIMASTER I2C COMMUNICATIONS ROUTINES
21 ; Symbols and RAM definitions
22 ;***
23
24 ; Symbols (masks) for I2CFG bits.
25

0010 26 BTIR EQU 10h ; TIRUN bit.
0040 27 BMRQ EQU 40h ; MASTRQ bit.

28
29
30 ; Symbols (masks) for I2CON bits.
31

0080 32 BCXA EQU 80h ; CXA bit.
0040 33 BIDLE EQU 40h ; IDLE bit.
0020 34 BCDR EQU 20h ; CDR bit.
0010 35 BCARL EQU 10h ; CARL bit.
0008 36 BCSTR EQU 08h ; CSTR bit.
0004 37 BCSTP EQU 04h ; CSTP bit.
0002 38 BXSTR EQU 02h ; XSTR bit.
0001 39 BXSTP EQU 01h ; XSTP bit.

40
41 ; Note:
42 ;
43 ; Specific bits of the I2CON register are set by writing into this register a
44 ; combination of the masks defined above using the MOV command.
45 ; The SETB command should not be used with I2CON, as it is implemented by
46 ; reading the contents of the register, setting the appropriate bit and
47 ; writing it back into the register. As the functionality of the Read and
48 ; Write portions of the I2CON register is different, using SETB may cause
49 ; unwanted results.
50
51 ; Message transaction status indications in MSGSTAT:
52

0010 53 SGO EQU 10h ; Started Slave message processing.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 16

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 2

0011 54 SRCVD EQU 11h ; as a slave, received a new message
0012 55 SRLNG EQU 12h ; received as slave a message which is too

56 ; long for the buffer
0013 57 STXED EQU 13h ; as slave, completed message transmission.
0014 58 SRERR EQU 14h ; bus error detected when operating as a slave.

59
0020 60 MGO EQU 20h ; Started Master message processing.
0021 61 MRCVED EQU 21h ; As Master, received complete message from

62 ; slave.
0022 63 MTXED EQU 22h ; As Master, completed successful message

64 ; transmission (slave acknowledged all data
65 ; bytes).

0023 66 MTXNAK EQU 23h ; As Master, truncated message since slave did
67 ; not acknowledge a data byte.

0024 68 MTXNOSLV EQU 24h ; AS Master, did not receive an acknowledgement
69 ; for the specified slave address.
70

0030 71 TIMOUT EQU 30h ; TIMERI Timed out.
0032 72 NOTSTR EQU 32h ; Master did not recognize Start.

73
74 ; RAM locations used by I2C interrupt service routines.
75
76

0020 77 MASCMD DATA 20h
0000 78 SUBADD BIT MASCMD.0
0001 79 RPSTRT BIT MASCMD.1
0002 80 SETMRQ BIT MASCMD.2

81
0024 82 DSEG AT 24h

83
0024 84 MSGSTAT: DS 1 ; I2C communications status.
0025 85 MYADDR: DS 1 ; Address of this I2C node.
0026 86 DESTADRW: DS 1 ; Destination address + R/W (for Master).
0027 87 DESSUBAD: DS 1 ; Destination subaddress.
0028 88 MASTCNT: DS 1 ; Number of data bytes in message (Master,

89 ; send or receive).
90

0029 91 TITOCNT: DS 1 ; Timer I bus watchdog timeouts counter.
002A 92 StackSave: DS 1 ; SP save location (used when returning from

93 ; bus recovery routine).
94

002B 95 MasBuf: DS 4 ; Master receive/transmit buffer, 8 bytes.
002F 96 SRcvBuf: DS 4 ; Slave receive buffer, 8 bytes.
0033 97 STxBuf: DS 4 ; Slave transmit buffer, 8 bytes.

98
99
100

0004 101 RBufLen EQU 4h ; The length of SRcvBuf
102

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 17

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 3

103 ;***
104 ; APPLICATION output pins and RAM definitions
105 ;***
106
107 ; Outputs used by the application:
108

0090 109 TogLED BIT P1.0 ; Toggling output pin, to confirm
110 ; that the ping–pong game proceeds fine.

0091 111 ErrLED BIT P1.1 ; Error indication.
112

0093 113 OnLED BIT P1.3 ;
114
115 ; Application RAM
116

0021 117 APPFLAGS DATA 21h
0008 118 TRQFLAG BIT APPFLAGS.0

119 ; Flag for monitoring I2C transmission success.
0009 120 SErrFLAG BIT APPFLAGS.1

121
0037 122 FAILCNT: DS 1

123
0038 124 TOGCNT: DS 1 ; Toggle counter.

125
126
127 ;***
128 ;
129 ; Program Start
130 ;
131 ;***

–––– 132 CSEG
133
134 ; Reset and interrupt vectors.
135

0000 4178 136 AJMP Reset ;Reset vector at address 0.
137
138
139 ; A timer I timeout usually indicates a ’hung’ bus.
140

001B 141 ORG 1Bh ; Timer I (I2C timeout) interrupt.
001B D2DD 142 TimerI: SETB CLRTI
001D 4111 143 AJMP TIISR ; Go to Interrupt Service Routine.

144
145
146
147
148 ;**
149 ; I2C Interrupt Service Routine
150 ;**
151 ;
152 ; Notes on the interrupt mechanism:
153 ;
154 ; Other interrupts are enabled during this ISR upon return from XRETI.
155 ; Limitations imposed on other ISR’s:

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 18

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 4

156 ; – Should not be long (close to 1000 clock cycles). A long ISR will cause
157 ;the I2C bus to ’hang”, and a TIMERI interrupt to occur.
158 ; – Other interrupts either do not use the same mechanism for allowing
159 ;further interrupts, or if they do – disable TIMERI interrupt beforehand.
160 ;
161 ; The 751 hardware allows only one level of interrupts. We simulate an
162 ; additional level by software: by performing a RETI instruction (at location
163 ; XRETI) the interrupt–in–progress flip–flop is cleared, and other interrupts
164 ; are enabled. The second level of interrupt is a must in our implementation,
165 ; enabling timeout interrupts to occur during ”stuck” wait loops in the I2C
166 ; interrupt service routine.
167
168

