
Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

1March 1988

INTRODUCTION
The features of the 80C451 are shared with
the 80C51 or are conventional except for the
operation of port 6. The flexibility of this port
facilitates high-speed parallel data
communications. This application note
discusses the use of port 6 and is divided into
the following sections:
1. Port 6 as a processor bus interface.

2. Using port 6 as a standard pseudo
bidirectional I/O port.

3. Implementation of parallel printer ports.

This information applies to all versions of the
part: 80C451, 83C451, and the 87C451.

PORT 6 AS A PROCESSOR BUS
INTERFACE
Port 6 allows use of the 80C451 as an
element on a microprocessor type bus. The
host processor could be a general purpose
MPU or the data bus of a microcontroller like
the 80C451 itself. This feature allows single
or multiple 80C451 controllers to be used on
a bus as flexible peripheral processing
elements. Applications could include
keyboard scanners, serial I/O controllers,
servo controllers, etc.

OPERATION
On reset, port 6 is programmed correctly for
use as a bus interface (see 2). This prevents
the interface from disrupting data on the bus
of the host processor during power-up.
Software initialization of the CSR (Control
Status Register) is not required. A dummy
read of port 6 may be required to clear the
IBF (Input Buffer Full) flag since it could be
set by turn on transients on the bus of the
host processor. On reset, the CSR of the
83C451 is programmed to allow the following:
1. AFLAG is an input controlling the port

select function. If AFLAG is high, the
contents of the CSR is output on port 6
when the port is read by the host. If
AFLAG is low, then the contents of the
output latch is output when port 6 is read
by the host.

2. BFLAG is an input controlling the port
enable function. In this mode when
BFLAG is high, the input latch and the
output drivers are disabled and the flags
are not affected by the IDS (Input Data
Strobe) or ODS (Output Data Strobe)
signals. When BFLAG is low, the port is
enabled for reading and writing under the
control of IDS and ODS pins.

Figure 1 shows one possible example of an
80C451 on a memory bus. This arrangement
allows the main processor to query port 6 for
flag status without interrupting the 80C451. If
the address decoder, shown in Figure 1,
enables port 6 on the 80C451 when the
address is 8000H or 8001H, and the address
line A0 controls the port select feature, then
the host processor can read and write to port
6 using address 8000H. Since the port select
function is being controlled by the address
line A0, the CSR contents can be read by the
host processor at address 8001H.

By testing the CSR contents in this way, the
host processor can tell if new data has been
written to the port 6 output latch since it last
read the port or if the 80C451 has read the
last byte that the host wrote to the port.
Conversely, the 80C451 can poll the flags in
its CSR to see if the host processor has
written to or read from port 6 since the last
time it serviced the port.

If desired, an interrupt source for the 80C451
can be derived easily from the port enable
source as shown by the dashed line in
Figure 1.

8
Host

Processor

80C451

82S163
Address
Decoder

74HCT373
Latch

6116
Static RAM

Address

SEL
(AFLAG)

IDS ODS P6WR RD D0-D7

CE

RD

WR

AD0-AD7

ALE

A8-An

LE

A0

SU00332

Figure 1. An 83C451 on a Microprocessor Memory Bus

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 2

SOFTWARE EXAMPLES
To write to port 6 on the bus shown in
Figure 1, the host processor first reads the
CSR contents at address 8001H, and tests

the input buffer full flag (CSR bit 0). If the flag
is clear, the host writes a byte to address
8000H. This loads the input buffer latch of
port 6 and sets the input buffer full flag.

Conversely, the 80C451 polls the IBF flag
and reads a byte from port 6 when it finds the
flag set. The flag is automatically reset when
this internal read occurs.

80C451 ROUTINE TO READ ONE BYTE FROM HOST VIA PORT 6
RCVR: JNB CSR.0,RCVR ;TEST IBF FLAG

MOV A,P6 ;WHEN FLAG IS SET READ BYTE
RET

80C451 ROUTINE TO WRITE ONE BYTE TO THE 83C451 PORT 6
If the host processor is an 80C51, the following routine will write a byte of data to the 80C451. The data involved is passed to the routine
through register 1.

