
�������
��	���
�����
�

AN426
Controlling air core meters with the
87C751 and SA5775

1992 January
Revised: Nov 1995

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

2January 1992 Revision date: 1995 Nov 01

INTRODUCTION
Often, certain classes of microcontroller
applications surface where large amounts of
on-chip resources such as a large program
memory space and numerous I/O pins are
not required. These applications are typically
cost sensitive and desirable attributes of the
MCU include low cost and modest on-chip
resources such as program and data
memory, I/O, and timer-counters. Substantial
benefits of reduced design cycle time can be
realized by using an industry-standard
architecture having software compatibility
with existing popular microcontrollers.

THE 87C751
The Philips 87C751 is one such
microcontroller that easily meets these
requirements. This device, shown in Figure 1,
has a 2k x 8 program memory, 64 bytes of
RAM, 19 parallel I/O lines, and a 16-bit
autoreload timer-counter. It also includes an
I2C serial interface and a fixed rate timer. The
87C751 is based on the 80C51 core and thus
uses an industry-standard architecture and
instruction set. The device is available in both
ROM (83C751) and EPROM (87C751)
versions. The EPROM version is available in
both UV erasable and OTP packages.
References to the 87C751 in this document
also apply to the 83C751, unless explicitly
stated.

TYPICAL APPLICATION
A typical example of such an application is
the interface between the 87C751 and the
Philips SA5775 Serial Gauge Driver, SGD,
shown in Figure 2. This circuit includes the
87C751 microcontroller, the SA5775 Serial
Gauge Driver, an NE555 timer, and discrete
support components.

An air core meter differs from a conventional
(d’Arsonval) meter movement in that it has no
spring to return the needle to a
predetermined position, no zeroing
adjustment, and no permanent magnet in the
classical sense. Instead, it consists of two
coils of wire wound in quadrature with each
other around a central core in which there is
a disc magnetized along its diameter. A shaft
is placed through the center of this disc so
that the shaft rotates with the disc. An
indicating needle attached to this shaft will
rotate with it.

SA5775 Serial Gauge Driver
The SA5775 is a monolithic driver for
controlling air core meters typically used in
automotive instrument clusters and is shown
in Figure 3. The SA5775 receives a 10-bit
serial word and converts that word to four
voltage outputs that appear at the SINE+,
SINE–, COSINE+, and COSINE– outputs.
The differential voltage at the SINE outputs
are applied to one coil of the meter and the
COSINE outputs are applied to the other coil
of the meter.

The currents through these coils produce a
resultant magnetic force which is the vector
sum of the magnetic forces produced by
each of the two coils. Since the currents
through the coils are bidirectional this
magnetic vector can rotate through a full 360
degrees. The magnetized disc within the air
core meter will follow the rotating vector and
the needle will indicate the vector’s current
position. Since 10 bits are used, there are
1024 discrete words available resulting in an
angular displacement of 0.3516 degrees per
bit. This is small enough to provide an
apparently smooth movement of the needle.
The smoothness of the motion will depend
greatly on the damping factor of the meter
movement.

A simplified block diagram of the SA5775 is
shown in Figure 4. This device consists of a
serial-in/parallel-out shift register, a data
latch, a D/A converter, a multiplexer, and
output buffers.

A logic high must be present on the chip
select (CS) input to clock in the data. Data
appearing on the data input (DI) pin is
clocked into the shift register on the rising
edge of the clock (CLK) input. The data
output (DO) pin is the overflow from the shift
register, allowing the user to daisy chain
multiple SA5775 devices. Note that data is
clocked out of this pin on the falling edge of
the clock. The CS pin is also used to latch
the parallel outputs of the shift register into
the data latch. The outputs of the data latch
feed the inputs to the D/A converter. The D/A
converter outputs are buffered to form the
drive signals for the meter coils.

The D/A converter circuits, multiplexer and
associated output buffers are purposely
designed such that the span of these circuits
do not include the power supply rails. This is
to avoid inaccuracies that would otherwise
occur if the output were to become very close
to either supply rail. With a supply voltage of
14 volts (VIGN), the outputs will span a range
of approximately 1 to 11 volts. The SA5775 is
designed to drive air core meters having a

minimum winding impedance of 180Ω at
–40°C.

The clock high and low time requirements are
175ns minimum and the maximum data rate
is 1.6 megabits per second. At this rate it
would require approximately 6.4ms to ramp
from zero to full scale if all binary codes were
loaded into the SA5775. However, the air
core meter cannot respond to such data
rates. Both inertia of the movement and
damping build into the design of typical air
core meter movements limit their response
speed.

A high on the output enable input pin (OE) is
required to permit the SA5775 to drive the air
core gauge. In Figure , OE is held low while
the microcontroller is being reset to prevent
the gauge from being driven.

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24P3.4/A4

P3.3/A3

P3.2/A2/A10

P3.1/A1/A9

P3.0/A0/A8

P0.2/VPP

P0.1/SDA/

RST

X2

X1

VSS

P0.0/SCL/
ASEL

P1.0/D0

P1.1/D1

P1.2/D2

P1.3/D3

P1.4/D4

P1.5/INT0/D5

P1.6/INT1/D6

P1.7/T0/D7

P3.7/A7

P3.6/A6

P3.5/A5

VCC

PLASTIC
DUAL

IN-LINE
PACKAGE

AND
SHRINK
SMALL

OUTLINE
PACKAGE

PLASTIC
LEADED

CHIP
CARRIER

4 1 26

5

11

25

19

12 18

OE–PGM

Pin Function
1 P3.4/A4
2 P3.3/A3
3 P3.2/A2/A10
4 P3.1/A1/A9
5 NC*
6 P3.0/A0/A8
7 P0.2/VPP
8 P0.1/SDA/OE-PGM
9 P0.0//SCLASEL

10 NC*
11 RST
12 X2
13 X1
14 VSS

Pin Function
15 P1.0/D0
16 P1.1/D1
17 P1.2/D2
18 P1.3/D3
19 P1.4/D4
20 P1.5/INT0/D5
21 NC*
22 NC*
23 P1.6/INT1/D6
24 P1.7/T0/D7
25 P3.7/A7
26 P3.6/A6
27 P3.5/A5
28 VCC

SU00315* DO NOT CONNECT

Figure 1. Pin Configuration

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 3

COSP

COSM

SINP

SINM

SA5775
ACMD

87C751

5 4 11 12 13 14

7
8

10
k

10
k

10
k

10
k

+
5V

10
0k

10
k

10
k

10
k

10
k

10
k

10
k

10
k

10
k

10
k

10
k

C
O

S
P

C
O

S
H

S
IN

P
S

IN
M

16
15

2
1

D
O

V
IG

N S
T

N
C

D
G

N
D

A
G

N
D

3
D

at
a

In

C
lo

ck C
S

C
S

C
LK

D
I

10 9 6

R
es

et

10
µ F

9

RST

7 8 6

P
0.

1/
S

D
A

P
0.

0/
S

C
L

P
0.

