
Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

1December 1990 Revision date: June 1993

INTRODUCTION
This application note describes a low-cost
airflow measurement device based on the
Philips 83/87C752 microcontroller. Airflow
measurement—determining the volume of air
transferred per unit time (cubic feet per
minute, or cfm)—is intrinsic to a variety of
industrial and scientific processes.

Airflow computation depends on three
simultaneous physical air
measurements—velocity, pressure, and
temperature. This design includes circuits
and sensors allowing the 8XC752 to measure
all three parameters.

The design also includes seven-segment
LED displays, discrete LEDs, and pushbutton
switches to allow selective display of airflow,
temperature, and pressure. Furthermore,
airflow is continuously compared with a
programmer-defined setpoint. Should the
measured airflow exceed the setpoint, an
output relay is energized. In actual
application, this relay output could be used to
signal the setpoint violation (via lamp or audio
annunciator) or otherwise control the overall
process (e.g., emergency process
shutdown). Of course, the setpoint,
comparison criteria (greater, less than, etc.)
and violation response (relay on, relay off)
are easily changed by program modification
to meet actual application requirements.

Referring to Figure 1, the overall operation of
the airflow device is as follows.

Normally the unit continuously displays the
airflow (in cfm) on the seven-segment

displays. The discrete CFM LED is also lit to
confirm the parameter being displayed.

Pressing the TEMP pushbutton switches the
display to temperature (in degrees C) and
lights the TEMP LED. As long as the
pushbutton remains pressed, the temperature
is displayed. When the pushbutton is
released, the display reverts to the default
pressure display.

Similarly, pressing the PSI pushbutton
displays the atmospheric pressure (in pounds
per square inch) and lights the PSI LED. The
pressure is displayed as long as the
pushbutton is pressed, and the default airflow
display resumes when the pushbutton is
released.

Finally, pressing the SET-POINT pushbutton
displays the programmed airflow setpoint (in
cfm) and lights the SET-POINT LED. Again,
releasing the pushbutton causes the display
to revert to the default airflow measurement.

CONTROL PROGRAMMING IN
“C”
While, thanks to advanced semiconductor
processing, hardware price/performance
continues to improve, software development
technology has changed little over time.
Thus, given ever-rising costs for qualified
personnel, software “productivity” is arguably
in decline. Indeed, for low-unit cost and/or
low-volume applications, software
development has emerged as the major
portion of total design cost. Furthermore,

beyond the initial programming cost, “hidden”
costs also arise in the form of life-cycle code
maintenance and revision and lost
revenue/market share due to excessive
time-to-market.

Traditionally, control applications have been
programmed in assembly language to
overcome microcontroller resource and
performance constraints. Now, thanks to
more powerful microcontrollers and advanced
compiler technology, it is feasible to program
control applications using a High-Level
Language (HLL).

The primary benefit of using an HLL is
obvious—one HLL program “statement” can
perform the same function as many lines of
assembly language. Furthermore, a
well-written HLL program will typically be
more “readable” than an assembly language
equivalent, resulting in reduced maintenance
and revision/upgrade costs.

Of the many popular HLLs, the “C” language
has emerged as the major contender for
control applications. More than other
languages, C gives the programmer direct
access to, and control of, low-level hardware
resources—a requirement for deterministic,
real-time I/O applications. Furthermore, C is
based on a “minimalist” philosophy in which
the language performs only those functions
explicitly requested by the programmer. This
approach is well-suited for control
applications, which are often characterized
by strict cost and performance requirements.

Seven
Segment

LED

Seven
Segment

LED

Seven
Segment

LED

CFM TEMP PSI SETPOINT

LEDs

Pushbuttons

SU00376

Figure 1. Airflow Meter Front Panel

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 2

8XC752 OVERVIEW
The 83C752/87C752 (ROM/EPROM-based)
combine the performance advantages of the
8-bit 80C51 architecture with the low cost,
power consumption, and size/pin count of a
4-bit microcontroller. Therefore, the 8XC752
is uniquely capable of bringing high
processing speed and HLL programming to
even the most cost-sensitive applications
such as handheld (battery driven)
instruments, automotive distributed
processing, “smart” appliances, and
sophisticated consumer electronics.

Obviously, the 8XC752 can be used for
cost-reduced versions of existing 8-bit
applications. The device can also replace
similarly priced 4-bit devices to achieve
benefits of higher performance and, most
importantly, easier s/w development including
the use of HLL. Indeed, the component and
system design costs associated with the
8XC752 are so low that it is a viable
candidate for first-time computerization of
formerly non-microcontroller-based designs.

Figure 2 shows the block diagram of the
8XC752. Major features of the device include
the following.

Full-Function, High-Speed (to
16MHz) 80C51 CPU Core
The popular 80C51 architecture features 8-
and 16-bit processing and high-speed
execution. Most instructions execute in a
single machine cycle (the slowest instructions
require only two cycles). Though a
streamlined architecture, the CPU core,

unlike 4-bit devices, includes all the basic
capabilities (such as stack, multiply
instruction, interrupts, etc.) required to
support HLL compilation. The CPU core also
includes a unique Boolean processor which
is well-suited for the bit-level processing and
I/O common to control applications.

Low-Power CMOS and
Power-Saving Operation Modes
Thanks to the advanced CMOS process, the
8XC752 features extremely low power
consumption, which helps to extend battery
life in handheld applications and otherwise
reduce power supply and thermal dissipation
costs and reliability concerns. Low ACTIVE
mode (full-speed operation) power
consumption—only 11mA typical at
12MHz—is further complemented by two
program-initiated power-saving operation
modes—IDLE and POWER-DOWN.