XMIT: MOV DPTR,8001H
TEST: MOVX A,@DPTR ;READ THE CSR

JB ACC.0,TEST ;TEST IBF FLAG
MOV DPTR,8000H
MOV A,R1
MOVX @DPTR,A ;WRITE DATA TO THE 451
RET

80C451 ROUTINE TO WRITE ONE BYTE TO HOST VIA PORT 6
Routines for data transfer in the opposite direction are similar to the above two. The 80C451 version is given below.

XMIT: JB CSR.1,XMIT ;TEST OBF FLAG
MOV P6,A ;WRITE DATA
RET

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

1

MB0 MA1 MA0 OBFC IDSM OBF IBF

1 1 1 1 1

SU00333

Figure 2. CSR Programmed to Allow Port 6 as a Bus Interface

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 3

USING PORT 6 AS A STANDARD
QUASI-BIDIRECTIONAL I/O PORT
To use port 6 as a common I/O port, all of the
control pins are tied to ground (see Figure 3).
On hardware reset, bits 2 - 7 in the CSR are
set to one. Port operation and electrical
characteristics become identical to port 1 on
the 80C51 and the 80C451 ports 1, 4, and 5.
No software initialization is required.

If desired, AFLAG and BFLAG can be used
as outputs while port 6 is operating as a
standard quasi-bidirectional I/O port (see
Figure 4). In this case, only IDS and ODS are
tied to ground and the CSR is initialized to
allow operation of AFLAG and BFLAG as
simple outputs (see Figure 5).

8
P6

ODS

80C451

IDS

BFLAG

AFLAG

SU00334

Figure 3. Standard I/O Port on Reset

8
P6

ODS

80C451

IDS

BFLAG

AFLAG

SU00335

Figure 4. Standard I/O Port on Reset with
AFLAG and BFLAG as Outputs

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

1

MB0 MA1 MA0 OBFC IDSM OBF IBF

X 0 X X 1

SU00336

Figure 5. CSR Programmed to Allow AFLAG and BFLAG to Operate as Outputs and Port 6 as a Standard I/O Port

DATA TRANSFER SIGNAL PINS

Pin No.

1

Groung Return
Pin No. Signal

19 STROBE

2 20 DATA 1

4 22 DATA 3

3 21 DATA 2

5 23 DATA 4

7 25 DATA 6

6 24 DATA 5

8 26 DATA 7

9 27 DATA 8

11 29 BUSY

10 28 ACKNLG

TYPICAL AUXILIARY PIN FUNCTIONS

Pin No.

12

Signal

PAPER OUT

14 AUTO LINE FEED

17 CHASSIS GND

16 LOGIC GROUND

30 GROUND RETURN

32 ERROR

31 RESET PRINTER

33 GROUND RETURN

36 SLCT IN

SU00337

Figure 6. Parallel Printer Interface Pin Functions

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 4

IMPLEMENTATION OF PARALLEL
PRINTER PORTS USING PORT 6
The 80C451 is an excellent choice for a
printer controller. The 80C451 has the
facilities to permit all of the intelligent features
of a common printer to be handled by a
single chip:
1. The features of port 6 allow a parallel

printer port to be designed with only line
driving and receiving chips required as
additional hardware.

2. The onboard UART allows RS232
interfacing with only level shifting chips
added.

3. The 8-bit parallel ports 0 to 6 are ample to
drive onboard control functions, even
when ports are used for external memory
access, interrupts, and other functions.

4. The RAM addressing ability of ports 0 and
2 can be used to address up to 64k bytes
of a hardware buffer/spooler. AFLAG and
BFLAG as simple outputs (see Figure 5).

5. The 64k byte ROM addressing capability
allows space for the most sophisticated
software.

In addition, either end of a parallel interface
can be implemented using port 6, and the
interfaces can be interrupt driven or polled in
either case.

THE INTERFACE
Data transfer on a parallel printer interface
occurs across eleven signal lines. The other
conductors on the standard plug are used as
ground returns or for auxiliary functions (see
Figure 6). Only the data transfer signals will
be considered.

The Data Transfer Format
The parallel printer interfaces are far more
standardized in features than their serial

counterpart. However, at least three
significant variations exist in handshake style
in printers using generic parallel interfaces.
This fact influences the design of both port
hardware and software. A good transmitter
should be able to drive devices with all three
styles of handshakes, and a good receiver
should generate the handshake most likely
compatible with any transmitter.

