
Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

Author: Debra Ibarra Revised by: A. Kazmi

1December 1987 Rev. 1, March 1994

INTRODUCTION
The Philips Semiconductors Dual Universal Serial Communications
Controller (DUSCC) has forty-eight programmable registers many of
which have triple functions that vary with the protocol selected. This
application note contains basic initialization instructions and
examples Including: description of the input clock circuit; how to use
interrupts with status; how to use the digital phase locked loop
(DPLL); how to initialize the counter/timer as a system down counter
and as a receive character counter. Also included are software
examples for the asynchronous local loop back mode, for two
synchronous modes (HDLC and BISYNC), and DMA handling.

X2/IDCN PIN
Initially, the X2/lDCN pin is internally programmed as an input pin
(used with a crystal) by the assertion of RESET. If an external clock
is used as the timing source in place of a crystal, it is necessary to
perform the following:

1. If the X2/lDCN is used as an IDCN output, write PCRA[7] = 1 as
soon as possible. This allows the IDCN to be used as a daisy
chain without delay.

2. If X2/lDCN is not used as the IDCN output, the X2/lDCN pin must
be grounded, and leave PCRA[7] = 0.

X1/CLK SOURCES
The DUSCC must have a clock source connected to the X1 input at
all times. It can be supplied by a crystal between the X1 and X2 pin,
or by driving an external clock Into the X1/CLK input. The frequency
must be between 2.0 and 16.0MHz for correct device operation;
14.7456MHz is the nominal frequency which is used to obtain the
standard baud rates listed for the internal baud rate generator.

X1/X2 Crystal
The DUSCC oscillator circuitry consists of an inverting amplifier and
a feedback resistor which are used to implement a Pierce oscillator.
This circuitry will cause the crystal attached between the X1 and X2
pins to go into anti-resonant (parallel) operation. So, while a number
of crystal and capacitor combinations will work, obtaining a parallel
calibrated crystal and adjusting the external capacitor values until
the total circuit capacitance matches the capacitance specified for
the crystal will result in the most accurate frequency value. Using
two 24pF capacitors, one from X1 to ground and one from X2 to
ground, and the parallel crystal recommended below will give
accurate, reliable results. The frequency will vary slightly depending
on the amount of stray capacitance in the individual circuit, but will
typically be off no more than 0.01%. The frequency can be adjusted
by trimming the external capacitors; larger capacitors lower the
oscillator’s frequency and smaller ones raise it.

A source for the 14.7456MHz crystal is: Saronix, Palo Alto, CA.
Request part number NYP147-20.

Externally Driven Clock
The most important point in using an external source to drive the
X1/CLK input is to meet the VIH specification and the minimum high
and low times of 25ns. Also, when driving a clock into X1, be sure
to ground the X2 pin if it is not programmed to be IDCN out.

INTERRUPT STATUS
The DUSCC is equipped with an interrupt vector register (IVR) that
can be modified. On power up, the IVR is initialized to a fixed value.

If ICR[2] = 1, the status registers will modify the interrupt vector. If
the vector is modified, ICR[3] must be programmed to modify either
vector bits [2:0] or [4:2]. ICR[7:6] dictates which channel will have
the highest priority or whether interrupt priorities are interleaved
between channel A and channel B.

If a modified vector is used, the three modified bits in the vector will
reflect the interrupting condition. For example, if channel B
transmitter is ready, the modified bits = 101. Interrupts can be
programmed to occur from either the RSR, the TRSR, the ICTSR
registers, or the TXRDY and RXRDY conditions. These registers
allow either transmit, receive, input, or C/T status bits to set the
appropriate GSR bit and force an interrupt.

EXAMPLES – Option: Channel A in Synchronous
Mode
Assume channel A is in the COP mode with the receiver sampling
off the DPLL output which is programmed to use FM0 encoding. The
user chooses to monitor the following items: EOM detect RSRA[7],
CRC errors RSRA[1:0], and check for DPLL errors TRSRA[3].

Because an underrun of the transmitter, or an overrun of the
receiver can be a problem, program OMRA[4:3]=00. Writing IERA =
79H, will enable all of the above conditions to interrupt as soon as
ICR[1] is set, and the transmitter and receiver are enabled. The
status of these bits is reflected in GSR[3:0].

Option: Channel B in Asynchronous Mode
Assume channel B is initialized to check for framing and parity
errors (RSRB[1:0]) and the counter/timer is to be used as a system
down counter. For the user to know when the C/T reaches zero
count (ICTSRB[6]), set CTCRB[7] so that the C/T can generate an
interrupt. RXRDY can be set to activate when the FIFO fills
(OMRB[3] = 1). However, the receiver could be overrun if the baud
rate is high or the CPU is latent in reading the receive FIFO. Writing
IERB= 51H, will enable all of the above conditions when ICR[0] is
set, and the transmitter and receiver are enabled. The status of
these bits is reflected in GSR[7:4]

NOTE: Because the synchronous channel has more of a tendency
to underrun, channel A has interleaved priority. This means that
channel A takes priority when events of equal weight occur in both
channels simultaneously; therefore, ICR = 87H.