In idle mode, CPU instruction processing
stops while on-chip I/O and RAM remain
powered. Power consumption drops to 1.5µA
(typical, 12MHz) until processing is restarted
by interrupt or reset. Power-down mode cuts
power consumption further (to only 10µA
typical at 12MHz) by stopping both instruction
and I/O processing. Return to full-speed
operation from power-down mode is via
reset.

Note that power consumption can be further
cut by reducing the clock frequency as much
as application performance requirements
allow, as shown in Figure 3.

Another virtue of the CMOS process is
superior tolerance to variations in VCC, a
requirement inherent in the targeted
applications. The EPROM-based device
(87C752) operates over a VCC range of 4.5V
to 5.5V, while the ROM-based device
(83C752) will operate from 4V to 6V.

On-Chip ROM (83C752), EPROM
(87C752), and RAM
The 8XC752 integrates 2048 bytes of
program ROM/EPROM and 64 bytes of data
RAM. This relatively small amount of memory
reflects the fact that the targeted applications,
though they may require high-speed
processing, are typically characterized by
simple algorithms and data structures. High
code efficiency of the architecture means
even this small amount of memory can
effectively support the use of C. If necessary,
the judicious use of assembly language can
help bypass code size (and performance)
constraints.

Five-Channel 8-Bit A/D Converter
Most control applications are characterized
by the need to monitor “real-world” (i.e.,
analog) parameters. To this end, the 8XC752
includes a medium-speed (40 clock cycle
conversion) 8-bit analog-to-digital (A/D)
converter. Five separate input lines are
provided along with multiplexer logic to select
an input for conversion. The A/D converters
speed, resolution, and accuracy are more
than adequate to measure temperature,
pressure, and other common environmental
parameters.

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 3

RST

X1 X2

VCC

VSS

RAM ROM/
EPROM

ACC

TMP2 TMP1

ALU

IN
S

T
R

U
C

T
IO

N
R

E
G

IS
T

E
R

PD

OSCILLATOR

PSW

BUFFER

DPTR

PCON I2CFG I2STA TCON

I2DAT I2CON IE

TH0 TL0

RTH RTL

INTERRUPT, SERIAL
PORT AND TIMER BLOCKS

I2C
CONTROL PWM

P1.0–P1.7 P3.0–P3.7

P0.0–P0.4

ADC

AVSS AVCC

PORT 0
DRIVERS

RAM ADDR
REGISTER

PORT 0
LATCH

PORT 2
LATCH

STACK
POINTER

PROGRAM
ADDRESS
REGISTER

PC
INCRE-

MENTER

PROGRAM
COUNTER

PORT 3
DRIVERS

PORT 1
DRIVERS

PORT 3
LATCH

PORT 1
LATCH

TIMING
AND

 CONTROL

B
REGISTER

SU00319

Figure 2. Block Diagram of the 8XC752

Timer/Counters
Control applications, due to their “real-time”
nature, invariably call for a variety of timing
and counting capabilities. The 8XC752 meets
the need by integrating three separate
functions—a 16-bit auto-reload counter/timer,
an 8-bit pulse width modulator (PWM)
output/timer, and a fixed-rate timer for
timebase generation. Together, these
timing/counting resources can serve a range
of tasks, including waveform generation,
external event counting, elapsed time

calculation, periodic interrupt generation, and
watchdog timer.

I2C Bus
The Inter-Integrated Circuit (I2C) bus is a
patented serial peripheral interface. The
virtue of I2C is the ability to expand system
functionality with acceptable performance
and minimum cost. Notably, the pin and
interconnect count is radically reduced
compared to expansion via a typical
microprocessor bus—I2C requires only two

lines, while a parallel bus often consumes
20-30 lines and may call for extra glue logic
(decoder, address latch, etc.). The 8XC752
I2C port allows easy connection to a wide
variety of compatible peripherals such as
LCD drivers, A/D and D/A converters,
consumer/telecom and special-purpose
memory (e.g., EEPROM). I2C can also be
used to build distributed processing systems
connecting multiple I2C-compatible
microcontrollers.

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 4

4MHz 8MHz 12MHz 16MHz

FREQ

MAX ACTIVE ICC
*

TYP ACTIVE ICC
*

MAX IDLE ICC
**

TYP IDLE ICC
**

ICC mA

2

4

6

8

10

12

14

16

18

20

22

Maximum ICC values taken at VCC = 5.5V and worst case temperature. Typical ICC values taken at VCC = 5.0V and 25oC.
* ICC is measured with all output pins disconnected; X1 driven with tCLCH, tCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC – 0.5V; X2 n.c.; RST = port 0 = VCC.

ICC will be slightly higher if a crystal oscillator is used. (This refers to AC Electrical Characteristics.)
** Idle ICC is measured with all output pins disconnected; X1 driven with tCLCH, tCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC – 0.5V; X2 n.c.; port 0 = VCC; RST = VSS.

(This refers to AC Electrical Characteristics.)

NOTES:

SU00377

Figure 3. I CC vs. FREQ

8XC752 PIN FUNCTIONS
Since the 8XC752 is packaged in a
cost/space-saving 28-pin package DIP or
PLCC), a flexible mapping of I/O functions to
pins is required to ensure the widest possible
application coverage.

Of the 28 pins, seven pins are allocated to
basic functions, including digital power (VCC,
VSS), analog reference (AVCC, AVSS), clock
oscillator (X1, X2), and reset (RST). Thus, 21
pins, organized into three ports (5-bit port 0,
8-bit ports 1 and 3), are available for user I/O.