The Variations
Type 1—Figure 7 shows a common style of
handshake and is the style that will be
implemented in the receiver examples. A
busy signal and an acknowledge strobe pulse
are generated for every byte received.

Type 2—Another style of handshake
generates a busy signal only when the printer
will not be able to accept more data for a
relatively long time. Acknowledge pulses are
created after every byte received. When the
busy signal is generated after a byte is
received, the associated acknowledge pulse
does not occur until after the busy signal
returns to logic zero (see Figure 7).

Type 3—A third handshake style does not
generate acknowledge pulses, but a busy
signal is produced after every byte is
received.

PARALLEL PRINTER
INTERFACES USING POLLING

Transmitter Operation
This application illustrates the flexibility of the
port 6 logic in solving an applications
problem. We need to be able to handle all
types of acknowledge signals that might be
received by the transmitter. We will use the
ODS pin and output buffer full flag logic to
record the receipt of the acknowledge pulse
(see Figure 8), but not all parallel receivers
generate acknowledge pulses. We could poll

the busy signal line, but not all receivers
generate busy signals for each byte received;
so lack of a busy signal does not imply that
we can send another byte. We can, however,
expect an acknowledge pulse very shortly
after the end of a busy signal if one is going
to arrive at all. So we can send a new data
byte after having received either a positive
transition on the acknowledge line, or shortly
after receiving a negative edge on the busy
line.

The CSR is programmed to the output only
mode. In this mode, the ODS pin does not
control the output drivers but only the output
buffer full flag. The flag serves to record the
positive transition of the acknowledge signal.
The input latch is not used, but the IDS pin is
used to set the input buffer full flag. This is
used to record the negative transition at the
end of the busy signal. Dummy reads by the
80C451 of port 6 will be used to clear the
flag. In this example, the AFLAG mode is set
only to place the port in the output only mode.
The AFLAG pin is not actually used (see
Figure 10).

The transmitter’s CSR (control status
register) is programmed to the following
mode (see Figure 9):
1. CSR bit 6 controls the BFLAG output and

therefore the strobe line.

2. The OBF (output buffer full) flag controls
the AFLAG output.

3. The OBF is cleared on the positive edge
of the ODS input.

4. The IBF flag is cleared on the negative
edge of the IDS strobe.

NOTE:
With this combination of modes set, port 6 is
in the output only mode.

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 5

ÉÉÉÉ

ÉÉÉÉ

ÉÉÉÉ

ÉÉÉÉ

DATA

ÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉÉÉÉÉ

0.5µs
MIN

0.5µs
MIN

0.5µs
MIN

TRANSMITTER GENERATED SIGNALS

STROBE

RECEIVER GENERATED SIGNALS
HANDSHAKE TYPE 1

7µs
MIN

5µs
MIN

BUSY

ACK

HANDSHAKE TYPE 2 10µs
MIN

5µs
MIN

BUSY

ACK

SU00338

Figure 7. Parallel Printer Interface Signals

8

80C451

ODS BFLAG

BFLAG IDS

P5.0 AFLAG

ACK

STROBE

BUSY

IDS

Bus
Receiver

Bus
Driver

ReceiverTransmitter

ODSAFLAG

Cable 80C451

P6 P6

SU00339

Figure 8. Interconnection for a Parallel Interface Using Polling

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

0

MB0 MA1 MA0 OBFC IDSM OBF IBF

1 1 0 0 1

SU00340

Figure 9. CSR Programmed for Polled Transmitter Operation

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 6

Receiver Operation
In receiver operation, the IDS input is used to
latch in the data transmitted on receipt of the
strobe pulse. The receiver’s CSR is
programmed to allow the following (see
Figure 11):

1. The input buffer full flag is output through
the BFLAG pin and is used as the busy
signal to the transmitter.

2. The IBF flag is set and data is latched on
the positive edge of IDS.

3. Writing to the CSR bit 4 controls the
AFLAG output and therefore the
acknowledge line.

XMIT:

Output Data
to Port 6

Clear CSR
Bit 6

for Strobe

Set CSR
Bit 6

End of Strobe

Bus Busy?
Yes

Handshake
Received?