The interrupts are activated when the transmitter and receiver are
enabled. Although some of these interrupts reset themselves when
the interrupt routine services the DUSCC, it is safer to reset the
status bits that caused the interrupt by writing 1 to each status bit
that is set. Resetting the bits in the RSR, TRSR, and ICTSR
registers, automatically resets the corresponding bits in the general
status register (GSR). If TXRDY or RXRDY causes the interrupt,
these can be cleared by writing/reading data to/from Tx/RxFIFOs.

COUNTER/TIMER
Each channel of the DUSCC contains a counter/timer that can be
used as either a down counter, a delay timer, an external event
counter, a TX or RX character counter, a bit length measurement
tool, or a timer to generate almost any baud rate. The C/T can be
clocked from a number of sources.

Table 1 gives the maximum frequency generated by the C/T with
various inputs (prescaler = 1).

The C/T must be loaded with a minimum count of N = 2 which will
divide the maximum timer output frequency to one-half if the pulsed
mode is programmed, or to one-fourth if the square mode is

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 2

Table 1. Maximum Frequency Generated by C/T

Clk Source
Maximum Outputs

NotesClk Source
Pulsed Square

Notes

RTXC or TRXC 2 1 MHz TRXC/RTXC = 4MHz

X1/CLK divide by 4 2 1 MHz X1/CLK = 16MHz

RXBRG or TXBRG (16X) 307.2 153.6 kHz RX/TX = 38.4K

Table 2. Encoding Schemes

Encoding Where
Sampled How Decoded

NRZ Center of bit
time Low = 0, high = 1

NRZI Center of bit
time

Transition since cell = 0, no
transition from last cell = 1

FM0 1st and 3rd
1/4 of bit time

Cell halves dissimilar = 0, cell
halves same = 1

FM1 1st and 3rd
1/4 of bit time

Cell halves same = 0, cell halves
dissimilar = 1

Manchester Center of bit
time

Low to high transition = 0, high to
low transition = 1

selected. (Pulsed mode forces the output low for N = 1 periods and
then high for one period; square mode forces the output low for N
periods and high for N periods.) The C/T is controlled by five
registers. CTPRH and CTPRL hold the preset counter value that will
be loaded when a start counter command is issued. CTH and CTL
hold the current value contained in the C/T and can be read at any
time. For best results, stop the C/T prior to reading the CTH and
CTL. The CTCR register controls the C/T clock source, prescaler,
type of output (pulse or square wave) and the direction taken when
the C/T counts down and passes zero detect.

Counter/Timer Used as a Down Counter
The following procedures initialize the C/T as a system down
counter, set to interrupt the CPU every 2ms:

1. Using (X1/CLK)/4, the typical X1 rate is 14.7456MHz (t =
67.82ns)

2. Divide the X1 rate by 4 ⇒ 3.6864MHz (t = 271.27ns).

3. The following equation determines the preset count:

Count value �
source freq

desired freq x 2

(for square wave output)

Count value �
source freq

desired freq x 2

(for on shot pulse output)

Count value � 3.6864 x 106

(1
4 x 10�3) x 2

� 7372.8 (dec)

� ICCD (hex)

1. Write CTCR = 82H (prescale = 1, X1/4, enable INT (CTCR161 =
0, preset loaded on zero)

2. Write CTPRH = 1CH (preset high value)

3. Write CTPRL = CDH (preset low value)

4. Write ICR = 01 or 02 (enable master interrupt (A or B))

5. Write CCR = 83H (transfer preset value)

6. Write CCR = 80H (issue start C/T command)

After the interrupt occurs:
7. Write ICTSR = 40H (reset C/T status)

8. Wait for next interrupt, preset value automatically reloaded.

Counter/Timer Used as a Character Counter
Assume that characters are being received in the asynchronous
mode and the user chooses to accumulate these characters in RAM
in blocks of 2048 bytes each. The preset value will be 2048 or 800H.
Each time the count reaches zero, the counter/timer interrupts the
CPU. The only difference between the C/T as a down counter, and
the C/T as a character counter, is that CTCR = 06 which assigns the
C/T clock source to be the receive character pulse. The CTPR is
loaded with the block count of 800H. Because this particular
example is repetitive, the user resets the C/T interrupt (ICTSR =
40H) after each block count has been reached. Since CTCR16] = 0,
the preset value will automatically reload on zero detect.