Figure 4 shows the alternative uses for these
21 lines. As shown, the mapping is quite
versatile, which maximizes the access to
on-chip I/O functions and helps ensure full
pin utilization.

P0.0 TTL IN/OUT (open drain), I2C clock (SCLK)
P0.1 TTL IN/OUT (open drain), I2C data (SDA)
P0.2 TTL IN/OUT (open drain)
P0.3 TTL IN/OUT (internal pull-up)
P0.4 TTL IN/OUT (internal pull-up), PWM output

P1.0 TTL IN/OUT (internal pull-up), A/D input channel 0
P1.1 TTL IN/OUT (internal pull-up), A/D input channel 1
P1.2 TTL IN/OUT (internal pull-up), A/D input channel 2
P1.3 TTL IN/OUT (internal pull-up), A/D input channel 3
P1.4 TTL IN/OUT (internal pull-up), A/D input channel 4
P1.5 TTL IN/OUT (internal pull-up), INT0 interrupt input
P1.6 TTL IN/OUT (internal pull-up), INT1 interrupt input
P1.7 TTL IN/OUT (internal pull-up), TIMER 0 (T0) input

P3.0 TTL IN/OUT (internal pull-up)
P3.1 TTL IN/OUT (internal pull-up)
P3.2 TTL IN/OUT (internal pull-up)
P3.3 TTL IN/OUT (internal pull-up)
P3.4 TTL IN/OUT (internal pull-up)
P3.5 TTL IN/OUT (internal pull-up)
P3.6 TTL IN/OUT (internal pull-up)
P3.7 TTL IN/OUT (internal pull-up)

NOTE: P1.0–P1.4 may only be changed as a group, i.e., either
all TTL I/O or all A/D inputs. However, when selected as
A/D inputs, P1.0–P1.4 may also be used as TTL inputs.

SU00378

Figure 4. 8XC752 I/O Port Description

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 5

AIRFLOW METER CIRCUIT
DESCRIPTION
Figure 5 is the schematic diagram of the
airflow meter circuit. As shown, the 8XC752
is connected to the following function blocks.

Discrete and Seven-Segment LED
Display
The seven-segment LEDs display the
parameter of interest (airflow, temperature,
pressure, or setpoint). A discrete LED
associated with each parameter is lit when
that parameter is being displayed.

The seven-segment LEDs are identified as
X0.1, X1, and X10, reflecting their decimal
position (tenths, ones, and tens,
respectively). Each display has eight data
inputs (the seven segments and a decimal
point) and common terminals which allow the
display to be enabled or blanked. The eight
data inputs, and the four discrete LEDs, are
driven from port 3 of the 8XC752 via
high-current driver U2 and current limiting
resistors RP1.

Since all the segmented and discrete LEDs
share common data lines, data display must
be time multiplexed. Transistors Q1-Q4
connect to separate output lines of port 0,
allowing a particular seven-segment LED or
the discrete LEDs (as a group) to be
individually enabled for display. This type of
LED multiplexing is quite common since, at a
fast enough refresh rate, the switching
between displays is not perceptible by the
operator. The major benefit is the reduction of
I/O lines required (without multiplexing, 28,
rather than 8, data lines would be required).

Pushbutton Switch Inputs
Three pushbuttons select the parameter to be
displayed—temperature, pressure, or
setpoint (when no button is pressed, airflow is
displayed). The four states (SW1, SW2,
SW3, or no button pressed) are effectively
encoded onto two port 1 input lines (taking
advantage of the capability to use port 1 lines
configured as A/D for TTL input) as follows:

P1.3 P1.4
No button pressed HIGH HIGH
SW1 (TEMP) pressed LOW HIGH
SW2 (PSI) pressed HIGH LOW
SW3 (SETPOINT) pressed LOW LOW

The only impact of this encoding scheme is
that SW3 has a higher priority than the other
pushbuttons—a factor of no concern in this
simple application. Similarly, latching,
debouncing, rollover, or other conditioning of
the pushbutton inputs is not required.

Setpoint Control
This is simply a variable resistor voltage
divider which serves to establish an analog
voltage corresponding to an airflow threshold
at which action is taken. It connects to a port
1 A/D input.

Relay Output
When an airflow setpoint violation is
detected, DPDT relay K1 is energized via
P1.6, which is configured as a TTL output,
buffered by transistor Q5.

Flowmeter Input
Measurement of the air velocity is via an air
turbine tachometer connected, via
optoisolator U7, to P1.5, which is configured
as a TTL input. The tachometer input is

assumed to be a negative-going pulse train
with less than 10% duty cycle.

Air Pressure Sensor
To determine airflow, the air velocity must be
factored by ambient pressure—for a given
velocity (and temperature), lower/higher
atmospheric pressure will correspond with
lower/higher airflow. The pressure sensor,
U3, outputs a voltage differential
corresponding to the pressure. Amplifier U4
conditions the pressure sensor output to the
range of AVSS to AVCC (the analog
references for the 8XC752 A/D converter).
The conditioned pressure sensor output is
presented to A/D input P1.0.

To calibrate the pressure sensor, press the
PSI pushbutton and adjust the gain pot (R1)
until the display matches the local
atmospheric pressure in pounds per square
inch (14.7 at sea level).

Air Temperature Sensor
Similar to pressure, ambient temperature also
affects the airflow calculation. For a given air
velocity (and pressure), higher/lower
temperature will correspond with lower/higher
airflow. Temperature sensor U5 outputs an
absolute voltage corresponding to
temperature. Amplifier U6 conditions the
temperature sensor output to the range AVSS
to AVCC for connection to A/D input P1.1.

To calibrate the temperature sensor, adjust
the gain pot (R5) so that the display (while
pressing the TEMP pushbutton) matches the
measured output of U5 (LM35).