0023 169 ORG 23h
170

0023 C2AC 171 I2CISR: CLR EI2 ; Disable I2C interrupt.
0025 114C 172 ACALL XRETI ; Allow other interrupts to occur.
0027 C0D0 173 PUSH PSW
0029 C0E0 174 PUSH ACC
002B E8 175 MOV A,R0
002C C0E0 176 PUSH ACC
002E E9 177 MOV A,R1
002F C0E0 178 PUSH ACC
0031 EA 179 MOV A,R2
0032 C0E0 180 PUSH ACC

181
0034 85812A 182 MOV StackSave, SP
0037 C2DC 183 CLR TIRUN
0039 D2DC 184 SETB TIRUN

185
003B 209A09 186 JB STP,NoGo
003E 30990C 187 JNB MASTER, GoSlave
0041 752420 188 MOV MSGSTAT,#MGO
0044 209B76 189 JB STR,GoMaster
0047 752432 190 NoGo: MOV MSGSTAT,#NOTSTR
004A 21AE 191 AJMP Dismiss ; Not a valid Start.

192
004C 32 193 XRETI: RETI

194
195 ;***
196 ; Main Transmit and Receive Routines
197 ;***
198
199 ; SLAVE CODE –
200 ; GET THE ADDRESS
201

004D 752410 202 GoSlave: MOV MSGSTAT,#SGO
0050 31E2 203 AddrRcv: ACALL ClsRcv8
0052 309D5E 204 JNB DRDY, SMsgEnd ; Must be some strange Start or Stop

205 ; before the address byte was completed.
206 ; Not a valid address.

0055 A2E0 207 STstRW: MOV C,ACC.0 ; Save R/W~ bit in carry.
0057 C2E0 208 CLR ACC.0 ; Clear that bit, leaving ”raw” address

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 19

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 5

0059 6060 209 JZ GoIdle ; If it is a General Address
210 ; – ignore it.
211
212 ; NOTE:
213 ; One may insert here a different
214 ; treatment for general calls, if
215 ; these are relevant.
216

005B 4027 217 JC SlvTx ; It’s a Read – (requesting slave
218 ; transmit).
219
220
221
222
223 ; It is a Write (slave should receive the message).
224
225 ; Check if message is for us
226

005D B5255B 227 SRcv2: CJNE A,MYADDR,GoIdle ; If not my address – ignore the
228 ; message.

0060 792F 229 MOV R1,#SRcvBuf ; Set receive buffer address.
0062 7A05 230 MOV R2,#RbufLen+1 ;
0064 8002 231 SJMP SRcv3

232
0066 F7 233 SRcvSto: MOV @R1,A ; Store the byte
0067 09 234 Inc R1 ; Step address.
0068 31ED 235 SRcv3: ACALL AckRcv8
006A 309D09 236 JNB DRDY,SRcvEnd ; Exit loop –end reception.
006D DAF7 237 DJNZ R2,SRcvSto ; Go to store byte if buffer not full.

238
239 ; Too many bytes received – do not acknowledge.

006F 752412 240 MOV MSGSTAT,#SRLNG; Notify main that (as slave) we
241 ; have received too long a message.

0072 7110 242 ACALL SLnRCvdR ; Handle new data – slave event routine.
0074 8045 243 SJMP GoIdle

244
245
246
247 ; Received a byte, but not DRDY – check if a legitimate message end.
248

0076 B8072E 249 SRcvEnd: CJNE R0,#7,SRcvErr; If bit count not 7, it was not
250 ; a Start or a Stop.
251
252 ; Received a complete message
253
254

0079 752411 255 MOV MSGSTAT,#SRCVD
256 ; Calculate number of bytes received

007C E9 257 MOV A,R1
007D C3 258 CLR C
007E 942F 259 SUBB A,#SRcvBuf ; number of bytes in ACC
0080 51EF 260 ACALL SRCvdR ; Handle new data – slave event routine.
0082 802F 261 SJMP SMsgEnd

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 20

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 6

262
263
264 ; It is a Read message, check if for us.
265

0084 00 266 SlvTx: NOP
267

0085 B52533 268 STx2: CJNE A,MYADDR,GoIdle ; Not for us.
0088 759900 269 MOV I2DAT,#0 ; Acknowledge the address.
008B 309EFD 270 JNB ATN,$; Wait for attention flag.
008E 309D22 271 JNB DRDY,SMsgEnd ; Exception – unexpected Start

272 ; or Stop before the Ack got out.
0091 7933 273 MOV R1,#STxBuf ; Start address of transmit buffer.
0093 E7 274 STxlp: MOV A,@R1 ; Get byte from buffer
0094 09 275 INC R1
0095 31CE 276 ACALL XmByte
0097 309D19 277 JNB DRDY,SMsgEnd ; Byte Tx not completed.
009A 309FF6 278 JNB RDAT,STxlp ; Byte acknowledge, proceed trans.
009D 759860 279 MOV I2CON,#BCDR+BIDLE ; Master Nak’ed for msg end.
00A0 752413 280 MOV MSGSTAT,#STXED
00A3 7110 281 ACALL STXedR ; Slave transmitted event routine.
00A5 21AE 282 AJMP Dismiss

283
284

00A7 752414 285 SRcvErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
00AA 7110 286 ACALL SRErrR ; Slave error event routine.
00AC 8005 287 SJMP SMsgEnd
00AE 752414 288 StxErr: MOV MSGSTAT,#SRERR ; Flag bus/protocol error
00B1 7110 289 ACALL SRErrR

290
00B3 209903 291 SMsgEnd: JB MASTER,SMsgEnd2
00B6 209B94 292 JB STR,GoSlave ; If it was a Start, be Slave
00B9 293 SMsgEnd2:
00B9 21AE 294 AJMP Dismiss

295
296
297 ; End of Slave message processing
298

00BB 299 GoIdle:
00BB 21AE 300 AJMP Dismiss

301
302
303
304
305 ;
306 ;
307

00BD 308 GoMaster:
309
310
311 ; Send address & R/W~ byte
312

00BD 792B 313 MOV R1,#MasBuf ; Master buffer address
00BF AA28 314 MOV R2,MASTCNT ; # of bytes, to send or rcv

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 21

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 7

00C1 E526 315 MOV A,DESTADRW ; Destination address (including
316 ; R/W~ byte).