DIGITAL PHASE LOCKED LOOP (DPLL)
The DPLL is designed to be used with the transmission of
synchronous data without using a separate transmit clock line. Data
is sampled by a 32X clock searching for a transition on data entering
the receiver. Once the enter search mode command is issued, the
DPLL will start to synchronize on the first data transition. The user
must ensure that RXD has no spurious noise which could cause the
DPLL to begin to synchronize on the wrong starting edge. Since
sampling takes place in parts of the bit cell, the FM mode has the
greatest potential for this error.

If noise should trigger the DPLL, it will set TRSR[3]=1, and the DPLL
will enter into a search mode automatically.

Table 2 describes five different encoding schemes and where in the
bit cell the DPLL will sample data entering the receiver. For
reference, see DPLL Waveforms in the DUSCC data sheet.

The DPLL maximum clock frequency is 250KHz. This value can be
achieved by using the X1/CLK at 16MHz (divide by 64). A slower
speed of 125KHz can be derived by using an external TXC or RXC
(TXC or RXC set at 4MHz divided by 32). For complete details of
how the DPLL samples a data stream and corrects its clocking
edges, refer to the DUSCC data sheet on NRZI and FM mode
operation.

An example of how to initialize the receiver sampling data with the
DPLL using a 38.4KHz rate in the NRZI mode (BRG clock source)
follows.

1. Write RTR = 6FH; (DPLL (BRG), BRG = 38.4K)

2. Write CCR = C3H; (Set DPLL mode = NRZI)

3. Write CCR = 40H; (Reset receiver)

4. Write CCR = C0H; (DPLL enter search mode)

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 3

ASYNCHRONOUS MODE
Regardless of the channel connection used in CMR2[7:6], the basic
initialization in asynchronous mode is the same. Note that
whenever a change is made in the channel mode registers, the
transmitter and receiver should first be disabled. Also, before any
change is made in the transmit parameter register (TPR) or the
transmit timing register (TTR), the transmitter should be disabled.

After a change(s) has been completed, the transmitter should be
reset; then enabled.

If changes are made in either the receive parameter register (RPR)
or the receive timing register (RTR), the receiver should be disabled.
After a change(s) has been completed, the receiver should be reset;
then enabled.

The software illustration (Figure 1) demonstrates the minimum
number of registers needed to program the DUSCC for
asynchronous transmission. This routine is also an example of how
the integrity of the system can be checked in local loop back by
writing, reading, and verifying 256 characters through each channel.
Since the comments in the software examples are extensive, there
are no flow charts provided in this application note. If a reset pulse
greater than 1.2µs is asserted on the reset input after VDD has
stabilized, most registers will be reset to zero. Many of these
registers can be disregarded during initialization. The registers that
must be programmed are the channel mode registers (CMR1/2),
channel command registers (CCR), and the parameter and timing
registers (TPR, TTR, RPR, RTR) for both the transmitter and
receiver.

SYNCHRONOUS PROTOCOLS
The SCN68562 will work with almost any synchronous protocol at
rates exceeding maximum speeds recommended by CCITT
standards (USA = 1.5MHz; Europe = 2.04MHz). While
asynchronous transmission frames are sent on a character by
character basis (including, start, stop, and parity bits), synchronous
transmission requires a protocol that works with a predefined frame.
Within each transmission frame there exists four main parts:

1. Synchronizing characters

2. A header defining addresses and/or control information

3. The physical data stream

4. 4. Block character check (BCC)

Most synchronous transmissions fall into two main categories,
bit-oriented protocols (BOP) and character-oriented protocols
(COP). This document describes the two most widely used
protocols, an HDLC sample for BOP, and a BISYNC sample for
COP.

The SCN68562 handles many of the operations necessary to send
and receive a BOP or COP frame. CMR1[2:0] allows the user to
select either BOP or COP with options. The synchronous/secondary
address registers (S1R, S2R) are used to initialize synchronizing
characters (COP) or the frame address (BOP). TPR[7:4] defines
underrun control, fill pattern during an idle transmit state, and when
TEOM is to be transmitted. RPR[7:3] defines which SYN patterns
should be stripped, should the frame check sequence be sent to the
RXFIFO, and what action the receiver should take after EOM is
received or an overrun occurs. These bits also inform the receiver

when external synchronous pulses will be used to synchronize
received data, and if parity is to be stripped before assembly.