Figure 6 summarizes the usage of the
8XC752 I/O lines in this application.

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 6

10
9
8
5
4
2
3
7

A
B
C
D
E
F
G
DP

COMS

CR15
LTS-367P

X0.1
SEVEN-SEGMENT NUMERIC DISPLAY

61

CFM

TEMP

PSI

SETPOINT

CR1

CR2

CR3

CR4

10
9
8
5
4
2
3
7

A
B
C
D
E
F
G
DP

COMS

CR14
LTS-367P

X1

61

10
9
8
5
4
2
3
7

A
B
C
D
E
F
G
DP

COMS

CR13
LTS-367P

X10

61
16
15
14
13
12
11
10
9

RP1
75Ω

8
7
6
5
4
3
2
118

17
16
15
14
13
12
11
10

U2
UDN2585A

9

7
6
5
4
3
2
1

8

C5

100nF

P30
P31
P20
P33
P34
P35
P36
P37

R18

10kΩ

R17
10kΩ

VCC

01
2N7000

02
2N7000

R16
10kΩ

VCC

03
2N7000

R15
10kΩ

VCC

04
2N7000

R19
10kΩ

VCC

25
26
27

1
2
3
4
5

VDD
P3.7

XTAL1
P3.5
P3.4

XTAL2
P3.2

RST
P3.0

28

9

10

11

24

U1
87C752

PWM
P0.3
P0.2
SDA
SCL

ADC3
AVCC

ADC1
AVSS
VSS

23
6
7
8

19

18
12

22
21
20
17
16
15
14
13

P37
P36
P35
P34
P33
P32
P31
P30

C6
100nF

VREF

C4

10µF

X1
12MHzC3

22pF

C2

22pF

C1

100µF

VCC

R13
10kΩ

VCC

R9
4.7kΩ

VCC

+

R10
4.7kΩ

CR9

1N4148

CR10

1N4148

CR11

1N4148

CR12

1N4148

SW1

SW2

SW3

TEMP

PSI

SETPOINT

VCC

R14
10kΩ

CR5
1N4002

K1
TQ2E-5V

1
4
5
6
2
3

J1
J1
J1
J1
J1
J1

SETPOINT
SWITCHING

VCC

05
2N7000

4
3
2
1

J3 +8 VOLTS
VCC

VEE
VDD

4

1

2

3

6

U3
VDD

VCC

K
P

10
0A

7

6

5

4

V+

U4
AMP-02

OUT

REF

V–

IN+

RG1

RG2

IN–

3

1

8

2

R2

1kΩ

VDD

VEE

C8

100µF

R3

100Ω

C9

100µF

VREF

CR6
1N4148

7

6

5

4

V+

U6
AMP-02

OUT

REF

V–

IN+

RG1

RG2

IN–

3

1

8

2

R6

5kΩ

VEE

C10

100µF

R7

100Ω

C11

100µF

CR7
1N4148

VREFVDD

R5

1kΩ
R4

160kΩ

U5
LM35A

+VS VOUT
GND

21VDD

VCC

R12
4.7kΩ

R11
220Ω

U7
4NB5

1
2

J2
J2

1

2

3

R8
10kΩ

C12
1µF

+

VREF

PRESSURE
SENSOR

TEMP SENSOR

SETPOINT
CONTROL

FLOWMETER
INPUT

J3 +8 VOLTS
J3 +8 VOLTS
J3 GROUND

6

5

4

R1
100Ω

SU00379

P3.6

P3.3

P3.1

T0
INT1

UE

UT

UP+

UP–

UG

INT0
ADC4

ADC2

ADC0

OUT1
OUT1
OUT1
OUT1
OUT1
OUT1
OUT1
OUT1

SUB

VSS
IN1
IN1
IN1
IN1
IN1
IN1
IN1
IN1

Figure 5. Schematic Diagram of the Airflow Meter Circuit

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 7

P0.0 TTL OUT—Enables the discrete LEDs
P0.1 TTL OUT—Enables the tenths digit seven-segment LED
P0.2 TTL OUT—Enables the ones digit seven-segment LED
P0.3 Pulled up
P0.4 TTL OUT—Enables the tens digit seven-segment LED

P1.0 A/D input—Connected to analog air pressure sensor
P1.1 A/D input—Connected to analog air temperature sensor
P1.2 A/D input—Connected to analog setpoint control
P1.3 TTL IN—One of two pushbutton input lines
P1.4 TTL IN—The second pushbutton input line
P1.5 INT0 interrupt input—Air turbine tachometer input
P1.6 TTL OUT—Setpoint relay control
P1.7 Pulled up

P3.0 TTL OUT—Seven-segment LEDs segment A, CFM discrete LED
P3.1 TTL OUT—Seven-segment LEDs segment B, TEMP discrete LED
P3.2 TTL OUT—Seven-segment LEDs segment C, PSI discrete LED
P3.3 TTL OUT—Seven segment LEDs segment D, SETPOINT discrete LED
P3.4 TTL OUT—Seven segment LEDs segment E
P3.5 TTL OUT—Seven segment LEDs segment F
P3.6 TTL OUT—Seven segment LEDs segment G
P3.7 TTL OUT—Seven segment LEDs segment DP

NOTE: P1.0–P1.4 may only be changed as a group, i.e., either all TTL I/O or
all A/D inputs. However, when selected as A/D inputs, P1.0–P1.4 may
also be used as TTL inputs.