00C3 200012 317 JB SUBADD,GoMas2 ; Branch if subaddress is needed.
318

00C6 31C5 319 ACALL XmAddr
320

00C8 309D03 321 JNB DRDY,GM2
00CB 309C02 322 JNB ARL,GM3
00CE 2186 323 GM2: AJMP AdTxArl ; Arbitration loss while transmitting

324 ; the address.
00D0 209F5C 325 GM3: JB RDAT,Noslave ; No Ack for address transmission.
00D3 20E063 326 JB ACC.0, MRcv ; Check R/W~ bit
00D6 211A 327 AJMP MTx

328
329 ; Handling subaddress case:
330

00D8 00 331 GoMas2: NOP ; Subaddress needed. Address in ACC.
00D9 C2E0 332 CLR ACC.0 ; Force a Write bit with address.
00DB 31C5 333 ACALL XmAddr
00DD 309D03 334 JNB DRDY,GM4
00E0 309C02 335 JNB ARL,GM5
00E3 2186 336 GM4: AJMP AdTxArl ; Arbitration loss while transmitting

337 ; the address.
338

00E5 209F47 339 GM5: JB RDAT,Noslave ; No Ack for address transmission.
00E8 E527 340 MOV A,DESSUBAD
00EA 31CE 341 ACALL XmByte ; Transmit subaddress.
00EC 309DCA 342 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
00EF 209CC7 343 JB ARL,SMsgEnd2 ; Arbitration loss occurred.
00F2 209F3F 344 JB RDAT,NoAck ; Subaddress transmission was not ack’ed.
00F5 E526 345 MOV A,DESTADRW ; Reload ACC with address.
00F7 30E020 346 JNB ACC.0, MTx ; It’s a Write, so proceed

347 ; by sending the data.
348 ; Read message, needs rp. Start and add. retransmit.
349

00FA 759822 350 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
00FD 309EFD 351 JNB ATN,$
0100 759820 352 MOV I2CON,#BCDR ; Clear useless DRDY while preparing

353 ; for Repeated Start.
0103 309EFD 354 JNB ATN,$; expecting an STR.
0106 309C02 355 JNB ARL,GM6
0109 2182 356 AJMP MArlEnd ; oops – lost arbitration.
010B 31C5 357 GM6: ACALL XmAddr ; Retransmit address, this time with the

358 ; Read bit set.
010D 309D03 359 JNB DRDY,GM7
0110 309C02 360 JNB ARL,GM8
0113 2186 361 GM7: AJMP AdTxArl ; Arbitration loss while transmitting

362 ; the address.
0115 209F17 363 GM8: JB RDAT,Noslave ; No Ack – the slave disappeared.
0118 801F 364 SJMP MRcv ; Proceed receiving slave’s data.

365
366 ; A Write message. Master transmits the data.
367

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 22

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 8

011A 00 368 MTx: NOP
369

011B E7 370 MTxLoop: MOV A,@R1 ; Get byte from buffer.
011C 09 371 INC R1 ; Step the address.
011D 31CE 372 ACALL XmByte
011F 309D97 373 JNB DRDY,SMsgEnd2 ; Arbitration loss (by Start or Stop)
0122 209C94 374 JB ARL,SMsgEnd2 ; Arbitration loss.
0125 209F0C 375 JB RDAT,NoAck
0128 DAF1 376 DJNZ R2,MTxLoop ; Loop if more bytes to send.

377
012A 752422 378 MOV MSGSTAT,#MTXED ; Report completion of buffer

379 ; transmission.
012D 8025 380 SJMP MTxStop
012F 752424 381 NoSlave: MOV MSGSTAT,#MTXNOSLV
0132 8020 382 SJMP MTxStop
0134 752423 383 NoAck: MOV MSGSTAT,#MTXNAK
0137 801B 384 SJMP MTxStop

385
386
387
388 ; Master receive – a Read frame
389

0139 31F6 390 MRcv: ACALL ClaRcv8 ; Receive a byte.
013B 8002 391 SJMP MRcv2
013D 31ED 392 MRcvLoop: ACALL AckRcv8
013F 309D39 393 MRcv2: JNB DRDY,MArl ; Other’s Start or Stop.
0142 F7 394 MOV @R1,A ; Store received byte.
0143 09 395 INC R1 ; Advance address.
0144 DAF7 396 DJNZ R2,MRcvLoop

397
398 ; Received the desired number of bytes – send Nack.
399

0146 759980 400 MOV I2DAT,#80h
0149 309EFD 401 JNB ATN,$
014C 309D2C 402 JNB DRDY,MArl
014F 752421 403 MOV MSGSTAT,#MRCVED
0152 8000 404 SJMP MTxStop ; Go to send Stop or Repeated Start.

405
406
407
408 ; Conclude this Master message:
409 ; Send Stop, or a Repeated Start
410
411

0154 300105 412 MTxStop: JNB RPSTRT,MTxStop2 ; Check if Repeated Start needed
413 ; Around if not RPSTRT.

0157 759822 414 MOV I2CON,#BCDR+BXSTR ; Send Repeated Start.
015A 8007 415 SJMP MTxStop3
015C A202 416 MTxStop2: MOV C,SETMRQ ; Set new Master Request if demanded
015E 92DE 417 MOV MASTRQ,C ; by SETMRQ bit of MASCMD.

418
0160 759821 419 MOV I2CON,#BCDR+BXSTP ; Request the HW to send a Stop.

420

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 23

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 9

0163 309EFD 421 MTxStop3: JNB ATN,$; Wait for Attention
0166 759820 422 MOV I2CON,#BCDR ; Clear the useless DRDY, generated

423 ; by SCL going high in preparation
424 ; for thr Stop or Repeated Start.