BOP TRANSMISSION
The software example in Figure 2 demonstrates how the user can
initialize the SCN68562 for transmitting with the HDLC protocol
using the BOP mode. In this example the channel is set up as a
secondary station (CMR1 = 01) using an eight-bit address mode
without extended control. This means that an eight-bit address must
follow the opening flags of each frame. The address identifies the
receiver which is to be the data destination. If this channel was
programmed to be a primary (master) station, no address
comparison would be necessary. For simplification, CMR2 is set up
so that no FCS character is issued when the end of message
command is executed. The transmitter parameter register is set to
issue ABORT (FF) followed by FLAGs (7E) if the transmitter is
underrun. Also, the idle state of TXD is defined as FLAGs (7E)
between frames. The receive parameter register is programmed with
the overrun mode set to hunt. This will force the receiver to
terminate the frame when the RXFIFO and RX shift register are full,
and then hunt for flags. Finally, S1R is loaded with the receiver
compare address.

The start of message (SOM or TSOM) command must be issued to
send out the opening synchronous flags. This is followed by the
receiver address and data loaded into the TXFIFO. The frame is
ended when the CPU sends an EOM or TSOM command to the
command register. This must be done just before the last character
is loaded into the TXFIFO. The EOM command is then appended to
the next character written into the TXFIFO. After this character is
shifted out, the DUSCC will issue the FCS (if programmed to do so)
followed by a closing flag.

Note also that the receiver cannot use the BRG directly, unless the
asynchronous mode is programmed. Therefore, (RTRA = 6F), the
DPLL (at 32X), is selected. In this case the transmitter will not know
what encoding scheme to use until the set NRZI command (CCRA =
C3) is sent to initialize the DPLL. Immediately before reception
starts, the DPLL is turned on with an enter search mode command
(CCRA = C0). Since TXD is tied to RXD in this example, the
receiver will look for the first byte, after the opening flag, to be an
address. The address is compared to the value in S1R, and if a
match occurs, the address and all other data are loaded into the
RXFIFO.

COP TRANSMISSION
An example using the COP mode follows (see Figure [3]). This
example is set up almost identical to BOP. The key
character-oriented protocol differences are the synchronize and
control characters. Before transmission begins, SYN1 and SYN2
characters are loaded into S1R and S2R. These characters are
issued with the TSOM command to open the COP frame. If an
underrun occurs in the transmitter, or a frame ends, TXD is filled
with SYNC1/SYNC2 characters (TPRA = E3). None of the
synchronized characters are transferred to the receive holding
register if SYN stripping is invoked (RPRA = 83).

The remaining differences occur with special control characters that
define the beginning and ending of text, the header field, and
various acknowledgements. A few of these commands can be
issued through the command register, but the majority must be part
of the data stream.

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 4

DUSCC WITH DMA CONTROLS
See Figures 4 and 5 for software examples. The schematic (Figure
6) defines the typical handshake lines necessary for the DUSCC to
interface with the SCB68430, Direct Memory Access Interface
(DMAI). The DUSCC will interface directly with any of the 68K family
of DMA controllers (68430, 68440, 68450).

The DUSCC is shown in the half duplex single address
configuration. The request pin (RTXDRQAN) initializes the DMA
cycle for both the transmitter and the receiver in this mode. Once
the controller has finished arbitration for the bus, acknowledgment is
given to the DUSCC on the RTXDAKA input. After acknowledgment
is made, RDYN is driven low by the DTACKN output. DTACKN from
the DUSCC must be isolated from system DTACKN when the DMA
controller has control of the bus. After each character is transferred
to the transmitter, or when data is read from the receiver, DTCN is
asserted. When transfer count has been reached, DONEN is
asserted, ending the DMA.

DMA SOFTWARE
Two simple software programs are provided. Both are initialized with
channel A in half duplex single address mode and channel B in

normal polled mode. The comments in each sample explain the
basic initialization.

The first software sample (Figure 4) is a transmit DMA. TXDA is tied
to RXDB by a wire. The CPU loads the RAM with 256 characters
and then initializes the the DMA controller. As the transmitter
becomes ready and asserts IRQN, the DMA controller will
acknowledge by loading the TxFIFO. After instructing the DMAI to
start, the CPU reads the GSR looking for the receiver to become
ready. Once RXRDY = 1, the character is read and compared
against the expected character that was transmitted. The DMA
transfer rate in burst mode is faster than the time needed for the
8MHz 68000 to test for and read the received characters. Therefore,
flow control is used via RTS and CTS. In this case, the RxB controls
RTS/CTS which controls TxA.

The second software example (Figure 5) is a receive DMA. RXDA
is tied to TXDB with a wire. This example is the reverse of the
previous software routine. The CPU loads 256 characters into the
TXB FIFO as it becomes ready. The DMA controller reads RXA
FIFO and stores the received data in RAM. When the count is
complete, the CPU reads the RAM and verifies whether the data
transferred is correct. No flow control is needed since the DMA
controller can read the received characters faster than the RXA
FIFO can fill up.