SU00380

Figure 6. Airflow Meter I/O Port Usage

SOFTWARE DEVELOPMENT
PROCEDURE
The airflow meter application software is
almost entirely written in C using a
development package from Franklin
Software. The Franklin Software C compiler
is a cross-compiler that runs on the IBM PC
(and compatibles) while generating code
suitable for execution by any 80C51-based
product, including the 8XC752. For more
information, contact:

Franklin Software
888 Saratoga Ave., #2
San Jose, CA 95129

The process of developing a C program using
the Franklin package (the process is similar
for other third-party cross-compilers) is as
follows:
1. The program is entered/edited on the PC

using the programmer’s preferred text
editor.

2. The program is compiled on the PC with
the Franklin C compiler.

3. Should compile errors (also known as
syntax errors) occur, they are corrected
by returning to step 1 until an error-free
compile is achieved.

4. Before testing the compiled program, it
needs to be combined, using the
Franklin-supplied linker, with any required
assembly language routines. Besides
routines explicitly written by the
programmer, every Franklin C program
requires an assembly language startup
routine (supplied by Franklin and, if
necessary, edited by the programmer)
which performs basic reset initialization
and configuration operations before
transferring control to the C program.

5. The compiled object code is tested for
correct operation. This can either be
accomplished by using an 80C51-family
simulator running on the PC or by
downloading the object code to an
in-circuit emulator. The simulator

approach has the virtues of low cost and
consolidation of all work on the PC at the
cost of non-real-time operation/debug
constraints (the simulator may execute
100-1000 times slower than the
microcontroller). The in-circuit emulator
provides real-time operation and the
additional benefit of assisting hardware
design debug at somewhat higher cost.

6. Should program execution prove faulty
(known as semantic errors), return to step
1 until error-free operation is achieved.

7. The error-free (syntax and semantic) and
linked object code, in the form of a .HEX
file, is transferred to an EPROM
programmer. Fitted with a suitable
adaptor, the EPROM programmer can
“burn” the object file into the targeted
EPROM-based 80C51-family device. For
ROM-based devices, the object file is
transferred to the factory for custom
masking.

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 8

PROGRAM DESCRIPTION
Figure 7 is a flowchart of the program;
following the flowchart is the program listing.
The flowchart shows the basic processing
and flow, while the listing documents the
details of the program’s implementation.

The program consists of four interrupt-driven
(i.e., foreground) routines and a main
program (i.e., background). The background
program is entered at reset and executes
forever, interrupted periodically by the
foreground interrupts. Communication
between the background program and the
foreground handlers is via shared variables.

The four interrupt routines are as follows.

• multiplex () (INT3)

Free-running Timer I generates an interrupt at
approximately 1000Hz and is used to
multiplex the seven-segment and discrete
LED display data. In a round-robin manner, at
each interrupt, the program turns off the
previously enabled display and writes data to,
and enables, the next display. Finally, the
interrupt routine sets a pointer to the next
display—at the next interrupt, that display will
be refreshed. Thus, each display (tens, ones,
tenths, discrete LEDs) will be refreshed every
fourth interrupt, which is more than fast
enough for a flicker-free display.

• read_switch () (INT6)

The PWM prescaler is configured to generate
a periodic interrupt (INT6) at about 97Hz. The
program counts these interrupts, and every
32nd interrupt sets an “update” variable. The
main program will change the display data
when it detects that “update” is set and clear
“update” to prepare for the next display cycle.
Thus, display change frequency is about
33Hz (i.e., 33ms), which eliminates display
glitches associated with pushbutton switch
bounce.

• calc_cfm () (INT0)

The air velocity turbine tachometer drives the
8XC752 INT0 interrupt pin. At each interrupt,
the program reads Timer 0, which keeps
track of the elapsed time (the low 16 bits of a
24-bit count in microseconds) between INT0
interrupts. The high-order 8-bit elapsed time
count is cleared for possible updating by the
following routine.

• overflow () (INT1)

When Timer 0 overflows (generating an
interrupt), the program increments the
high-order 8 bits of a 24-bit variable, counting
the microseconds between tachometer
interrupts (handled by the previous routine). If
this 8-bit value becomes too large (i.e.,
tachometer interrupts stop), a NOFLOW

variable is set, which will cause the main
program to display an EEE out-of-range
indicator on the seven-segment LEDs.

With the interrupt handlers executing the
low-level timing and I/O, the main program,
which is entered on reset and executes
forever, consists of only three major steps.

The temperature/pressure compensated
airflow is calculated. First, the “base” cfm
rate, as tracked by the calc_cfm ()
tachometer interrupt is adjusted by removing
the execution time of the calc_cfm () handler
itself. Next, the temperature is determined
(A/D channel 1), and airflow is compensated.
Similarly, the air pressure is determined (A/D
channel 0) and airflow compensated again.

Now that the true airflow is calculated, it is
compared with the setpoint (adjusted with the
variable resistor), which is determined by
reading A/D channel 2. If the airflow is
greater than the setpoint, the relay is closed.
Otherwise, the relay is opened.

Finally, the UPDATE flag (set by the 33Hz
read_switch () interrupt) is checked. If it is
time to update, the data to be displayed is
determined based on the pushbutton status
and the state of the NOFLOW flag. The
updated display data is initialized for later
display on the LEDs by the multiplex ()
display refresh interrupt handler.

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 9

Power-on RESET

STARTUP.A51

Initialize pin levels and variables

main()

Calculate base airflow

Read temperature

Compensate airflow for temperature

Read air pressure

Compensate airflow for air pressure

Read airflow setpoint

setpoint >
airflow?

Open relay

UPDATE (display)
flag set?

Close relay
N

Y

Y

N

2

1

SU00381

Figure 7. Program Flowchart

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 10

Clear UPDATE flag

2

1

NOFLOW
flag set?