2

P3.1

P3.0

P3.4

P3.3

P3.2

24

0.
1

µ F

10
11

20
pF

20
pF

P1.3

P1.2

P1.1

P1.0

P3.6

P3.5

T
0

20

G
nd

12

IN
C

S
el

ec
t

P
ro

gr
am

S
el

ec
t

D
el

ay
S

ta
rt

/
C

ou
nt

4
5

1
2

3
16

15
14

13
22

23

12
M

H
z

D
at

a
O

ut

78
L0

5

+
B

A
T

T

+
5V

10
µ F

VCC

N
E

55
5

1.
1

µ F

+
5V

0.
1

µ F

53

8
4

7 6

7
1

1.
6k

1k

1k

50
0k

R
at

e
C

on
tr

ol

R
at

e

In
t.

E
xt

.

E
xt

. P
ul

se
 In

P
ul

se
 M

on
ito

r

C
ou

nt
 D

ow
n

C
ou

nt
 U

p

+
5V

SU00373A

O
E

V
C

C

Figure 2. Interface Between the 87C751 and the Philips SA5775

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 4

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

NOTE:
D package available in
large SO (SOL) package only.

DATAOUT

DATAIN

VCC

OE

VIGN

AGND

SIN+

SIN–

SCLK

CS

ST

NC

DGND

AGND

COS–

COS+

SU00374A

Figure 3. D and N Packages

87C751 Microcontroller
The 87C751 microcontroller provides all of
the intelligence in this application. It samples
various input ports to determine which
demonstration programs to run, the
incremental step sizes for angular
displacement of the meter core, and the time
delay between increments. In one of the
demonstration modes, it also samples a
variable frequency input and positions the
meter core in response to the frequency of
that input. The 87C751 also transmits the
10-bit serial data to the SA5775. Data input
(DI), Clock (CLK), and Chip Select (CS) lines
are driven from the 87C751.

Port 0 of the 87C751 is a 3-bit wide port and
is used for communicating data to the SGD.
Data is transmitted, MSB first, in a serial
stream clocked into the DI of the SA5775 on
the rising edge of the clock. In order to clock
in data, the CS pin of the SA5775 must be
high. The data in the input register is shifted
into a latch that drives the DAC on the high to
low transition of the CS line. As data is
shifted into the SGD, it overflows through the
Data Out (DO) pin on the falling edge of the
clock. With this facility, multiple SGDs can be
daisy-drained with DO of one SGD being
connected to DI of the next one, and common
clock and chip select lines may be used. This
simplifies the interfacing to multiple meter
drivers.

The 78L05 regulator (Q2) provides 5 Volt
power for the board so that single supply of
+14 volts can be applied to the board.

Three rotary switches are used on this board.
The PROGRAM SELECT switch (S3) is used
to select the program routine that is

executed, the INC SELECT (S2) switch
selects the incremental step sizes of two of
the routines, and the DELAY switch (S4) is
used to set the delay between successive
word transmissions in one of the routines.

The START/COUNT button (S5) is used to
begin execution of a routine, and to cause the
next incremental step in Routine #1.

The COUNT UP/DOWN switch (S6) is used
in Routine #1 to determine whether the count
is increased or decreased with transmission
of successive words.

NE555 Timer
The NE555 timer shown in this application
example is used as a free running
squarewave generator used to simulate
sensor inputs such as those which might be
found in an automobile, etc. The NE555 timer
(U4) operates in the astable mode to produce
an output frequency that can be varied from
about 1Hz to about 200 Hz. Three of the
program routines measure the input period
and produce an output code that is
proportional to the frequency present at pin
20 (TO) of the microcontroller. A RATE switch
(S7) is used to select between the on board
oscillator or an external source.

The program listing is included at the end of
this application note.

Program Entry
The program starts at address 030(hex) on
line 21 of the program listing. The first task is
to write 1’s to all pins of each port.

Lines 25 and 26 clear registers 6 and 7.
These registers are used in this program only
to hold the data that is sent out to the SGD.
The registers are cleared to be sure that the
starting value is zero.

At line 27 the program waits until the
START/COUNT button (S5) is depressed
before continuing. Lines 28 and 29 set the
timer to overflow after 10ms. This is done by
setting the timer registers for a count of
10,000 microseconds less than full scale.
When the timer counter overflows the timer
flag is set, and the timer is reloaded with the
value in the timer register. By examining the
timer flag we know when 10ms has expired.

Line 30 calls subroutine RPS (Read Port
Selected), which reads Port 3 to determine
which routine has been selected. Since the
PROGRAM SELECT switch (S3) is
connected to port pins P3.2 through P3.4,
subroutine RPS (lines 507 through 511 at the
end of the program) first reads Port 3 into the
accumulator, then complements it because
the switches used are complementary binary.
The reading is then rotated right once and the
upper nibble and the LSB (least significant

bit) are masked off, leaving twice the value of
the port selected in the accumulator. Twice
the read value is needed for the next few
main program lines that determine which
routine to execute.

Line 31 moves the address of label JMPTBL
(Jump Table) to the 16-bit Data Pointer
(DPTR) register. Line 32 causes a program
jump to the address that is the sum of the
value in the accumulator (two times the
routine number selected) plus the DPTR
register. Since each of the commands on
lines 33 through 40 are two byte commands,
these addresses are all separated by two
bytes; hence, the need for the accumulator to
contain a number that is twice the number of
the selected routine.

Routine 0
This routine begins on line 41 by
incrementing the 10-bit word in registers 7
and 6 by the amount indicated by the setting
of the INCREMENT SELECT switch, then
sending that word to the SA5775. When a full
scale overflow is detected, a full scale code
(3FF hex) is sent out, followed by a delay of
500 ms, then successive output codes are
sent out, decremented by an amount
indicated by the INCREMENT SELECT
switch. When an underflow is detected a
code of zero scale is sent and the routine
returns to the beginning of the program. This
routine is implemented with a series of
subroutine calls.

The SO subroutine begins on line 356 and
starts by sending out whatever ten bits that in
the two LSBs of register 7 (R7) plus the 8 bits
of R6 by calling the SENDIT subroutine.
Then it calls the UP subroutine, which
increases the word value to be sent out. The
program then jumps to the beginning of this
subroutine, repeating the process of sending
out a word and incrementing to the next word
until an overflow from the tenth bit (bit 2 of
R7) is detected at line 362.

The SENDIT subroutine (beginning on line
476) brings the CS line high, sets a bit
counter (R1) to 2 (to send out two bits of R7),
brings the value of R7 to the accumulator,
rotates the accumulator to the right three
times through the carry bit to bring the two
LSBs to the position of the two MSBs, calls
the SEND1 routine, which sends the number
of bits in the accumulator, starting with the
MSB, indicated by R1. Counter R1 is then set
to 8 to send out all 8 bit of R6 and the
accumulator is loaded with the contents of
R6. The SEND1 routine is again called to
send out the final 8 bits, and, on line 491, the
CS line is brought low, loading the SA5775
internal parallel latch with the contents of the
input shift register.