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 5

NOTE: Please note that the following examples are used for illustration purposes only. User must verify their software in an actual system use.

Basic asynchronous initialization for DUSCC (local loopback mode). This routine will send 256 characters to both channel A and B.
The looped back characters are read and verified by the CPU.

Begin

;
; SETUP MOVE.B #07, CMR1A ;NO PARITY, ASYN MODE

MOVE.B #07, CMR1B
MOVE.B #$B8, CMR2A ;LOCAL LOOPBACK, POLLED/INT

MOVE.B #$B8, CMR2B
MOVE.B #$73, TPRA ;1 STOP BIT, 8 BIT CHAR

MOVE.B #$73, TPRB
MOVE.B #$3E, TTRA ;TX=BRG CLK, 19.2K BAUD
MOVE.B #$3E, TTRB
MOVE.B #03, RPRA ;8 BIT RX CHAR

MOVE.B #03, RPRB

MOVE.B #$2E, RTRA, ;RX=BRG CLK, 19.2K BAUD
MOVE.B #$2E, RTRB
MOVE.B #0, CCRA ;RESET TX

MOVE.B #0, CCRB

MOVE.B #$40, CCRA ;RESET RX
MOVE.B #$40, CCRB

MOVE.B #02, CCRA ;ENABLE TX

MOVE.B #02, CCRB
MOVE.B #$42, CCRA ;ENABLE RX
MOVE.B #$42, CCRB

;
; WRITE/READ/VERIFY DATA IN LOCAL LOOPBACK MODE
;

CLR.L D6 ;CLR D6
MOVE.L #GSR,A0 ;A0=POINTER TO STATUS REG

AGAIN: MOVE.B D6, TXFIFA ;LOAD TX FIFO (A & B)

MOVE.B D6, TXFIFB
CHA: MOVE.B [A0], D2 ;CHECK FOR RXA READY

BTST #0, D2

BEQ CHA ; WAIT FOR RX TO COME READY
MOVE.B RXFIFA, D0 ;READ RX FIFO A
CMP.B D0, D6 ;DOES RXA CHAR=TXA CHAR?

BEQ CHB ;IF YES, THEN CHECK RXB
MOVE.W #1, D7 ;NO, THEN FLAG ERROR AND

STOP TRAP #15
CHB: MOVE.B RXFIFB, D1 ;IS TX CHAR = RX CHAR (CHAN B)

CMP.B D1, D6
BEQ INCD6 ;YES, THEN INC D6
MOVE.W #2 D7 ;NO, THEN FLAG ERROR AND

STOP TRAP #15
INCD6: ADDI.B #1, D6 ;INC D6

CMPI.B #00 D6 ;HAS D6 ROLLED OVER TO 00?

BNE AGAIN ;IF NO, KEEP GOING 0–FF
MOVE.W #0, D7 ;IF YES, CLR ERROR AND STOP
TRAP #15

;
END SETUP

Figure 1. Minimum Number of Registers Needed to Program the DUSCC

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 6

This file sets up channel A to transmit and receive four BOP characters in the HDLC format. TXDA is tied to RXDA by a wire.
Note that the end-of-message command is issued to the CCR before the last character is loaded in the transmitters.

Begin
;

MOVE.B #1, CMR1A ;BOP SECONDARY MODE, 8 BIT ADR, 8 BIT CONTROL

MOVE.B #$38, CMR2A ;POLLED/INT MODE, NORMAL MODE, NO FCS
MOVE.B #$3F, TTRA ;TX=38.4K BAUD

MOVE.B #$6F, RTRA ;RX=38.4K, DPLL X32 FROM BRG
MOVE.B #$E3, TPRA ;TX 8 BIT/CHAR,UNDERRUN=ABORT–FLAG,IDLE=FLAGS

MOVE.B #3, RPRA ;RX 8 BIT/CHAR,OVERRUN=HUNT,NO FCS OR EXT SYNC
MOVE.B #$F7, OMRA ;TXRDY=EMPTY, RXRDY=NOT EMPTY, NO RESID CHAR
MOVE.B #$FF, S1RA ;RX ADDRESS=HEX FF (SETUP FOR 8 BIT ADDRESS)
MOVE.B #0, CCRA ;RESET TX MOVE.B #$40,CCRA ; RESET TX

MOVE.B #2, CCRA ;ENABLE TX MOVE.B #$42,CCRA ; ENABLE RX
MOVE.B #$C3, CCRA ;SET NRZ MODE FOR DPLL
MOVE.B #$C0, CCRA ;ENTER SEARCH MODE

;