Y

N

SEL0
flag set?

N

Y

SEL1
flag set?

N

Y

airflow > 30?
Y

N

Display
airflow
(cfm)

Display
overrange

(’EEE’)

Display
overrange

(’EEE’)

Display ’0.00’

SEL1
flag set?

N

Y

Display
air pressure

(psi)

Display
setpoint

(cfm)

SU00382

Figure 7. Program Flowchart (Continued)

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 11

Timer 1 interrupt
(INT3 ≈ 1000Hz)

DISP_PNTR
= 0?

Y

N

Y

N

DISP_PNTR
= 2?

Y

N

Y

N

multiplex()

DISP_PNTR
= 1?

DISP_PNTR
= 3?

RETurn

Turn off display CR13

Set discrete LED data

Turn on discrete LEDs

DISP_PNTR = 1

Turn off discrete LEDs

Set display CR15 data

Turn on display CR15

DISP_PNTR = 2

Turn off display CR15

Set display CR14 data

Turn on display CR14

DISP_PNTR = 3

Turn off display CR14

Set display CR13 data

Turn on display CR13

DISP_PNTR = 0

SU00383

Figure 7. Program Flowchart (Continued)

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 12

PWM interrupt
(INT6 ≈ 92Hz)

REFRESH
= 32?

N

Y

read_switch()

RETurn

REFRESH ≈ REFRESH + 1

Set UPDATE flag

REFRESH = 0

Timer 0 interrupt
(INT1)

TICKS >
LOWEST_CFM

N

Y

overflow()

RETurn

TICKS = TICKS + 1

CFM = 0

TICKS = 0

Set NOFLOW flag

Tach interrupt
(INT0)

calc_cfm()

RETurn

LOW = Timer 0 low byte

Timer 0 low byte = 0

MID = Timer 0 high byte

Timer 0 high byte = 0

HIGH = TICKS

TICKS = 0

SU00384

Figure 7. Program Flowchart (Continued)

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 13

/*
this program measures the air flow through a rotary flowmeter
and displays the calculated cfm. the output of the flowmeter
tachometer is a small duty cycle pulse train with period
which is proportional to the flow. the flow is compensated
for changes in pressure and temperature to maintain
calibration. if the flow exceeds an adjustable setpoint
it energizes a 2 form c relay for user application.

*/

*/
these pragmas specify compiler command line options

*/
#pragma CODE /* generate code */
#pragma SYMBOLS /* and symbols */
#pragma PL (60) /* 60 lines per page */
#pragma PW (120) /* 120 cols per page */
#pragma OT (3)
#pragma ROM (SMALL) /* single-chip mode */

*/
include the 8XC752-specific definitions and
the standard i/o library.

*/
#include <reg752.h>
#include <stdio.h>

*/
define symbolic names for program constants

*/
#define ZERO_K 2730 /* 0 degrees centigrade in 1/10 kelvin */
#define ONE_TENTH_CFM 4444444L /* 1/10 cfm in microseconds */
#define STD_TEMP 2980 /* 25 degrees centigrade in 1/10 kelvin */
#define STD_ATM 147 /* one atmosphere in 1/10 psi */
#define LOWEST_CFM 0x40 /* maximum period from meter 0x400000 */
#define START_ADC0 0x28 /* commands to start appropriate */
#define START_ADC1 0x29 /* a/d channel conversion cycle */
#define START_ADC2 0x2a /* */
#define START_ADC3 0x2b /* */
#define START_ADC4 0x2c /* */
#define ADCI 0x10 /* a/d converter status flags */
#define ADCS 0x08 /* */
#define FREERUN_I 0x10 /* */
#define SEG_A 0x01 /* P3 position for display segment ’a’ */
#define CFM 0x01 /* P3 position for ’cfm’ led */
#define SEG_B 0x02 /* P3 position for display segment ’b’ */
#define DEGREES 0x02 /* P3 position for ’degrees’ led */
#define SEG_C 0x04 /* P3 position for display segment ’c’ */
#define PSI 0x04 /* P3 position for ’psi’ led */
#define SEG_D 0x08 /* P3 position for display segment ’d’ */
#define SETPOINT 0x08 /* P3 position for ’setpoint’ led */
#define SEG_E 0x10 /* P3 position for display segment ’e’ */
#define SEG_F 0x20 /* P3 position for display segment ’f’ */
#define SEG_G 0x40 /* P3 position for display segment ’g’ */
#define SEG_DP 0x80 /* P3 position for display decimal pt. */

typedef unsigned char byte; /* byte data type is unsigned 8-bit */
typedef unsigned int word; /* word data type is unsigned 16-bit */
typedef unsigned long 1_word; /* 1_word data type is unsigned 32-bit */

#define TRUE 1 /* define logical true / false */
#define FALSE 0 /* values for bit variables */

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 14

/*
define look-up table of possible seven segment display
characters. the table consists of 11 elements corresponding
to the 10 digits (’0’–’9’) and error symbol (’E’) that can be
displayed. Each element is defined by ANDing (|) the bit
mask for each segment (SEG_A – SEG_G) comprising the
character. the table contents need to be inverted before
use to be compatible with U2 (udn2585a). for example,
’~segments[3]’ specifies the segment mask to display ’3’.