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 5

8

9

10

11 12 13 14

Shut-Down
Logic

MUXDAC

Logic

2

1

16

15

6 5 7 4 3

SU00375

Figure 4. Block Diagram of the SA5775

The SEND1 routine rotates the accumulator
left through the carry bit, moves the value of
the carry bit to port pin PO.1 (SDA—Serial
Data pin), waits to provide a setup time,
brings the clock low, waits, brings the clock
high, waits, then decrements bit counter
sends the next bit if the counter is not zero. A
return is executed when the counter
becomes zero.

The UP subroutine, beginning at line 364,
reads the delay selected by switch S4 at port
pin P1, complements it (again, because the
rotary switches are complementary binary),
masks off the upper four bits (because the
delay switch has just four positions and is
connected to the lower four bits of the port),
multiplies it by 4 (rotates left twice), then
moves the result to R1. If R1 is not zero, the
program jumps around line 376 and calls a
10ms delay (subroutine DLY10MS) the
number of times entered into R1.

The 10ms delay subroutine (starting at line
436) sets the timer for 10ms, waits at line 446
for the timer flag to be set, clears the timer
flag, stops the timer, and returns, in this case,
to line 379, where the program decrements
R1 and repeats the 10ms delay until R1 is
zero.

If the selected delay was zero, the program
jumps from line 376 to line 380 and reads
port 3 to determine the amount the sent out
word is to change from the value previously
sent out. The accumulator is complemented
and the upper 6 bits masked off to recover
only the two bits of the selected increment
amount. Since increments of 1, 2, 3, or

4 LSBs are hardly noticeable, the program
then multiplies the result by 8 (rotate left
three times). To insure a minimum change
amount, the accumulator is increment by one
at line 386. This all means that the increment
amounts that can be selected are 1, 9, 17, or
25 LSBs. This amount is added, in lines 387
through 391, to the word previously send out
and we return from this subroutine.

After calling the S0 subroutine, PR0GO call
the FULLSC (full scale) subroutine, which
sends out the full scale code of 3E8(hex).
Although a 10-bit full scale code would be
3FF(hex), going only to 3E8 allows an easy
distinction between zero scale and full scale
when looking at the display. The FULLSC
subroutine is found at line 352.

After advancing to full scale, there is a 500ms
delay, found at line 464 and called from line
48, then 49 calls the S0D subroutine to send
out decreasing word values.

The S0D subroutine begins at line 393 and
begins by sending out the current word in R7
and R6 from line 398, then calling subroutine
DOWN, which calculates the next
(decreasing) word to send out. DOWN begins
at line 402. It essentially does the same thing
as the UP subroutine, but subtracts the
INCREMENT SELECT value from the
previously sent word rather than adding to it.

At line 50 subroutine ZEROSC is called to
send a zero scale code to the SA5775, then
the program branches back to the beginning.

Routine 1
This routine is selected with the PROGRAM
SELECT switch is in position 1 or position 9.
Routine 1 (PROG1) increments or
decrements the word send out, depending
upon the setting of the COUNT UP/COUNT
DOWN switch, S6. The amount of change is
determined by the setting of the INC SELECT
switch, S2.

At line 63, the program examines S6 at port
pin P3.6 and jumps to the decrement portion
of the routine if the pin is low. If this pin is
high, the UP subroutine is called from line 64
to increase the R7/R6 word value. The UP
subroutine was previously described.

If pin P3.6 is low, the DOWN subroutine (line
402) decreases the previous word sent out
by the amount determined from the INC
SELECT switch setting.

To insure enough delay to allow the user time
to release the START/COUNT button (S5), a
delay of 200ms is included at line 66 before
jumping to line 27, where another depression
of the START/COUNT button is awaited. If S3
(PROGRAM SELECT) is still set to 1 or 9,
depression of S5 will cause a jump back to
line 52. If another program is selected, the
program will jump to the selected routine.

Holding down S5 with PROGRAM SELECT
set at position 1 or 9 will cause increasing or
decreasing word values to be sent to the
SA5775.

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 6

Routine 2
PROG2 is the most complex of all these
routines. The purpose of this routine is to
cause the air core meter deflection to
represent the frequency presented at the
timer/counter input to the microcontroller.
This is done by measuring the period of the
input square wave and taking the inverse of
the period. The input here must be a square
wave because a slow rise and fall time at this
input will cause fluctuating readings. To
determine the frequency by counting pulses
for a time would require a much longer time
and, therefore, is impractical.

The MEAS (measure) subroutine is called at
line 79 to measure the period of the input
waveform and the CALC (calculate)
subroutine is called at line 80 to calculate the
code to send to the SA5775. The SENDIT
subroutine is then called to send the word to
the SA5775 and the program jumps back to
line 28.

The MEAS subroutine begins at line 83 by
being sure the timer is not running and
clearing the timer (overflow) flag, then
entering zero into both high and low bytes of
the timer and the timer register. The carry bit
is then cleared (line 90) and the timer started
and the timer interrupt enabled.

Lines 93 and 94 form a short loop that waits
until either the carry bit is set or until the TO
input is low. The carry bit is set when the
timer has gone beyond one second. This is
done by the timer interrupt subroutine, found
at lines 16 through 19. If the TO input never
goes low, we know the frequency is at or
near zero and the program jumps to GZS
(line 108) where R3 is loaded with a 1F (hex)
to cause the CALC subroutine to load zero
scale into R7/R6.

When (and if) TO is found to be low, the
program jumps to line 95 and waits for that
input to go high. Time out process is the
same as above.

Now that the TO input is found high (if is is
before the one second time out), the timer
and carry bit are cleared in lines 97 through
100 (R3 is an extension of the timer).

At lines 101 through 107 we wait for one
complete cycle at the TO input, with the
timer/counter measuring that period, then
return to line 80, where the CALC subroutine
is called.

The CALC subroutine, starting at line 113,
begins by initializing the word to send out
(R7/R6) to zero, clearing the carry bit,
checking to see if R3 indicates a time above
one second, returning to line 81 if it does.
Otherwise the program continues at line 26,
where the program checks to see if the input
frequency is beyond full scale (timer reading
above 00 12 88 hex). If it is, R7/R6 is loaded
with 12 88 hex (full scale of decimal 1,000).
This value was chosen because it is
sufficiently far from zero scale that it is easily
discerned from zero scale on the display.

If the result is not to be full scale or zero
scale, the program continues at line 140 with
a shift and subtract divide routine. The
dividend would be 1,000,000 (decimal) to
convert back to frequency in Hertz (period
measurements is in microseconds), but that
would provide a maximum count of 200 at
200Hz, only one fifth of the full scale desired
of 1,000. So we made the dividend to be
5,000,000 decimal, or 4C 4B 40 hex.

This algorithm is found in lines 156 through
192 and works as follows:
1. Clear a counter.

2. Rotate dividend until the first one is in the
second MSB position. Since a code of 4C
has already provides that, no shifting is
necessary.

3. Rotate the divisor (the period in
microseconds in this case) left until the
first one is in the second MSB position,
but the first byte is LESS THAN the first
byte of the dividend. Increment the
counter each time the divisor is rotated.