0169 309EFD 425 JNB ATN,$; Wait for ARL, STP or STR.
016C 209C13 426 JB ARL,MarlEnd ; Lost arbitration trying to send

427 ; Stop or a ReStart.
428
429 ; Master is done with this message. May proceed with new messages, if any,
430 ; or exit.
431

016F 7112 432 ACALL MastNext ; Master Event Routine. May Prepare
433 ; the pointers and data for the
434 ; next Master message.
435

0171 30DE05 436 JNB MASTRQ,MMsgEnd ; Go end service routine if MASTRQ
437 ; does not indicate that the master
438 ; should continue (was set according
439 ; to SETMRQ bit, or by MastNext).
440

0174 309B02 441 JNB STR,MMsgEnd ; Return from the ISR, unless Start
442 ; (avoid danger if we do not return:
443 ; if there was a Stop, the watchdog
444 ; is inactive until next Start).

0177 01BD 445 AJMP GoMaster ; Loop for another Master message
446 ;

0179 447 MMsgEnd: ; End of Master messages,
0179 8033 448 SJMP Dismiss

449
450
451
452
453 ; Terminate mastership due to an arbitration loss:
454

017B 455 MArl:
456

017B 309B02 457 JNB STR,MArl2 ; If lost arbitration due to other
458 ; Master’s Start, go be a slave.

017E 014D 459 AJMP GoSlave
460

0180 461 Marl2:
0180 21AE 462 AJMP Dismiss

463
464
465
466 ; Switch from Master to Slave due to arbitration loss after completing
467 ; transmission of a message.The MASTRQ bit was cleared trying to write a
468 ; Stop, and we need to set it again on order to retry transmission when the
469 ; bus gets free again.
470

0182 471 MArlEnd:
0182 D2DE 472 SETB MASTRQ ; Set Master Request – which will get

473 ; into effect when we are done as a
474 ; slave.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 24

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 10

0184 217B 475 AJMP MArl
476
477 ; Handling arbitration loss while transmitting an address
478

0186 209BF2 479 AdTxArl: JB STR,MArl ; Non–synchronous Start or Stop.
0189 209AEF 480 JB STP,MArl

481
482 ; Switch from Master to Slave due to arbitration loss while transmitting
483 ; an address – complete receiving the address transmitted by the new Master.
484

018C B80003 485 CJNE R0,#0,AdTxArl2
486 ; Arl on last bit of address
487 ; (R0 is 0 on exit from XmAddr).

018F 14 488 DEC A ; The lsb sent, in which arl occured
489 ; must have been 1. By decrementing
490 ; A we get the address that won.

0190 8012 491 SJMP AdAr3
492

0192 493 AdTxArl2:
0192 03 494 RR A ; Realign partially Tx’ed ACC
0193 F9 495 MOV R1,A ; and save it in R1
0194 E8 496 MOV A,R0 ; Pointer for lookup table
0195 9001A6 497 MOV DPTR,#MaskTable
0198 93 498 MOVC A,@A+DPTR
0199 59 499 ANL A,R1 ; Set address bits to be received,

500 ; and the bit on which we lost
501 ; arbitration to 0
502 ; Now we are ready to receive the rest
503 ; of the address.
504
505

019A 759890 506 MOV I2CON,#BCXA+BCARL ; Clear flags and release the clock.
507

019D 5108 508 ACALL RBit3 ; Complete the address using reception
509 ; subroutine.

019F 209D02 510 JB DRDY,AdAr3 ; Around if received address OK
01A2 01B3 511 AJMP SMsgEnd ; Unexpected Start or Stop – end

512 ; as a slave.
01A4 0155 513 AdAr3: AJMP STstRW ; Proceed to check the address

514 ; as a slave.
515

01A6 FF7E3E1E 516 MaskTable: DB 0ffh,7Eh,3Eh,1Eh,0Eh,06h,02h,00h, ; 0ffh is dummy
01AA 0E060200

517
518 ; End I2C Interrupt Service Routine:
519

01AE 711E 520 Dismiss: ACALL I2CDONE
521

01B0 7598F4 522 MOV I2CON,#BCARL+BCSTP+BCDR+BCXA+BIDLE
01B3 C2DC 523 CLR TIRUN
01B5 D0E0 524 POP ACC
01B7 FA 525 MOV R2,A
01B8 D0E0 526 POP ACC

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 25

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 11

01BA F9 527 MOV R1,A
01BB D0E0 528 POP ACC
01BD F8 529 MOV R0,A
01BE D0E0 530 POP ACC
01C0 D0D0 531 POP PSW
01C2 D2AC 532 SETB EI2

533
01C4 22 534 RET ; Return from I2C interrupt Service Routine

535
536 ;***
537 ; Byte Transmit and Receive Subroutines
538 ;***
539
540
541
542 ; XmAddr: Transmit Address and R/W~
543 ; XmByte: Transmit a byte
544

01C5 F599 545 XmAddr: MOV I2DAT,A ; Send first bit, clears DRDY.
01C7 75981C 546 MOV I2CON,#BCARL+BCSTR+BCSTP

547 ; Clear status, release SCL.
01CA 7808 548 MOV R0,#8 ; Set R0 as bit counter
01CC 8004 549 SJMP XmBit2
01CE 7808 550 XmByte: MOV R0,#8
01D0 F599 551 XmBit: MOV I2DAT,A ; Send the first bit.
01D2 23 552 XmBit2: RL A ; Get next bit.
01D3 309EFD 553 JNB ATN,$; Wait for bit sent.
01D6 309D08 554 JNB DRDY,XmBex ; Should be data ready.
01D9 D8F5 555 DJNZ R0,XmBit ; Repeat until all bits sent.
01DB 7598A0 556 MOV I2CON,#BCDR+BCXA ; Switch to receive mode.
01DE 309EFD 557 JNB ATN,$; Wait for acknowledge bit.