BSR TXRDY ;WAIT FOR TXRDY
MOVE.B #4, CCRA ;TRANSMIT START OF MESSAGE

MOVE.B #$FF, TXFIFA ;TRANSMIT HEX FF

MOVE.B #0, TXFIFA ;TRANSMIT HEX 0
MOVE.B #$AA, TXFIFA ;TRANSMIT HEX AA
MOVE.B #6, CCRA ;TRANSMIT END OF MESSAGE

MOVE.B #$55, TXFIFA ;TRANSMIT HEX 55
;

BSR RXRDY ;WAIT FOR RXRDY

MOVE.B RXFIFA, D0 ;READ FIRST CHAR
;

BSR RXRDY WAIT FOR RXRDY

MOVE.B RXFIFA, D1 ;READ SECOND CHAR
;

BSR RXRDY ;WAIT FOR RXRDY

MOVE.B RXFIFA, D2 ;READ THIRD CHAR
;

BSR RXRDY ;WAIT FOR RXRDY

MOVE.B RXFIFA, D3 ;READ FOURTH CHAR
TRAP #15 ;END TEST

;
; SUBROUTINES

;
TXRDY: MOVE.B GSR, D6 ;MOVE GSR TO D6

BTST #1, D6 ;TEST GSR1

BEQ TXRDY ;IF GSR1=0 LOOP
RTS

;

RXRDY: MOVE.B GSR, D6 ;MOVE GSR TO D6
BTST #0, D6 ;TEST GSR0
BEQ RXRDY ;IF GSR0=0 LOOP

RTS
; END

Figure 2. Example Using BOP Mode

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 7

This file sets up channel A to transmit and receive four BISYNC characters. TXDA is tied to RXDA by a wire.

Begin

;
MOVE.B #1, CMR1A ;COP BISYNC MODE, EBCDIC

MOVE.B #$3F, CMR2A ;POLLED/INT MODE, NORMAL, CCITT PRESET 1’S

MOVE.B #$3F, TTRA ;38.4K BAUD

MOVE.B #$6F, RTRA ;38.4K, DPLL X32 FROM BRG
MOVE.B #$E3, TPRA ;TX=8 BIT/CHAR,UNDERRUN=SYNS, IDLE=SYNS

MOVE.B #$83, RPRA ;RX=8 BIT/CHAR, STRIP SYN, NO FCS OR HUNT MODE
MOVE.B #$F7, OMRA ;TXRDY=EMPTY, RXRDY=NOT EMPTY, NO RESID CHAR
MOVE.B #$66, S1RA ;FIRST SYNC CHARACTER=HEX 66

MOVE.B #$99, S2RA ;SECOND SYNC CHARACTER=HEX 99

MOVE.B #0, CCRA ;RESET TX

MOVE.B #$40, CCRA, ;RESET RX
MOVE.B #$2, CCRA ;ENABLE TX
MOVE.B #$42, CCRA ;ENABLE RX

MOVE.B #$C3 CCRA ;SET NRZ MODE FOR DPLL

MOVE.B #$C0 CCRA ;ENTER SEARCH MODE (DPLL)
;

BSR TXRDY ;WAIT FOR TXRDY

MOVE.B #4, CCRA ;TRANSMIT START OF MESSAG
MOVE.B #$0D, CCRA ;EXCLUDE FROM CRC
MOVE.B #2, TXFIFA ;TRANSMIT STX

MOVE.B #$55, TXFIFA ;TRANSMIT TEXT (HEX 55)
MOVE.B #$AA, TXFIFA ;TRANSMIT TEXT (HEX AA)
MOVE.B #6, CCRA ;TRANSMIT END OF MESSAGE
MOVE.B #3, TXFIFA ;TRANSMIT ETX

;
BSR RXRDY WAIT FOR RXRDY
MOVE.B RXFIFA, D0 ;READ FIRST CHAR

;
BSR RXRDY ;WAIT FOR RXRDY
MOVE.B RXFIFA, D1 ;READ SECOND CHAR

;
BSR RXRDY ;WAIT FOR RXRDY
MOVE.B RXFIFA, D2 ;READ THIRD CHAR

;
BSR RXRDY ;WAIT FOR RXRDY
MOVE.B RXFIFA, D3 ;READ FOURTH CHAR.

TRAP #15 ;END TEST
;
; SUBROUTINES

TXRDY: MOVE.B GSR, D6 ;MOVE GSR TO D6
BTST #1, D6 ;TEST GSR1
BEQ TXRDY ;IF GSR1=0 LOOP
RTS

;
RXRDY: MOVE.B GSR, D6 ;MOVE GSR TO D6

BTST #0, D6 ;TEST GSR0 BEQ

RXRDY ;IF GSR0=0 LOOP

Figure 3. Example Using COP Mode

RTS

;
 END

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 8

This example does a DMA transfer of 256 bytes from memory to chan ‘A’ transmitter. It is set up in normal mode with TXA tied to RXB, and
RTSB tied to CTSA by wire. (Receiver ‘B’ controls RTS, stopping any overruns). Flow control is imposed since the 8MHz CPU is too slow
in testing the GSR and reading received characters.