4. Initialize a counter to zero.

5. Rotate the quotient (answer) and dividend
one bit left.

6. If first byte of quotient is smaller than the
first byte of the quotient, jump to step 8.

7. Add one to the quotient and subtract the
divisor from the dividend.

8. Decrement the counter and go to step 5 if
it is not zero.

Once the CALC subroutine is completed, the
program calls SENDIT from line 81 and
jumps, ultimately, to the selected routine.

Routine 3
PROG3, beginning at line 194, measures the
input period four times, then calculates the
code to display that is the average of these
four readings.

It starts by setting a counter for three
readings, taking those three readings and
storing them in memory, beginning at RAM
address 20 hex, using register RO as an
index register.

At line 212 the program takes a fourth
reading, then adds the three previous
readings to it in lines 213 through 227; and
divides the sum by four (rotates right twice) in
lines 229 through 239. The word to send out
is then calculated from line 240 and sent to
the SGD, after which the program then looks
for and jumps to the selected routine.

Routine 4
PROG4 begins at line 243 and displays the
average of the current and last three words
sent out.

RAM space used is first initialized to zero and
a new reading is taken and a new word is
calculated and saved. At lines 264 through
284, the new word is added to the last three
readings and the average calculated and
stored in RAM locations 28 and 29 (hex), and
the average word is sent out.

At line 286, the program reads for the
program selected and jumps to line 254 if this
routine is selected, otherwise it goes to line
28.

Routine 5
PROG5 begins at line 293 and, very simply,
send in sequence the codes for 1/8 through
full scale in 1/8 scale steps, with 500ms
between steps. It then steps down to zero
scale in 1/8 scale steps, then returns to line
28.

Routine 6
PROG6 begins at line 314 and does the
same as PROG5, but steps in 1/4 scale
increments.

Routine 7
PROG7 loads the code for 3/8 scale into
R7/R6, sends it, waits 500ms, changes r& for
5/8 scale, sends it, waits for 500ms, then
repeats this sequence 9 more times (for a
total of ten times), waits 500ms, then returns
the output to zero scale and the program
jumps to line 28.

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 7

1 ; SGD V3 DEMO TT.20
2 ; PROCESSOR: 87C751
3 ; 7–29–89
4 ;
5 ; The purpose of this program is to drive version 3 of the SGD (SA5775)
6 ; demonstration board. The PROGRAM SELECT switch is used to select from
7 ; a choice of four routines. Registers R7 and R6 contain the 10–bit word
8 ; that is send to the SA5775.
9 ;

10 $MOD751
0000 11 ORG 0

12 ;
0000 B02E 13 SJMP START ;RESET VECTOR

14 ;
000B 15 ORG 00BH ;TIMER/COUNTER INTERRUPT ROUTINE
000B 0B 16 INC R3 ;INCREMENT R3 (3rd BYTE OF TIMER)
000C 740F 17 MOV A,#0FH ;TEST FOR TIME OUT (R3 > 0F)
000E 9B 18 SUBB A,R3 ;IF R3 > 0F, CARRY IS SET
000F 32 19 RETI

20 ;
0030 21 ORG 30H ;START OF PROGRAM
0030 7580FF 22 START: MOV P0,#0FFH ;SET PORTS HIGH
0033 7590FF 23 MOV P1,#0FFH
0036 75B0FF 24 MOV P3,#0FFH
0039 7F00 25 MOV R7,#0 ;CLEAR WORD TO SEND OUT
003B 7E00 26 MOV R6,#0
003D 20B6FD 27 W: JB P3.6,W ;WAIT FOR START BUTTON DEPRESS
0040 758BF0 28 READY: MOV RTL,#LOW(0–10000) ;SET TIMER REGISTER
0043 758DD8 29 MOV RTH,#HIGH(0–10000);FOR 10ms TIME
0046 51D2 30 ACALL RPS ;READ PORT 3 FOR PROG SELECT
0048 90004C 31 MOV DPTR,#JMPTBL ;JMP ADDRESS TO DATA POINTER
004B 73 32 JMP @A+DPTR ;GOTO APPROPRIATE ROUTINE
004C 015C 33 JMPTBL: AJMP PROG0 ;RAMP UP AND BACK DOWN
004E 0168 34 AJMP PROG1 ;STEP UP/DOWN W/ start PRESS
0050 017A 35 AJMP PROG2 ;READ & DISPLAY SPEED
0052 2145 36 AJMP PROG3 ;DISPLAY AVERAGE OF 4 NEW READINGS
0054 2186 37 AJMP PROG4 ;DISPLAY AVERAGE OF LAST 4 READINGS
0056 21D3 38 AJMP PROG5 ;ADVANCE TO FULL SCALE AND BACK IN 45 DEGREE STEPS
0058 21F3 39 AJMP PROG6 ;ADVANCE TO FULL SCALE AND BACK IN 90 DEGREE STEPS
005A 4107 40 AJMP PROG7 ;ALTERNATE DISPLAY BETWEEN 3/8 AND 5/8 SCALE TEN TIMES
005C 41 PROG0:

42 ; This routine increases word sent at the selected step size (INCREMENT SELECT)
43 ; and delay time (DELAY), up to full scale, waits 500ms, then decreases the
44 ; word sent at the selected step size and delay times until zero scale is reached.
45

005C 5128 46 ACALL SO ;SEND OUT INCREASING WORDS
005E 5121 47 ACALL FULLSC ;SET TO FULL SCALE
0060 51A5 48 ACALL DLY500 ;WAIT 500ms
0062 5152 49 ACALL SOD ;SEND OUT DECREASING WORDS
0064 511B 50 ACALL ZEROSC ;RESET TO ZERO SCALE
0066 0130 51 AJMP START ;GO TO BEGINNING OF PROGRAM
006B 52 PROG1:

53 ;
54 ; MANUAL INCREMENT/DECREMENT ROUTINE
55 ;
56 ; This routine increases or decreases the sent out word, depending upon
57 ; the setting of the UP/DOWN switch, by an amount set by the INCREMENT
58 ; SELECT switch. There is a wait of 200ms before again looking for
59 ; depression of the START/COUNT button to allow time to release this
60 ; button and switch bounce to settle. The program then looks to see which
61 ; routine is selected and goes to that routine.
62 ;

0068 30B50B 63 JNB P3.5,DCX ;GO AND COUNT DOWN IF SELECTED
006B 5130 64 ACALL UP ;INCREASE WORD
006D 51B5 65 DP1: ACALL SENDIT ;SEND THE WORD
006F 519D 66 ACALL DLY200 ;WAIT 200ms
0071 013D 67 AJMP W ;WAIT FOR COUNT BUTTON DEPRESS & SELECTED ROUTINE
0073 20B5F2 68 DCX: JB P3.5,PROG1 ;GO AND COUNT UP IF SELECTED
0076 515A 69 ACALL DOWN ;DECREASE WORD

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 8

0078 80F3 70 SJMP DP1
007A 71 PROG2:

72 ;
73 ; READ TIME INPUT AND DISPLAY “SPEED”
74 ;
75 ; This routine measures the period of the square wave at the T0 input and
76 ; sends out a word that is inversely proportional to 5 times that period,
77 ; providing a display proportional to frequency.
78 ;