*/
code byte segments [] =
{

SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F , /* 0 */
SEG_B | SEG_C , /* 1 */

SEG_A | SEG_B | SEG_D | SEG_E | , /* 2 */
SEG_A | SEG_B | SEG_C | SEG_D | SEG_G , /* 3 */

SEG_B | SEG_C | SEG_F | SEG_G , /* 4 */
SEG_A | SEG_C | SEG_D | SEG_F | SEG_G , /* 5 */
SEG_A | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G , /* 6 */
SEG_A | SEG_B | SEG_C , /* 7 */
SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G , /* 8 */
SEG_A | SEG_B | SEG_C | SEG_D | SEG_F | SEG_G , /* 9 */
SEG_A | SEG_D | SEG_E | SEG_F | SEG_G /* E */

} ;

/* define the ’752 special function bits which control i/o lines.
note that i/o line (and constant) names are capitalized */

sbit RELAY = 0x96; /* active hi to turn on setpoint relay */
sbit STROBE_0 = 0x80; /* active hi to enable display status led’s */
sbit STROBE_1 = 0x81; /* active hi to enable display cr15 (tenths) */
sbit STROBE_2 = 0x82; /* active hi to enable display cr14 (ones) */
sbit NO_FLOW = 0x83; /* flag set when no flow detected */
sbit STROBE_3 = 0x84; /* active hi to enable display cr13 (tens) */
sbit SEL_0 = 0x93; /* active low pushbutton inputs used to */
sbit SEL_1 = 0x94; /* select the display mode */
sbit INTR = 0x95; /* */
sbit UPDATE = 0x97; /* flag set when time to update display */

/* define memory variables. note memory variable names are lower case */
data word cfm; /* gas flow in tenths of a cfm */
data word setpoint; /* relay setpoint in tenths of a cfm */
data word degree_c /* temperature in tenths centigrade */
data 1_word corr; /* intermediate calculation value */
data word psi; /* pressure in tenths of a psi */
data byte display0; /* variables to hold values for the */
data byte display1; /* displays during refresh. */
data byte display2; /* display0=status LEDs, display1=CR15, */
data byte display3; /* display2=CR14, display3=CR13 */
data byte disp_pntr; /* pointer to next display to enable */
data byte refresh; /* counter determines display updates */
data byte high; /* bits 16 – 23 of flow period */
data byte middle; /* bits 8 – 15 of flow period */
data byte low; /* bits 0 – 7 of flow period */
data byte ticks; /* incremented by timer overflow */

/* the program consists of four interrupt handlers (multiplex,
read_switch, overflow, calc_cfm) and a main program.

multiplex – refresh the seven-segment and discrete status LEDs
read_switch – signal periodic pushbutton sampling and display update
overflow – accumulate high order bits of time between tach pulses
calc_cfm – accumulate low order bits of time between tach pulses
main – calc airflow, control relay, sample pushbuttons, update display

*/

/*
multiplex –
use the free-running I timer to multiplex the seven-segment and
discrete leds at approx. 1000 hz.

*/

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 15

void multiplex () interrupt 3
{

switch(disp_pntr)
{

case 0x00:
STROBE_3 = FALSE; /* turn off display cr13 */
P3 = 0xff; /* turn off all segments */
P3 = display0; /* load segments for led’s */
STROBE_0 = TRUE; /* turn on status led’s */
disp_pntr = 1; /* increment ptr to display */
break;

case 0x01:
STROBE_0 = FALSE; /* turn off status led’s */
P3 = 0xff; /* turn off all segments */
P3 = display1; /* load segments for tenths */
STROBE_1 = TRUE; /* turn on display cr15 */
disp_pntr = 2; /* increment ptr to display */
break;

case 0x02:
STROBE_1 = FALSE; /* turn off display cr15 */
P3 = 0xff; /* turn off all segments */
P3 = display2; /* load segments for units */
STROBE_2 = TRUE; /* turn on display cr14 */
disp_pntr = 3; /* increment ptr to display */
break;

case 0x03:
STROBE_2 = FALSE; /* turn off display cr14 */
P3 = 0xff; /* turn off all segments */
P3 = display3; /* load segments for tens */
STROBE_3 = TRUE; /* turn on display cr13 */
disp_pntr = 0; /* increment ptr to display */

}
}

/*
read_switch –
use the free running pwm prescaler to generate
interrupts at 92 hz. every 32nd interrupt set
the UPDATE flag which causes main () to sample
the pushbuttons and update the led displays.

*/

void read_switch () interrupt 6
{

if (refresh++ == 32)
{ UPDATE = TRUE;

refresh = 0;
}

}

/*
overflow –
whenever time0 overflows (from 0xffff to 0x0000)
increment the variable ’ticks’ which accumulates the
highest order (16 – 23) bits of the gas flow period
in microseconds. if the variable ’ticks’ is greater
than the period corresponding to a flow of < 0.1 cfm
then set the NO_FLOW flag which causes main () to
display ’00.0’

*/

void overflow () interrupt 1
{

if (++ticks > LOWEST_CFM)
{

cfm = 0;
ticks = 0;
NO_FLOW = TRUE;

}
}

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 16

/*
calc_cfm –
an external interrupt (int0) generated by a tach
pulse from the flowmeter transfers the current value
of timer0 into variables ’low’ and ’middle’, and then
resets the timers. the ’ticks’ variable described
above is also copied to variable ’high’, and then
reset to zero. the NO_FLOW flag is cleared to
enable display by main () of the calculated cfm.