SETUP: MOVE.B #0, CCRA ;RESET REQN(A) BY RESETTING TXA & RXB
MOVE.B #$40, CCRB
MOVE.B #0, PCRA ;SET UP PIN CONFIGURATION REGISTER
MOVE.B #$20, PCRB ;RTS ENABLED FOR CHANNEL ‘B’
MOVE.B #$7, CMR1A ;NO PARITY, ASYN MODE
MOVE.B #$7, CMR1B
MOVE.B #0, CMR2A ;CHAN A = HALF DUPLEX SINGLE ADDRESS DMA
MOVE.B #$38, CMR2B ;CHAN B = NORMAL, POLLED/INTERRUPT
MOVE.B #$77, TPRA ;1 STOP BIT, 8-BIT, TX CONTROL BY CTS
MOVE.B #$3F, TTRA ;TX = BRG CLK, 38.4K BAUD
MOVE.B #13, RPRB ;RX = 8-BIT CHARACTERS, RXB CONTROLS RTS
MOVE.B #2F, RTRB ;RX = BRG CLK, 38.4K BAUD
MOVE.B #$F0, OMRA, ;TXRDY WITH FIFO NOT FULL (CHAN A)
MOVE.B #$F1, OMRB ;RXRDY WITH FIFO NOT EMPTY (CHAN B), RTS = 1
MOVE.B #0, CCRA ;RESET TXA & TXB
MOVE.B #0, CCRB
MOVE.B #$40, CCRB ;RESET RXA & RXB
MOVE.B #$40, CCRA
MOVE.B #2, CCRA ;ENABLE TXA
MOVE.B #$42, CCRB ;ENABLE RXB
CLR.L D6 ;CLR D6
MOVE.L #GSR, A0 ;A0=POINTER TO STATUS REG
MOVE.L #$77000, A1 ;A1=MEMORY POINTER

***************************INITITALIZE MEMORY***
 AGAIN: MOVE.W D6, [A1]+ ;D6 = DATA VALUE

ADDI.B #1, D6
CMPI.B #0, D6 ;DOES D6=FF ?
BNE AGAIN ;CONTINUE UNTIL IT DOES

;***********************INITIALIZE DMA CONTROLLER TO WRITE TO TRANSMITTER*****************
SETDMA: MOVE.B #$B8, CSR ;RESET DMAI

MOVE.B #$18, DCR ;BURST MODE
MOVE.B #$12, OCR ;MEMORY TO DEVICE TRANSFER, BYTE
MOVE.B #1, MTCH ;SET COUNTER TO TRANSFER 256 CHAR
MOVE.B #0, MTCL ;MEMORY ADDRESS = 77000
MOVE.B #$7, MACMH
MOVE.B #$70, MACML
MOVE.B #$0, MACL
MOVE.W #$100, D6
CLR.L D1
MOVE.B #$B8, CSR ;RESET DMAI

; MOVE.B #$80, CCRX ;DMAI START OPERATION
;*****************************REA/VERIFY DMA PROCESS**
RXRDYB: MOVE.B [A0], D0 ;CHECK FOR RXB READY

BTST #4, D0
BEQ RXRDYB ;WAIT FOR RX TO COME READY
MOVE.B #4, GSR ;RESET RXRDY ‘B’
MOVE.B RXFIFB, D2
CMP.B D1, D2
BNE STOP ;IF TX NOT EQUAL TO RX, STOP

Figure 4. DMA Transmit Program

ADDI.B #1, D1 ;INC CHARACTER POINTER
CMP.B D6, D1 ;HAVE WE RECEIVED FOUR CHARACTERS?

 BNE RXRDYB ;IF NOT, GET THE NEXT RX CHAR
STOP: TRAP #15 ;END TEST
; END SETUP

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 9

This example does a DMA transfer of 256 bytes from memory to chan ‘A’ transmitter. It is set up in normal mode with TXB tied to RXA. No
flow control is imposed.