558 ; flag cleared.
01E1 22 559 XmBex: RET

560
561 ;
562 ; Byte receive routines.
563 ;
564 ; ClsRcv8 clears the status register (from Start condition)
565 ; and then receives a byte.
566 ; AckRcv8 Sends an acknowledge, and then receives a new byte.
567 ; If a Start or Stop is encountered immediately after the
568 ; ack, AckRcv8 returns with 7 in R0.
569 ; ClaRcv8 clears the transmit active state and releases clock
570 ; (from the acknowledge).
571 ;
572 ; A contains the received byte upon return.
573 ; R0 is being used as a bit counter.
574 ;
575

01E2 75989C 576 ClsRcv8: MOV I2CON,#BCARL+BCSTR+BCSTP+BCXA
577 ;Clear status register.

01E5 309EFD 578 JNB ATN,$
01E8 309D22 579 JNB DRDY,RCVex

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 26

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 12

01EB 800F 580 SJMP Rcv8
581

01ED 759900 582 AckRcv8: MOV I2DAT,#0 ; Send Ack (low)
01F0 309EFD 583 JNB ATN,$
01F3 309D18 584 JNB DRDY,RCVerr ; Bus exception – exit.
01F6 7598A0 585 ClaRcv8: MOV I2CON,#BCDR+BCXA ; clear status, release clock

586 ;from writing the Ack.
01F9 309EFD 587 JNB ATN,$

588
01FC 7807 589 Rcv8: MOV R0,#7 ; Set bit counter for the first seven

590 ; bits.
01FE E4 591 CLR A ; Init received byte to 0.
01FF 4599 592 RBit: ORL A,I2DAT ; Get bit, clear ATN.
0201 23 593 RBit2: RL A ; Shift data.
0202 309EFD 594 JNB ATN,$; Wait for next bit.
0205 309D05 595 JNB DRDY,RCVex ; Exit if not a data bit (could be Start/

596 ; Stop, or bus/protocol error)
0208 D8F5 597 RBit3: DJNZ R0,RBit ; Repeat until 7 bits are in.
020A A29F 598 MOV C,RDAT ; Get last bit, don’t clear ATN.
020C 33 599 RLC A ; Form full data byte.
020D 22 600 RCVex: RET

601
020E 7809 602 RCVerr: MOV R0,#9 ; Return non legitimate bit count
0210 22 603 RET

604
605
606 ;***
607 ; Timer I Interrupt Service Routine
608 ; I2C us Timeout
609 ;***
610
611 ; In addition to reporting the timeout in MSGSTAT, we update a failure
612 ; counter, TITOCNT. This allows different types of timeout handling by the
613 ; main program.
614

0211 C2DE 615 TIISR: CLR MASTRQ ; ”Manual” reset.
0213 759801 616 MOV I2CON,#BXSTP ;
0216 7598BC 617 MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP

618
0219 752430 619 TI1: MOV MSGSTAT,#TIMOUT ; Status Flag for Main.
021C 74FF 620 TI2: MOV A,#0FFh
021E B52902 621 CJNE A,TITOCNT,TI3 ; Increment TITOCNT, saturating
0221 8002 622 SJMP TI4 ; at FFh.
0223 0529 623 TI3: INC TITOCNT

624
0225 5130 625 TI4: ACALL RECOVER

626
0227 D2DD 627 SETB CLRTI ; Clear TI interrupt flag.
0229 114C 628 ACALL XRETI ; Clear interrupt pending flag (in

629 ; order to re–enable interrupts).
022B 852A81 630 MOV SP,StackSave ; Realign stack pointer, re–doing

631 ; possible stack changes during
632 ; the I2C interrupt service routine.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 27

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 13

633 ; TimerI interrupts in other ISR’s
634 ; were not allowed !

022E 21AE 635 AJMP Dismiss ; Go back to the I2C service routine,
636 ; in order to return to the (main)
637 ; program interrupted.
638
639
640 ;**
641 ; Bus recovery attempt subroutine
642 ;**
643

0230 C2AF 644 RECOVER: CLR EA
0232 C2DE 645 CLR MASTRQ ; ”Manual” reset.
0234 7598FC 646 MOV I2CON,#BCXA+BIDLE+BCDR+BCARL+BCSTR+BCSTP
0237 C2DF 647 CLR SLAVEN ; Non I2C TimerI mode
0239 D2DC 648 SETB TIRUN ; Fire up TimerI. When it overflows, it

649 ; will cause I2C interface hardware reset.
023B 79FF 650 MOV R1,#0ffh
023D 00 651 DLY5: NOP
023E 00 652 NOP
023F 00 653 NOP
0240 D9FB 654 DJNZ R1,DLY5
0242 C2DC 655 CLR TIRUN
0244 D2DD 656 SETB CLRTI

657
0246 D280 658 SETB SCL ; Issue clocks to help release other devices.
0248 D281 659 SETB SDA
024A 7908 660 MOV R1,#08h
024C C280 661 RC7: CLR SCL
024E 00000000 662 DB 0,0,0,0,0
0252 00
0253 D280 663 SETB SCL
0255 00000000 664 DB 0,0,0,0,0
0259 00
025A D9F0 665 DJNZ R1,RC7
025C C280 666 CLR SCL
025E 0000 667 DB 0,0
0260 C281 668 CLR SDA
0262 0000 669 DB 0,0
0264 D280 670 SETB SCL
0266 00000000 671 DB 0,0,0,0,0
026A 00
026B D281 672 SETB SDA
026D 00000000 673 DB 0,0,0,0,0 ; Issue a Stop.
0271 00

674
0272 7598BC 675 Rex: MOV I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP ; clear flags
0275 D2AF 676 SETB EA
0277 22 677 RET