*/

void calc_cfm () interrupt 0
{

low = TL0;
TL0 = 0;
middle = TH0;
TH0 = 0;
high = ticks;
ticks = 0;
NO_FLOW = FALSE;

}

/*
main –
after initializing pins and variables, enter a continuous loop to...
– calculate the airflow based on the tach, temp and pressure inputs.
– compare the airflow to the setpoint input, and control the relay.
– if the UPDATE flag is set (by the read_switch interrupt handler),

sample the pushbuttons and update the display data.
*/

void main ()
{

RELAY = 0; /* initialize output pins */
INTR = 1;
UPDATE = 1;
STROBE_0 = 0;
STROBE_1 = 0;
STROBE_2 = 0;
STROBE_3 = 0;
NO_FLOW = 0;
I2CFG = FREERUN_I; /* enable I timer to run, no i2c */
RTL = 0; /* timer 0 period 0x10000 u_seconds */
RTH = 0;
PWMP = 255; /* pwm timer interrupt at 923 hz */
TR = 1; /* enable timer 0 */
IT0 = 1; /* INT0 is edge active */
ticks = 0; /* initialize variables */
cfm = 0;
low = 0;
middle = 0;
high = 0;
degree_c = 250; /* 25.0 tenths degrees c */
psi = 147; /* 14.7 tenths psi */
corr = 0;
refresh = 0;
disp_pntr = 0;
IE = 0xab; /* enable interrupts */

*/
main execution loop, executes forever.

*/

while(1)
{

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 17

*/
calculate base cfm rate – first create long word representing
flow rate period in microseconds. then subtract the time
overhead in servicing the routine ’calc_cfm’. then divide the
period into the period for 1/10 cfm, to get flow rate in 1/10
cfm resolution.

*/

corr = high * 0x10000L;
corr += (middle * 0x100L);
corr += low;
corr –= CORRECTION;
corr = ONE_TENTH_CFM / corr;

/*
read temperature – measure output from the LM35 sensor,
scaled by the AMP–02. the scaling results in a range
of 0 to 51.0 degrees centigrade, in 0.2 degree steps.

*/

ADCON = START_ADC1;
while (ADCON & ADCS) ;
degree_c = ADAT;
degree_c *= 2;

*/
compensate cfm rate for temperature – convert temperature
into degrees kelvin, then divide it into the measured flow
rate multiplied by the calibration temperature of the flow-
meter in degrees kelvin. (nominal 25 degrees centigrade)

*/

corr *= STD_TEMP;
corr /= (ZERO_K + degree_c);

*/
read pressure – measure output of the KP100A pressure trans-
ducer, scaled by the AMP_02. the scaling results in a range
of 0 to 25.5 psi, in 1/10 psi steps.

*/

ADCON = START_ADC0;
while (ADCON & ADCS) ;
psi = ADAT;

*/
compensate cfm rate for pressure – multiply measured pres-
sure and the calculated flow rate, and then divide it by
the standard atmospheric pressure at sea-level. (nominal
14.7 psi)

corr *= psi;
corr /= STD_ATM;
cfm = corr;

*/
read setpoint pot to obtain setpoint in the range of
0 – 25.5 cfm in 1/10 cfm steps.

*/

ADCON = START_ADC2;
while (ADCON & ADCS) ;
setpoint = ADAT;

*/

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 18

test if cfm rate greater or equal to the
setpoint, and if so then energize relay

*/

if (setpoint > cfm)
RELAY = 0;

else
RELAY = 1;

*/
test if UPDATE flag has been set, and if so reset flag.

*/

if (UPDATE)
{

UPDATE = 0;

*/
then test is the NO_FLOW flag has been set. if so then
display ’00.0’ cfm

*/

if (NO_FLOW)
{

display0 = ~CFM;
display1 = ~segments[0];
display2 = ~(segments[0] | SEG_DP);
display3 = ~segments[0];

}

*/
if the NO_FLOW flag was not set then read the display
select pushbuttons, and display the appropriate data.

*/

else if (SEL_0)
{

if (SEL_1)
{

*/
if no pushbutton is depressed then the default display is
the flow rate in cfm. if the flowrate is greater than
or equal to 30 cfm then display the overrange message
’EEE’, otherwise display the flow in ’XX.X’ format.

*/

if (cfm <= 300)
{

display0 = ~CFM;
display1 = ~segments[cfm % 10];
cfm /= 10;
display2 = !(segments[cfm % 10]);
cfm /= 10;
display3 = ~segments [cfm % 10];

}

else
{

display0 = ~CFM;
display1 = ~segments[10];
display2 = ~segments[10];
display3 = ~segments[10];

}
}

Philips Semiconductors Microcontroller Products Application note

AN429Airflow measurement using the 83/87C752 and “C”

December 1990 19

*/
if the temp pushbutton (SW1) is pressed then display the air temperature.

*/

else
{

display0 = ~DEGREES;
display1 = ~segments[degree_c % 10];
degree_c /= 10;
display2 = ~(segments[degree_c % 10] | SEG_DP);
degree_c /= 10
display3 = ~segments[degree_c % 10];

}
}
else
{

*/
if the psi pushbutton (SW2) is pressed then display the air pressure.

*/

if(SEL_1)
{

display0 = ~PSI;
display1 = ~segments[psi % 10];
psi /= 10;
display2 = ~(segments[psi % 10] | SEG_DP) ;
psi /= 10;
display3 = ~segments[psi % 10] ;

}

*/
if the setpoint pushbutton (SW3) is pressed then display the setpoint.

*/

else
{

display0 = ~SETPOINT;
display1 = ~segments[setpoint % 10] ;
setpoint /= 10;
display2 = ~(segments[setpoint % 10] | SEG_DP ;
setpoint /= 10;
display3 = ~segments[setpoint % 10] ;

}
}

}
}

}

	INTRODUCTION
	CONTROL PROGRAMMING IN “C”
	8XC752 OVERVIEW
	8XC752 PIN FUNCTIONS
	AIRFLOW METER CIRCUIT DESCRIPTION
	SOFTWARE DEVELOPMENT PROCEDURE
	PROGRAM DESCRIPTION