007A 1182 79 ACALL MEAS ;MEASURE THE INPUT PERIOD
007C 11C5 80 ACALL CALC ;CALCULATE THE WORD TO SEND
007E 51B5 81 ACALL SENDIT ;SEND OUT THE WORD
0080 0140 82 AJMP READY
0082 C28C 83 MEAS: CLR TR ;HALT TIMER
0084 C28D 84 CLR TF ;CLEAR TIMER FLAG
0086 758B00 85 MOV RTL,#0 ;SET TIMER REGISTERS
0089 758D00 86 MOV RTH,#0
008C 758A00 87 MOV TL,#0 ;SET TIMER
008F 758C00 88 MOV TH,#0
0092 7B00 89 MOV R3,#0 ;CLEAR TIMER 3RD BYTE
0094 C3 90 CLR C
0095 D28C 91 SETB TR ;START TIMER
0097 75A882 92 MOV IE,#82H ;ENABLE TIMER INTERRUPT
009A 4021 93 W20: JC GZS ;JUMP IF R3 > 0F
009C 2097FB 94 JB P1.7,W20 ;WAIT FOR T0 INPUT LOW
009F 401C 95 W21: JC GZS ;JUMP IF R3 > 0F
00A1 3097FB 96 JNB P1.7,W21 ;WAIT FOR T0 INPUT HIGH
00A4 758A00 97 MOV TL,#0 ;RESET TIMER
00A7 758C00 98 MOV TH,#0
00AA 7B00 99 MOV R3,#0
00AC C3 100 CLR C ;CLEAR CARRY/BORROW
00AD 4008 101 W22: JC HT ;JUMP IF TIME UP (CARRY SET)
00AF 2097FB 102 JB P1.7,W22 ;WAIT FOR T0 LOW
00B2 4003 103 W23: JC HT ;JUMP IF TIME UP (CARRY SET)
00B4 3097FB 104 JNB P1.7,W23 ;WAIT FOR T0 HIGH AGAIN
00B7 C28C 105 HT: CLR TR ;HALT TIMER
00B9 75A800 106 MOV IE,#0 ;DISABLE ALL INTERRUPTS
00BC 22 107 RET
00BD 7B1F 108 GZS: MOV R3,#1FH ;SET FOR ZERO SCALE
00BF 22 109 RET
00C0 7F03 110 GFS: MOV R7,#03
00C2 7EE8 111 MOV R6,#0E8H
OOC4 22 112 RET
00C5 113 CALC:

114 ;
115 ; This subroutine calculates the 10–bit word to send as a function fo what
116 ; is in R3, TH & TL. The 10–bit word is developed and left in registers
117 ; R7 and R6 for use by SENDIT subroutine.
118 ;

00C5 7F00 119 MOV R7,#0 ;INITIALIZE QUOTIENT
00C7 7E00 120 MOV R6,#0
00C9 C3 121 CLR C ;CLEAR CARRY/BORROW
00CA 740F 122 MOV A,#0FH ;CHECK FOR ZERO SCALE
00CC 9B 123 SUBB A,R3
00CD 5001 124 JNC NZS ;JUMP IF NOT ZERO SCALE
00CF 22 125 RET
00D0 E58A 126 NZS: MOV A,TL ;CHECK FOR FULL SCALE
00D2 9488 127 SUBB A,#88H
00D4 E58C 128 MOV A,TH
00D6 9413 129 SUBB A,#13H
00D8 EB 130 MOV A,R3
00D9 9400 131 SUBB A,#0
00DB 40E3 132 JC GFS
00DD 752E4C 133 MOV 2EH,#4CH ;SET DIVIDEND TO 5,000,000
00E0 752F4B 134 MOV 2FH,#4BH
00E3 753040 135 MOV 30H,#40H
00E6 7C00 136 MOV R4,#0 ;CLEAR DIVIDE COUNTER
00E8 8B2B 137 MOV 2BH,R3 ;MOVE READING TO MEMORY (DIVISOR)
00EA 858C2C 138 MOV 2CH,TH

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 9

00ED 858A2D 139 MOV 2DH,TL
00F0 C3 140 ROTL: CLR C ;BRING DIVISOR BE JUST LESS THAN DIVIDEND
00F1 E52E 141 MOV A,2EH
00F3 952B 142 SUBB A,2BH
00F5 4014 143 JC DIV24 ;JUMP IF SHIFTING WOULD MAKE DIVISOR > DIVIDEND
00F7 6012 144 JZ DIV24 ;JUMP IF DIVISOR & DIVIDEND MS BYTES EQUAL BEFORE SHIFT
00F9 E52D 145 MOV A,2DH ;SHIFT DIVISOR TO LEFT
00FB 33 146 RLC A
00FC F52D 147 MOV 2DH,A
00FE E52C 148 MOV A,2CH
0100 33 149 RLC A
0101 F52C 150 MOV 2CH,A
0103 E52B 151 MOV A,2BH
0105 33 152 RLC A
0106 F52B 153 MOV 2BH,A
0108 0C 154 INC R4
0109 80E5 155 SJMP ROTL
010B C3 156 DIV24: CLR C
010C EE 157 MOV A,R6 ;ROTATE QUOTIENT LEFT
010D 33 158 RLC A
010E FE 159 MOV R6,A
010F EF 160 MOV A,R7
0110 33 161 RLC A
0111 FF 162 MOV R7,A
0112 C3 163 CLR C ;ROTATE DIVIDEND LEFT
0113 E530 164 MOV A,30H
0115 33 165 RLC A
0116 F530 166 MOV 30H,A
0118 E52F 167 MOV A,2FH
011A 33 168 RLC A
011B F52F 169 MOV 2FH,A
011D E52E 170 MOV A,2EH
011F 33 171 RLC A
0120 F52E 172 MOV 2EH,A
0122 C3 173 CLR C ;TEST SUBTRACT MOST SIGNIFICANT BYTES
0123 952B 174 SUBB A,2BH
0125 401B 175 JC ZERO ;JUMP IF QUOTIENT MS BYTE < DIVISOR MS BYTE
0127 7401 176 MOV A,#1 ;ADD 1 TO QUOTIENT
0129 2E 177 ADD A,R6
012A FE 178 MOV R6,A
012B EF 179 MOV A,R7
012C 3400 180 ADDC A,#0
012E FF 181 MOV R7,A
012F C3 182 CLR C ;SUBTRACT DIVISOR FROM DIVIDEND
0130 E530 183 MOV A,30H
0132 952D 184 SUBB A,2DH
0134 F530 185 MOV 30H,A
0136 E52F 186 MOV A,2FH
0138 952C 187 SUBB A,2CH
013A F52F 188 MOV 2FH,A
013C E52E 189 MOV A,2EH
013E 952B 190 SUBB A,2BH
0140 F52E 191 MOV 2EH,A
0142 DCC7 192 ZERO: DJNZ R4,DIV24
0144 22 193 RET
0145 194 PROG3:

195 ;
196 ; DISPLAY AVERAGE OF FOUR NEW READINGS
197 ;
198 ; This routine reads the period of the T0 input four times, then displays the
199 ; “speed” corresponding to the average of these four readings.
200 ;