678

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 28

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 14

679 ;***
680 ;
681 ; Main Program
682 ;
683 ;***
684
685 ; Message ping pong game. Each message is transmitted by
686 ; a processor that is a master on the I2C bus, and it contains one byte
687 ; of data. A processor that receives this data byte as a slave increments
688 ; the data by one and transmits it back as a master. The data received is
689 ; confirmed to be a one increment of the data formerly sent, unless
690 ; it is a ”reset” value, chosen to be 00h.
691 ; The two participating processors have similar code, where the node
692 ; address of the second processor is the destination address of this
693 ; one, and vice versa.
694 ; The first data byte each processor tries to send is 00h. One of the
695 ; processors will acquire the bus first, and the second processor that will
696 ; receive this ”resetting” 00h will not attempt to confirm it against an
697 ; expected value.It will simply increment and transmit it. Subsequent
698 ; receptions will be confirmed against the expected value, until 0ffh data
699 ; bytes are sent and the game is effectively reset by the 00h resulting from
700 ; the next increment.
701 ; A toggling output (TogLED) tells the outer world that the ”ping pong”
702 ; proceeds well. If something unexpected happens we temporarily activate
703 ; another output, ErrLED.
704 ; The different tasks of the code are performed in a combination of main–
705 ; line program and event routines called from the I2C interrupt service
706 ; routine.
707
708
709 ; Initial set–ups:
710 ; Load CT1,CT0 bits of I2CFG register, according to the clock
711 ; crystal used.
712 ; Load RAM location MYADDR with the I2C address of this processor.
713 ; We load these values out of ROM table locations (R_CTVAL and R_MYADDR).
714 ; One may, instead, load with a MOV <immediate> command.
715

0278 758107 716 Reset: MOV SP,#07h ;Set stack location.
027B E4 717 CLR A
027C 90032D 718 MOV DPTR,#R_CTVAL
027F 93 719 MOVC A,@A+DPTR
0280 F5D8 720 MOV I2CFG,A ; Load CT1,CT0 (I2C timing, crystal

721 ; dependent).
0282 E4 722 CLR A
0283 90032C 723 MOV DPTR,#R_MYADDR
0286 93 724 MOVC A,@A+DPTR ; Get this node’s address from ROM table
0287 F525 725 MOV MYADDR,A ; into MYADDR RAM location.

726
0289 C293 727 CLR OnLED

728
729

028B C291 730 Reset2: CLR ErrLED ; Flash LED.
028D 51E6 731 ACALL LDELAY

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 29

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 15

028F D291 732 SETB ErrLED
0291 C209 733 CLR SErrFLAG
0293 C208 734 CLR TRQFLAG
0295 753750 735 MOV FAILCNT,#50h
0298 D290 736 SETB TogLED
029A 753850 737 MOV TOGCNT,#050h ; Initialize pin–toggling counter

738
739 ; Enable slave operation.
740 ; The Idle bit is set here for a restart situation – in normal
741 ; operation this is redundant, as this bit is set upon power_up reset.

029D 759840 742 MOV I2CON,#BIDLE ; Slave will idle till next Start.
02A0 D2DF 743 SETB SLAVEN ; Enable slave operation.

744
745 ; Enable interrupts.
746 ; This is necessary for both Slave and Master operations.

02A2 D2AB 747 SETB ETI ; Enable timer I interrupts.
02A4 D2AC 748 SETB EI2 ; Enable I2C port interrupts.
02A6 D2AF 749 SETB EA ; Enable global interrupts.

750
751 ; Set up Master operation.
752

02A8 752000 753 MOV MASCMD,#0h ; ”Regular” master transmissions.
02AB 90032E 754 MOV DPTR,#PongADDR
02AE E4 755 CLR A
02AF 93 756 MOVC A,@A+DPTR
02B0 F526 757 MOV DESTADRW,A ; The partner address. The LSB is

758 ; low, for a Write transaction.
02B2 752801 759 MOV MASTCNT,#01h ; Message length – a single byte.

760
02B5 761 PPSTART:
02B5 752B00 762 MOV MasBuf,#00h

763
764 ; ”Ping” transmission:
765

02B8 766 PP2:
02B8 D208 767 SETB TRQFLAG
02BA D2DE 768 SETB MASTRQ
02BC 79FF 769 MOV R1,#0ffh
02BE 300809 770 PP22: JNB TRQFLAG,PP3 ; Transmitted OK
02C1 D9FB 771 DJNZ R1,PP22
02C3 D537F2 772 MFAIL1: DJNZ FAILCNT,PP2
02C6 5130 773 ACALL RECOVER
02C8 80C1 774 SJMP Reset2

775
776 ; ”Pong” reception:
777

02CA 78FF 778 PP3: MOV R0,#0ffh ; Software timeout loop count.
02CC 79FF 779 PP31: MOV R1,#0ffh
02CE 2008E7 780 PP32: JB TRQFLAG,PP2; Rcvd ok as slave, go transmit.
02D1 200908 781 JB SErrFLAG,PP5
02D4 D9F8 782 DJNZ R1,PP32
02D6 D8F4 783 DJNZ R0,PP31
02D8 5130 784 PPTO: ACALL RECOVER ; Software timeout.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 30

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 16

02DA 418B 785 AJMP Reset2
786

02DC C291 787 PP5: CLR ErrLED ; Receive error.
02DE 51E6 788 ACALL LDELAY
02E0 D291 789 SETB ErrLED
02E2 C209 790 CLR SErrFLAG
02E4 41B5 791 AJMP PPSTART

792
02E6 7A30 793 LDELAY: MOV R2,#030h
02E8 79FF 794 LDELAY1: MOV R1,#0ffh
02EA D9FE 795 DJNZ R1,$
02EC DAFA 796 DJNZ R2,LDELAY1
02EE 22 797 RET

798
799 ;***
800 ; Slave and Master Event Routines.
801 ;***
802
803 ;
804 ;Invoked upon completion of a message transaction.
805 ;This is the part of the application program actually dealing
806 ;with the data communicated on the I2C bus, by responding to
807 ;new data received and/or preparing the next transaction.
808
809
810 ; Slave Event Routines
811 ;
812 ; These routines are invoked by the I2C interrupt service routine when a
813 ; message transaction as a slave has been completed. Our ”application”
814 ; reacts to a message received as a slave with the routine SRCvdR.
815 ; The calls that indicate erroneous reception are treated the same way as
816 ; erroneous data reception in the ”ping pong” game.
817
818 ;SRcvdR
819 ;Invoked when a new message has been received as a Slave.
820

02EF 00 821 SRcvdR: NOP
02F0 E52F 822 MOV A,SRcvBuf
02F2 7005 823 JNZ SR2
02F4 752B01 824 MOV MasBuf,#01h ; It was ping–pong reset value
02F7 800F 825 SJMP SR3