SETUP: MOVE.B #43, CCRA ;RESET REQN(A) BY DISABLING RXA
MOVE.B #$40, CCRB ;DISABLE TXB
MOVE.B #7, CMR1A ;NO PARITY ASYN MODE
MOVE.B #7, CMR1B
MOVE.B #0, CMR2A ;CHAN A = HALF DUPLEX SINGLE ADDRESS DMA
MOVE.B #$38, CMR2B ;CHAN B=NORMAL, POLLED/INTERRUPT
MOVE.B #$73, TPRB ;1 STOP BIT, 8 BIT CHAR
MOVE.B #$3F, TTRB ;TX=BRG CLK, 38.4 BAUD
MOVE.B #3, RPRA ;RX = 8 BIT CHARACTERS
MOVE.B #$2F, RTRA ;RX = BRG CLK, 38.4K BAUD
MOVE.B #$13, RPRB ;RXRDY WITH FIFO NOT EMPTY (CHAN A)
MOVE.B #$E0, OMRA ;RX = BRG CLK, 38.4K BAUD
MOVE.B #$E0, OMRB, ;TXRDY WITH FIFO NOT FULL (CHAN B)
MOVE.B #0, CCRB ;RESET TXB
MOVE.B #0, CCRA ;RESET RXA
MOVE.B #2, CCRB ;ENABLE TXB
MOVE.B #$42, CCRB ;ENABLE RXA
MOVE.B #GSR, A0 ;A0 = POINTER TO STATUS REG
MOVE.B #RAM, A1 ;A1 = MEMORY POINTER

;**************************************CLEAR MEMORY**
AGAIN: MOVE.W #0, [A1]+

CMPA.L #RAMEND, A1
BNE AGAIN

;**********************INITITALIZE DMA CONTROLLER TO READ RECEIVER****************************
SETDMA: MOVE.B #$B8, CSR ;RESET DMAI

MOVE.B #$38, DCR ;BURST MODE
CMPI.B #$92, OCR ;DEVICE TO MEMORY TRANSFER, WORD
MOVE.B #1, MTCH ;SET COUNTER TO TRANSFER 256

CHAR MOVE.B #0, MTCL
MOVE.B #7, MACMH ;LOCAL RAM ADDRESS = 77000
MOVE.B #$70, MACML

CLR.L D1
MOVE.B #$80, CCRX ;DMAI START OPERATION

;******************************CPU WRITES TO TXB WHILE DMA READS RXA********************
TXRDYB: MOVE.B [A0], D0

BTST #5, D0 ;CHECK FOR TXB READY
BEQ TXRDYB ;WAIT FOR TX TO COME READY
MOVE.B D1, TXFIFB
ADDI.B #1, D1 ;INC CHARACTER POINTER
CMPI.B #0, D1 ;STOP AFTER 256 TXB CHAR-

ACTERS; BNE TXRDYB ;IF NOT, SENT THE NEXT TX CHAR
;*****************************CPU VERIFIES RECEIVED DATA IN MEMORY**

CLR.L D1
MOVE.L #RAM, A1 ;MEM START ADDRESS

VERIFY MOVE.W [A1]+, D2 ;READ NEXT RAM LOCATION
CMP.B D1, D2
BNE STOP ;STOP IF RX CHAR NOT EQUAL TO TX CHAR
ADDI.B #1, D1
CMP.L RAMEND, A1 ;HAVE WE COMPARED ALL RXA CHAR?

Figure 5. DMA Receive Program

BNE VERIFY ;IF NOT, KEEP LOOPING
STOP: TRAP #15 ;END TEST
; END SETUP

MOVE.B #$0, MACL

Philips Semiconductors Data Communications Products Application note

AN419DUSCC initialization procedures

December 1987 10

14
88

14
89

14
88

14
89

2
3

4 5
6

3
1

6
1

9 10
8

12 13
11

8
10

11
13

68
56

2

14
.7

45
6M

H
z

+
5V5p

F
5p

F

+
5V

74
07

2
1

3
2 1

D
A

TA
 (

15
:0

)

74
LS

32

A
D

D
R

 (
23

:1
)

P
1

P
2

2 4 3 5 2 4 3 5

+
5V

+
5V

+
5V

+
5V

+
12

V
–1

2V

74
04

6
4 5

1
2

74
LS

32

12
13

36

18V
cc

D
S

C
C

O
N

 (
3:

0)

A
D

D
R

 (
23

:1
)

R/WN

D
A

TA
 (

15
:8

)

ADDR (23:16)

ADDR (15:8)

ADDR (7:1)

DATA (15:8)

DATA (7:8)

D
M

A
C

O
N

 (
6:

8)

Figure 6.

	INTRODUCTION
	X2/IDCN PIN
	X1/CLK SOURCES
	X1/X2 Crystal
	Externally Driven Clock

	INTERRUPT STATUS
	EXAMPLES
	Option: Channel A in Synchronous Mode
	Option: Channel B in Asynchronous Mode

	COUNTER/TIMER
	Counter/Timer Used as a Down Counter

	DIGITAL PHASE LOCKED LOOP (DPLL)
	ASYNCHRONOUS MODE
	SYNCHRONOUS PROTOCOLS
	BOP TRANSMISSION
	COP TRANSMISSION
	DUSCC WITH DMA CONTROLS
	DMA SOFTWARE