0145 7903 201 MOV R1,#3 ;SET FOR 3 READINGS
0147 7820 202 MOV R0,#20H ;SET INDEX REGISTER FOR BOTTOM
0149 1182 203 P30: ACALL MEAS ;TAKE 3 READINGS AND SAVE THEM
014B EB 204 MOV A,R3
014C F6 205 MOV @R0,A
014D 08 206 INC R0
014E A68C 207 MOV @R0,TH

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 10

0150 08 208 INC R0
0151 A68A 209 MOV @R0,TL
0153 08 210 INC R0
0154 D9F3 211 DJNZ R1,P30
0156 1182 212 ACALL MEAS ;TAKE A 4TH READING, LEAVING IN R3,TH,TL
0158 7828 213 MOV R0,#28H ;SET INDEX REGISTER FOR TOP
015A 7903 214 MOV R1,#3 ;SET COUNTER TO ADD FIRST 3 READINGS TO LAST ONE
015C E58A 215 P31: MOV A,TL ;ADD FIRST THREE READINGS TO THE LAST ONE
015E 26 216 ADD A,@R0
015F F58A 217 MOV TL,A
0161 18 218 DEC R0
0162 E58C 219 MOV A,TH
0164 36 220 ADDC A,@R0
0165 F58C 221 MOV TH,A
0167 18 222 DEC R0
0168 EB 223 MOV A,R3
0169 36 224 ADDC A,@R0
016A FB 225 MOV R3,A
016B 18 226 DEC R0
016C D9EE 227 DJNZ R1,P31
016E 7902 228 MOV R1,#2
0170 EB 229 P32: MOV A,R3 ;DIVIDE BY 4 (ROTATE RIGHT TWICE) FOR AVERAGE
0171 C3 230 CLR C
0172 13 231 RRC A
0173 FB 232 MOV R3,A
0174 E58C 233 MOV A,TH
0176 13 234 RRC A
0177 F58C 235 MOV TH,A
0179 E58A 236 MOV A,TL
017B 13 237 RRC A
017C F58A 238 MOV TL,A
017E D9F0 239 DJNZ R1,P32
0180 11C5 240 ACALL CALC ;CALCULATE THE WORD
0182 51B5 241 ACALL SENDIT ;SEND OUT THE WORD
0184 0140 242 AJMP READY ;GO TO SELECTED ROUTINE
0186 243 PROG4:

244 ;
245 ; DISPLAY AVERAGE OF LAST FOUR WORDS SENT OUT
246 ;
247 ; This routine sends out the average of the last four readings sent out.
248 ;

0186 7827 249 MOV R0,#27H
0188 7600 250 P4: MOV @R0,#0
018A 18 251 DEC R0
018B B81FFA 252 CJNE R0,#1FH,P4
018E 7820 253 P4A: MOV R0,#20H
0190 1182 254 P40: ACALL MEAS ;MEASURE PERIOD
0192 11C5 255 ACALL CALC ;CALCULATE THE CODE
0194 EF 256 MOV A,R7 ;SAVE THE CODE
0195 F6 257 MOV @R0,A
0196 08 258 INC R0
0197 EE 259 MOV A,R6
0198 F6 260 MOV @R0,A
0199 752800 261 MOV 28H,#0 ;INITIALIZE THE WORD TO SEND
019C 752900 262 MOV 29H,#0
019F 7927 263 MOV R1,#27H
01A1 E529 264 P41: MOV A,29H ;ADD TOGETHER LAST 4 RESULTS
01A3 C3 265 CLR C
01A4 27 266 ADD A,@R1
01A5 F529 267 MOV 29H,A
01A7 E528 268 MOV A,28H
01A9 19 269 DEC R1
01AA 37 270 ADDC A,@R1
01AB F528 271 MOV 28H,A
01AD 19 272 DEC R1
01AE B91FF0 273 CJNE R1,#1FH,P41
01B1 7902 274 MOV R1,#2
01B3 C3 275 P42: CLR C
01B4 E528 276 MOV A,28H

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 11

01B6 13 277 RRC A
01B7 F528 278 MOV 28H,A
01B9 E529 279 MOV A,29H
01BB 13 280 RRC A
01BC F529 281 MOV 29H,A
01BE D9F3 282 DJNZ R1,P42
01C0 AF28 283 MOV R7,28H
01C2 AE29 284 MOV R6,29H
01C4 51B5 285 ACALL SENDIT ;SEND OUT THE WORD
01C6 51D2 286 ACALL RPS ;READ PROGRAM SELECT
01C8 B40806 287 CJNE A,#8,N4 ;JUMP TO N4 (& “READY”) IF PROGRAM 4 NOT SELECTED
01CB 08 288 INC R0
01CC B828C1 289 CJNE R0,#28H,P40 ;GOTO P40 IF R0 NOT 28 (HEX)
01CF 80BD 290 SJMP P4A
01D1 0140 291 N4: AJMP READY

292 ;
293 PROG5:
294 ;
295 ; This routine advances the display in 45 degree steps to full scale, then steps down
296 ; to zero in 45 degree steps. There is a 500ms delay between steps.
297 ;

01D3 7F00 298 MOV R7,#0
01D5 7E7F 299 P5: MOV R6,#07FH
01D7 51B1 300 ACALL SD500 ;SEND THE WORD AND WAIT 500ms
01D9 7EFF 301 MOV R6,#0FFH
01DB 51B1 302 ACALL SD500 ;SEND THE WORD AND WAIT 500ms
01DD 0F 303 INC R7
01DE BF04F4 304 CJNE R7,#4,P5
01E1 7F03 305 MOV R7,#3
01E3 7EFF 306 LP5: MOV R6,#0FFH
01E5 51B1 307 ACALL SD500 ;SEND THE WORD AND WAIT 500ms
01E7 7E7F 308 MOV R6,#7FH
01E9 51B1 309 ACALL SD500
01EB 1F 310 DEC R7
01EC BFFFF4 311 CJNE R7,#0FFH,LP5
01EF 511B 312 ACALL ZEROSC ;RETURN TO ZERO
01F1 013D 313 AJMP W ;WAIT FOR KEY PRESS
01F3 314 PROG6:

315 ;
316 ; This routine advances the display in 90 degree steps to full scale, then steps down
317 ; to zero in 90 degree steps. There is a 500ms delay between steps.
318 ;

01F3 7EFF 319 MOV R6,#0FFH
01F5 7F00 320 MOV R7,#0
01F7 51B1 321 LP6: ACALL SD500 ;SEND THE WORD AND WAIT 500ms
01F9 0F 322 INC R7
01FA BF04FA 323 CJNE R7,#4,LP6
01FD 1F 324 LP6A: DEC R7
01FE 51B1 325 ACALL SD500 ;SEND THE WORD AND WAIT 500ms
0200 BF00FA 326 CJNE R7,#0,LP6A
0203 511B 327 ACALL ZEROSC ;RETURN TO ZERO
0205 013D 328 AJMP W ;WAIT FOR KEY PRESS
0207 329 PROG7:

330 ;
331 : This routine alternates between 3/8 and 5/8 scale ten times with 300ms delay
332 ; between steps, then waits 500ms before returning display to zero scale.
333 ;

0207 7A0A 334 MOV R2,#10 ;SET COUNTER
0209 7E7F 335 PR7: MOV R6,#07FH
020B 7F01 336 MOV R7,#1
020D 51AD 337 ACALL SD300 ;SEND OUT THE WORD AND WAIT 300ms
020F 7F02 338 MOV R7,#2
0211 51AD 339 ACALL SD300 ;SEND OUT THE WORD AND WAIT 300ms
0213 DAF4 340 DJNZ R2,PR7 ;DO IT 10 TIMES
0215 51A5 341 ACALL DLY500 ;WAIT 500ms
0217 511B 342 ACALL ZEROSC ;RESET TO ZERO SCALE
0219 0130 343 AJMP START ;LOOK FOR VALID PROGRAM

344 ;
345 ;

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 12

346 ; SUBROUTINES
347 ;
348 ;

021B 7F00 349 ZEROSC: MOV R7,#0 ;RESET METER TO ZERO SCALE
021D 7E00 350 MOV R6,#0
021F 4125 351 AJMP RST
0221 7F03 352 FULLSC: MOV R7,#03H ;SET METER TO FULL SCALE
0223 7EFF 353 MOV R6,#0FFH
0225 51B5 354 RST: ACALL SENDIT
0227 22 355
0228 356 SO:

357 ;
358 ; This subroutine sends increasing 10–bit words in registers R7 & R6 to the SGD.
359 ;

0228 51B5 360 ACALL SENDIT ;WRITE THE 10–BIT WORD TO SGD
022A 5130 361 ACALL UP ;INCREASE THE WORD VALUE
022C 30E2F9 362 JNB ACC.2,SO ;JUMP IF BIT 2 NOT SET
022F 22 363 RET
0230 364 UP:

365 ;
366 ; This subroutine waits for a period of time = 10ms X DELAY read un, then
367 ; increases the 10–bit word by the INCREMENT SELECT amount.
368 ;

0230 E590 369 MOV A,P1 ;READ DELEY
0232 F4 370 CPL A ;COMPLEMENT ACC
0233 540F 371 ANL A,#0FH ;MASK OFF UPPER 4 BITS
0235 23 372 RL A
0236 23 373 RL A
0237 F9 374 MOV R1,A
0238 B90002 375 CJNE R1,#0,D10 ;JUMP IF DELAY SET FOR ZERO
023B 8006 376 SJMP NODLY
023D 7B01 377 D10: MOV R3,#1 ;SET FOR 1 X 10ms DELAY
023F 5195 378 D10A: ACALL DLY10MS ;DELAY 10MS x DELAY
0241 D9FC 379 DJNZ R1,D10A
0243 E5B0 380 NODLY: MOV A,P3 ;READ INCREMENT SELECT
0245 F4 381 CPL A ;COMPLEMENT ACC
0246 5403 382 ANL A,#3 ;MASK OFF UPPER 6 BITS
0248 23 383 RL A
0249 23 384 RL A
024A 23 385 RL A
024B 04 386 INC A
024C 2E 387 ADD A,R6 ;ADD INCREMENT TO R6
024D FE 388 MOV R6,A ;SAVE IT
024E E4 389 CLR A
024F 3F 390 ADDC A,R7 ;ADD CARRY TO R7
0250 FF 391 MOV R7,A ;SAVE IT
0251 22 392 RET
0252 393 SOD:

394 ;
395 ; This subroutine sends out decreasing words at the rate set by DELAY and
396 ; step size determined by INCREMENT SELECT.
397 ;

0252 51B5 398 ACALL SENDIT ;SEND OUT THE PRESENT WORD
0254 515A 399 ACALL DOWN ;DECREASE THE WORD
0256 50FA 400 JNC SOD ;DO IT AGAIN IF CARRY NOT SET
0258 411B 401 AJMP ZEROSC
025A 402 DOWN:

403 ;
404 ; Waits for 10ms x DELAY pot setting, then sends out decreasing values of words
405 ; in step sizes of 8 x INCREMENT SELECT + 1.
406 ;

025A E590 407 MOV A,P1 ;READ DELAY
025C F4 408 CPL A ;COMPLEMENT ACC
025D 540F 409 ANL A,#0FH ;MASK OFF UPPER FOUR BITS
025F 23 410 RL A
0260 23 411 RL A
0261 F9 412 MOV R1,A ;SAVE DELAY
0262 B90002 413 CJNE R1,#0,D10S ;JUMP IF DELAY SET FOR ZERO
0265 8004 414 SJMP NDD

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 13

0267 5195 415 D10S: ACALL DLY10MS ;DELAY 10ms x (DELAY +1)
0269 D9FC 416 DJNZ R1,D10S
026B E5B0 417 NDD: MOV A,P3 ;READ INCREMENT SELECT
026D F4 418 CPL A ;COMPLEMENT ACC
026E 5403 419 ANL A,#3 ;MASK OFF UPPER 6 BITS
0270 23 420 RL A ;MULTIPLY BY 8
0271 23 421 RL A
0272 23 422 RL A
0273 04 423 INC A ;INSURE MINIMUM STEP
0274 C3 424 CLR C ;CLEAR CARRY FOR SUBTRACTION
0275 CE 425 XCH A,R6
0276 9E 426 SUBB A,R6 ;SUBTRACT INCREMENT FROM R6
0277 CE 427 XCH A,R6 ;SAVE IT
0278 E4 428 CLR A ;CLEAR ACCUM FOR SUBTRACTION
0279 CF 429 XCH A,R7
027A 9F 430 SUBB A,R7 ;SUBTRACT BORROW FROM R7
027B 5403 431 ANL A,#3 ;INSURE MAXIMUM WORD
027D CF 432 XCH A,R7 ;SAVE IT
027E 22 433 RET
027F 00 434 DELAY: NOP ;3 υs DELAY
0280 22 435 RET
0281 436 DMS10:

437 ;
438 ; Produces a delay of 10ms x the value in R3.
439 ; Destroys R3 and timer readings.
440 ;
441 ;

0281 758AF0 442 MOV TL,#LOW,(0–10000) ;LOAD TIMER FOR 10ms DELAY
0284 758CD8 443 MOV TH,#HIGH(0–10000)
0287 C28D 444 CLR TF ;CLEAR TIMER FLAG
0289 D28C 445 SETB TR ;START TIMER
028B 308DFD 446 MS10W: JNB TF,MS10W ;WAIT FOR TIMER FLAG TO BE SET
028E C28D 447 CLR TF ;CLEAR TIMER FLAG
0290 DBF9 448 DJNZ R3,MS10W ;WAIT RS x 10ms
0292 C28C 449 CLR TR ;STOP TIMER
0294 22 450 RET