826
02F9 052B 827 SR2: INC MasBuf ; The expected data.
02FB B52B0F 828 CJNE A,MasBuf,ErrSR
02FE 052B 829 INC MasBuf ; Data for next transmission – the data

830 ; received incremented by 1.
831
832 ;A successful two way data exchange.Let the outside world know by
833 ;toggling an output pin driving a LED.We actually toggle only
834 ;when a number of such exchanges is completed, in order to
835 ;slow down the changes for a good visual indication.
836

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 31

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 17

0300 D53805 837 DJNZ TOGCNT,SR3
0303 B290 838 CPL TogLED ; Toggle output
0305 753850 839 MOV TOGCNT,#050h ;

840
0308 C209 841 SR3: CLR SErrFLAG
030A D208 842 SETB TRQFLAG ; Request main to transmit
030C 22 843 RET

844
030D D209 845 ErrSR: SETB SErrFLAG
030F 22 846 RET

847
848
849 ;SLnRcvdR
850 ;Invoked when a message received as a Slave is too long
851 ;for the receive buffer.
852
853 ;STXedR
854 ;Invoked when a Slave completed transmission of its buffer.
855 ;We do not expect to get here, since we do not plan to have
856 ;in our system a master that will request data from this node.
857 ;
858
859 ;SRErrR
860 ;Slave error event subroutine.
861 ;In most applications it will not be used.
862 ;
863

0310 864 SLnRcvdR:
0310 865 STXedR:
0310 80FB 866 SRErrR: JMP ErrSR

867
868
869 ;
870 ;MastNext – Master Event Routine.
871 ;
872 ;Invoked when a Master transaction is completed, or terminated
873 ;”willingly” due to lack of acknowledge by a slave.
874 ;
875

0312 876 MastNext:
0312 E524 877 MOV A,MSGSTAT
0314 B42206 878 CJNE A,#MTXED,MN1
0317 753750 879 MOV FAILCNT,#50h
031A C208 880 CLR TRQFLAG
031C 22 881 RET
031D 882 MN1:
031D 22 883 RET

884
885 ;I2CDONE
886 ;Called upon completion of the I2C interrupt service routine.
887 ;In this example it monitors exceptions, and invokes the bus
888 ;recovery routine when too many occurred.
889

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 32

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 18

031E 890 I2CDONE:
031E E524 891 MOV A,MSGSTAT
0320 B43208 892 CJNE A,#NOTSTR,I2CD1
0323 D53705 893 DJNZ FAILCNT,I2CD1
0326 753701 894 MOV FAILCNT,#01h ; Too many ”illegal” i2c interrupts
0329 C2AC 895 CLR EI2 ; – shut off.
032B 22 896 I2CD1: RET

897
898
899 ;***
900 ; I2C Communications Table:
901 ;***
902
903
904
905 ; We used table driven values for clarity. one may use immediate to load
906 ; these values and save several lines of code.
907
908 ; Contents is used in the beginning of the main program to load
909 ; RAM location MYADDR and the I2CFG register.
910 ; The node address, in R_MYADDR, is application specific, and unique for
911 ; each device in the I2C network.
912 ; R_CTVAL depends on the crystal clock frequency.
913

032C 4E 914 R_MYADDR: DB 4Eh ; This node’s address
915

032D 02 916 R_CTVAL: DB 02h ; CT1, CT0 bit values
917
918 ;***
919 ; Application Code Definitions
920 ;***
921

032E 4A 922 PongADDR: DB 4Ah ; The address of the ”partner” in
923 ; the ping–pong game.
924
925
926
927
928 END
929

VERSION 1.2h ASSEMBLY COMPLETE, 0 ERRORS FOUND

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 33

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 19

ACC D ADDR 00E0H PREDEFINED.

ACKRCV8 C ADDR 01EDH.

ADAR3 C ADDR 01A4H .

ADDRRCV C ADDR 0050H NOT USED.

ADTXARL. C ADDR 0186H.

ADTXARL2 C ADDR 0192H.

APPFLAGS D ADDR 0021H.

ARL B ADDR 009CH PREDEFINED.

ATN B ADDR 009EH PREDEFINED.

BCARL NUMB 0010H.

BCDR NUMB 0020H.

BCSTP NUMB 0004H.

BCSTR NUMB 0008H.

BCXA NUMB 0080H.

BIDLE NUMB 0040H.

BMRQ NUMB 0040H NOT USED.

BTIR NUMB 0010H NOT USED.

BXSTP NUMB 0001H.

BXSTR NUMB 0002H.

CLARCV8 C ADDR 01F6H.

CLRTI B ADDR 00DDH PREDEFINED.

CLSRCV8. C ADDR 01E2H.

DESSUBAD D ADDR 0027H.

DESTADRW D ADDR 0026H.

DISMISS. C ADDR 01AEH.

DLY5 C ADDR 023DH.

DRDY B ADDR 009DH PREDEFINED.

EA . B ADDR 00AFH PREDEFINED.

EI2. B ADDR 00ACH PREDEFINED.

ERRLED . B ADDR 0091H.

ERRSR C ADDR 030DH.

ETI. B ADDR 00ABH PREDEFINED.

FAILCNT. D ADDR 0037H.

GM2. C ADDR 00CEH.

GM3. C ADDR 00D0H.

GM4. C ADDR 00E3H.

GM5. C ADDR 00E5H.

GM6. C ADDR 010BH.

GM7. C ADDR 0113H.

GM8. C ADDR 0115H.

GOIDLE . C ADDR 00BBH.

GOMAS2 . C ADDR 00D8H.

GOMASTER C ADDR 00BDH.

GOSLAVE. C ADDR 004DH.

I2CD1 C ADDR 032BH.

I2CDONE. C ADDR 031EH.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 34

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 20

I2CFG D ADDR 00D8H PREDEFINED.

I2CISR . C ADDR 0023H NOT USED.

I2CON D ADDR 0098H PREDEFINED.

I2DAT D ADDR 0099H PREDEFINED.

LDELAY . C ADDR 02E6H.

LDELAY1. C ADDR 02E8H.

MARL C ADDR 017BH.