451 ;
0295 7B01 452 DLY10MS: MOV R3,#1 ;SET R3 FOR 10ms WAIT
0297 80EB 453 SJMP DMS10 ;WAIT 10ms

454 ;
0299 7B0A 455 DLY100: MOV R3,#10 ;SET R3 FOR 100ms WAIT
029B 80E4 456 SJMP DMS10 ;WAIT 100ms

457 ;
029D 7B14 458 DLY200: MOV R3,#20 ;SET R3 FOR 200ms WAIT
029F 80E0 459 SJMP DMS10 ;WAIT 200ms

460 ;
02A1 7B1E 461 DLY300: MOV R3,#30 ;SET R3 FOR 300ms WAIT
02A3 80DC 462 SJMP DMS10 ;WAIT 300ms

463 ;
02A5 7B32 464 DLY500: MOV R3,#50 ;SET R3 FOR 500ms WAIT
02A7 80D8 465 SJMP DMS10 ;WAIT 500ms

466 ;
02A9 51B5 467 SD200: ACALL SENDIT ;SEND THE WORD
02AB 80F0 468 SJMP DLY200 ;WAIT 200ms

469 ;
02AD 51B5 470 SD300: ACALL SENDIT ;SEND THE WORD
02AF 80F0 471 SJMP DLY300 ;WAIT 200ms

472 ;
02B1 51B5 473 SD500: ACALL SENDIT ;SEND THE WORD
02B3 80F0 474 SJMP DLY500 ;WAIT 500ms

475 ;
02B5 476 SENDIT:

477 ;
478 ; This subroutine sends out a single word locate4d in R7 and R6.
479 ; Accumulator, R0 and R1 are destroyed.
480 ;

02B5 D282 481 SETB P0.2 ;SET CS HIGH
02B7 7902 482 MOV R1,#02 ;SET COUNTER FOR 2 BITS OF R7
02B9 EF 483 MOV A,R7 ;MOVE R7 TO A FOR SEND OUT

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 14

02BA 13 484 RRC A ;ALIGN R7 FOR SEND OUT
02BB 13 485 RRC A
02BC 13 486 RRC A
02BD 51C7 487 ACALL SEND1 ;SEND OUT UPPER TWO BITS
02BF 7908 488 MOV R1,#8 ;SET COUNTER FOR R6 SEND OUT
02C1 EE 489 MOV A,R6 ;MOVE R6 TO ACCUM
02C2 51C7 490 ACALL SEND1 ;SEND OUT LOWER 8 BITS
02C4 C282 491 CLR P0.2 ;LOAD SGD
02C6 22 492 RET
02C7 493 SEND1:

494 ;
495 ; This subroutine sends [R1] number of bits of the accumulator, starting
496 ; with the MSB over the IIC port.
497 ; Accumulator, R0 and R1 are destroyed.
498 ;

02C7 33 499 RLC A ;ROTATE BIT TO CARRY
02C8 9281 500 MOV P0.1,C ;MOVE CARRY TO DATA OUT
02CA C280 501 CLR P0.0 ;CLOCK LOW
02CC 00 502 NOP
02CD D280 503 SETB P0.0 ;CLOCK HIGH
02CF D9F6 504 DJNZ R1,SEND1 ;SEND NEXT BIT TILL DONE
02D1 22 505 RET

506 ;
02D2 E5B0 507 RPS: MOV A,P3 ;READ PORT 3 FOR PROGRAM SELECT
02D4 F4 508 CPL A ;COMPLEMENT ACC
02D5 03 509 RR A ;ROTATE TO LSB’s & MULT BY 2
02D6 540E 510 ANL A,#0EH ;MASK FOR PROGRAM SELECT * 2
02D8 DD 511 RET

512 END

ASSEMBLY COMPLETE, 0 ERRORS FOUND

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

January 1992 15

ACC D ADDR 00E0H PREDEFINED.
CALC C ADDR 00C5H.
D10 C ADDR 023DH.
D10A C ADDR 023FH.
D10S C ADDR 0267H.
DCX C ADDR 0073H.
DELAY C ADDR 027FH NOT USED.
DIV24 C ADDR 010BH.
DLY100 C ADDR 0299H NOT USED.
DLY10MS C ADDR 0295H.
DLY200 C ADDR 029DH.
DLY300 C ADDR 02A1H.
DLY500 C ADDR 02A5H.
DMS10 C ADDR 0281H.
DOWN C ADDR 025AH.
DP1 C ADDR 006DH.
FULLSC C ADDR 0221H.
GFS C ADDR 00C0H.
GZS C ADDR 00BDH.
HT C ADDR 00B7H.
IE D ADDR 00A8H PREDEFINED.
JMPTBL C ADDR 004CH.
LP5 C ADDR 01E3H.
LP6 C ADDR 01F7H.
LP6A C ADDR 01FDH.
MEAS C ADDR 0082H.
MS10W C ADDR 028BH.
N4 C ADDR 01D1H.
NDD C ADDR 026BH.
NODLY C ADDR 0243H.
NZS C ADDR 00D0H.
P0 D ADDR 0080H PREDEFINED.
P1 D ADDR 0090H PREDEFINED.
P3 D ADDR 00B0H PREDEFINED.
P30 C ADDR 0149H.
P31 C ADDR 015CH.
P32 C ADDR 0170H.
P4 C ADDR 0188H.
P40 C ADDR 0190H.
P41 C ADDR 01A1H.
P42 C ADDR 01B3H.
P4A C ADDR 018EH.
P5 C ADDR 01D5H.
PR7 C ADDR 0209H.
PROG0 C ADDR 005CH.
PROG1 C ADDR 0068H.
PROG2 C ADDR 007AH.
PROG3 C ADDR 0145H.
PROG4 C ADDR 0186H.
PROG5 C ADDR 01D3H.
PROG6 C ADDR 01F3H.
PROG7 C ADDR 0207H.
READY C ADDR 0040H.
ROTL C ADDR 00F0H.
RPS C ADDR 02D2H.
RST C ADDR 0225H.
RTH D ADDR 008DH PREDEFINED.
RTL D ADDR 008BH PREDEFINED.
SD200 C ADDR 02A9H NOT USED.
SD300 C ADDR 02ADH.
SD500 C ADDR 02B1H.
SEND1 C ADDR 02C7H.
SENDIT C ADDR 02B5H.
SO C ADDR 0228H.
SOD C ADDR 0252H.
START C ADDR 0030H.
TF B ADDR 008DH PREDEFINED.
TH D ADDR 008CH PREDEFINED.
TL D ADDR 008AH PREDEFINED.
TR B ADDR 008CH PREDEFINED.
UP C ADDR 0230H.
W C ADDR 003DH.
W20 C ADDR 009AH.
W21 C ADDR 009FH.
W22 C ADDR 00ADH.
W23 C ADDR 00B2H.
ZERO C ADDR 0142H.
ZEROSC C ADDR 021BH.

Philips Semiconductors Application note

AN426Controlling air core meters with the 87C751 and SA5775

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.

Date of release: 06-98

Document order number: 9397 750 04067

�������
��	���
�����
�

	INTRODUCTION
	THE 87C751
	TYPICAL APPLICATION
	87C751 Microcontroller
	NE555 Timer
	Definitions
	Disclaimers