MARL2 C ADDR 0180H.

MARLEND. C ADDR 0182H.

MASBUF . D ADDR 002BH.

MASCMD . D ADDR 0020H.

MASKTABLE. C ADDR 01A6H

MASTCNT. D ADDR 0028H.

MASTER . B ADDR 0099H PREDEFINED.

MASTNEXT C ADDR 0312H.

MASTRQ . B ADDR 00DEH PREDEFINED.

MFAIL1 . C ADDR 02C3H NOT USED.

MGO NUMB 0020H.

MMSGEND. C ADDR 0179H.

MN1. C ADDR 031DH.

MRCV C ADDR 0139H.

MRCV2 C ADDR 013FH.

MRCVED NUMB 0021H.

MRCVLOOP C ADDR 013DH.

MSGSTAT. D ADDR 0024H.

MTX. C ADDR 011AH.

MTXED NUMB 0022H.

MTXLOOP. C ADDR 011BH.

MTXNAK NUMB 0023H.

MTXNOSLV NUMB 0024H.

MTXSTOP. C ADDR 0154H.

MTXSTOP2 C ADDR 015CH.

MTXSTOP3 C ADDR 0163H.

MYADDR . D ADDR 0025H.

NOACK C ADDR 0134H.

NOGO C ADDR 0047H.

NOSLAVE. C ADDR 012FH.

NOTSTR NUMB 0032H.

ONLED B ADDR 0093H.

P1 . D ADDR 0090H PREDEFINED.

PONGADDR C ADDR 032EH.

PP2. C ADDR 02B8H.

PP22 C ADDR 02BEH.

PP3. C ADDR 02CAH.

PP31 C ADDR 02CCH.

PP32 C ADDR 02CEH.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 35

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 21

PP5. C ADDR 02DCH.

PPSTART. C ADDR 02B5H.

PPTO C ADDR 02D8H NOT USED.

PSW. D ADDR 00D0H PREDEFINED.

RBIT C ADDR 01FFH.

RBIT2 C ADDR 0201H NOT USED.

RBIT3 C ADDR 0208H.

RBUFLEN NUMB 0004H.

RC7 C ADDR 024CH.

RCV8 C ADDR 01FCH.

RCVERR . C ADDR 020EH.

RCVEX C ADDR 020DH.

RDAT B ADDR 009FH PREDEFINED.

RECOVER. C ADDR 0230H.

RESET C ADDR 0278H.

RESET2 . C ADDR 028BH.

REX. C ADDR 0272H NOT USED.

RPSTRT . B ADDR 0001H.

R_CTVAL. C ADDR 032DH.

R_MYADDR C ADDR 032CH.

SCL. B ADDR 0080H PREDEFINED.

SDA. B ADDR 0081H PREDEFINED.

SERRFLAG B ADDR 0009H.

SETMRQ . B ADDR 0002H.

SGO NUMB 0010H.

SLAVEN . B ADDR 00DFH PREDEFINED.

SLNRCVDR C ADDR 0310H.

SLVTX C ADDR 0084H.

SMSGEND. C ADDR 00B3H.

SMSGEND2 C ADDR 00B9H.

SP . D ADDR 0081H PREDEFINED.

SR2. C ADDR 02F9H.

SR3. C ADDR 0308H.

SRCV2 C ADDR 005DH NOT USED.

SRCV3 C ADDR 0068H.

SRCVBUF. D ADDR 002FH.

SRCVD NUMB 0011H.

SRCVDR . C ADDR 02EFH.

SRCVEND. C ADDR 0076H.

SRCVERR. C ADDR 00A7H.

SRCVSTO. C ADDR 0066H.

SRERR NUMB 0014H.

SRERRR . C ADDR 0310H.

SRLNG NUMB 0012H.

STACKSAVE D ADDR 002AH.

STP. B ADDR 009AH PREDEFINED.

Philips Semiconductors Microcontroller Products Application note

AN430Using the 8XC751/752 in multimaster I2C applications

June 26, 1992 36

PPCODE1 83C751 Multimaster I2C Routines 4/14/1992 PAGE 22

STR. B ADDR 009BH PREDEFINED.

STSTRW . C ADDR 0055H.

STX2 C ADDR 0085H NOT USED.

STXBUF . D ADDR 0033H.

STXED NUMB 0013H.

STXEDR . C ADDR 0310H.

STXERR . C ADDR 00AEH NOT USED.

STXLP C ADDR 0093H.

SUBADD . B ADDR 0000H.

TI1. C ADDR 0219H NOT USED.

TI2. C ADDR 021CH NOT USED.

TI3. C ADDR 0223H.

TI4. C ADDR 0225H.

TIISR C ADDR 0211H.

TIMERI . C ADDR 001BH NOT USED.

TIRUN B ADDR 00DCH PREDEFINED.

TITOCNT. D ADDR 0029H.

TOGCNT . D ADDR 0038H.

TOGLED . B ADDR 0090H.

TRQFLAG. B ADDR 0008H.

XMADDR . C ADDR 01C5H.

XMBEX C ADDR 01E1H.

XMBIT C ADDR 01D0H.

XMBIT2 . C ADDR 01D2H.

XMBYTE . C ADDR 01CEH.

XRETI C ADDR 004CH.

	INTRODUCTION
	THE I 2 C BUS
	MASTERS AND SLAVES
	DATA TRANSFERS
	ADDRESSING AND TRANSFER FORMATS
	USE OF SUB-ADDRESSES
	ARBITRATION IN A MULTIMASTER SYSTEM
	HANDSHAKE BY CLOCK SYNCHRONIZATION
	8XC751 I 2 C HARDWARE
	Register
	I 2 C COMMUNICATIONS SOFTWARE
	I 2 C COMMUNICATIONS ROUTINES—OVERVIEW
	BUS WATCHDOG AND ERROR RECOVERY
	I 2 C COMMUNICATIONS ROUTINES—INTERFACE
	Interface RAM Locations
	APPLICATION EVENT ROUTINES
	CONSTANTS
	USING THE COMMUNICATIONS SUBROUTINES
	PROGRAMMING EXAMPLE