No

Return to
Calling

Program

Yes

SU00341

Figure 10. Flow Chart of Polled Parallel Transmitter Operation

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

1

MB0 MA1 MA0 OBFC IDSM OBF IBF

0 0 1 1 0

SU00342

Figure 1 1. CSR Programmed for Polled Parallel Receiver Operation

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 7

Read:

Clear CSR Bit 4
to Assert

Acknowledge

Read Port 6

CSR Bit 0 Set?
Input Latch Full?

No

Return to
Calling

Program

Set CSR Bit 4
to Deassert Ac-

knowledge

Yes

SU00343

Figure 12. Flow Chart of Polled Parallel Receiver Operation

SOFTWARE EXAMPLES
This polled parallel transmit routine outputs one byte passed to it in the accumulator.

P_INIT: MOV CSR,#064H ;INITIALIZE PORT 6 OPERATING MODE
P_OUT: JB P5.0 ;WAIT IF BUSY SIGNAL IS HIGH

MOV P6,ACC ;OUTPUT DATA
MOV R1,P6 ;DUMMY READ TO CLEAR IBF FLAG
MOV R1,#02H ;INITIALIZE DELAY COUNTER
CLEAR CSR.6 ;START STROBE PULSE
DJNZ R1,$;TIME 6 MICROSECOND STROBE PULSE
SETB CSR.6 ;END STROBE PULSE

WAIT: JNB CSR.1,OUT ;EXIT IF ACKNOWLEDGE RCV’D
JNB CSR.0,WAIT ;EXIT IF NEGATIVE BUSY EDGE RCV’D

This polled parallel receive routine places one byte in the accumulator each time it is called.

P_INIT: MOV CSR,#09CH ;INITIALIZE PORT 6 OPERATING MODE
MOV R7,P6 ;DUMMY READ TO CLEAR IBF FLAG

P_IN JNB CSR.0 ;INPUT BUFFER LATCH FULL?
CLR CSR.4 ;BEGIN ACKNOWLEDGE PULSE
MOV R7,#02H ;INITIALIZE DELAY COUNTER
DJNZ R7,$;TIME ACKNOWLEDGE PULSE
MOV A,P6 ;READ BYTE – CLEAR BUSY SIGNAL
MOV R7,#02H ;INITIALIZE DELAY COUNTER
DJNZ R7,$;TIME ACKNOWLEDGE PULSE
SETB CSR.4 ;END ACKNOWLEDGE PULSE
RET

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 8

INTERRUPT DRIVEN PARALLEL
PRINTER INTERFACE
(See Figure 13)

Transmitter Operation
The transmitter’s CSR (control status
register) is programmed to the following
mode (see Figure 14):
1. CSR bit 6 controls the BFLAG output and

therefore the strobe line.

2. The OBF (output buffer full) flag controls
the AFLAG output.

3. The OBF is cleared on the positive edge
of the ODS (output data strobe) input.

4. The IBF flag is set on the negative edge
of the IDS (input data strobe) pin.

NOTE:
With this combination of AFLAG and BFLAG
modes set, port 6 is in the output only mode.
The output drivers are always enabled and
the ODS input is only used to clear the OBF
flag.

INTO is programmed to be negative edge
sensitive and is connected to the OBF flag

through the AFLAG pin. The OBF is cleared
on the positive edge of ODS. The net result is
that INTO is triggered on the end of the ACK
pulse (a positive edge). This signals the
transmitter that another byte may be
transmitted. The transmitting 83C451 is free
to do other tasks prior to this interrupt.

In this routine, Figure 15, the main program
establishes a buffer in data memory ended by
an ASCII end of text character. To begin
outputting the buffer, the routine PSEND is
called. The rest of the buffer is emptied by
the interrupt vectors to PSEND1.

For printers which generate acknowledge
pulses, output rates of 25k transfers per
second are achieved. Timer generated
interrupts are used to periodically return
program execution to the routine to service
non-acknowledging printers and to provide a
timeout feature. Non-acknowledging printers
are serviced at a rate of about 2.5k transfers
per second. This maximum rate may be
varied by adjusting the timer reload value. As
written, the time out procedure attempts to
retransmit a byte when the printer has not
acknowledged for an excessively long time.

Receiver Operation
In receiver operation, the IDS input is used to
latch in the data transmitted on receipt of the
strobe pulse. The receiver’s CSR is
programmed to allow the following (see
Figure 16):
1. The input buffer full flag is output through

the BFLAG pin and is used as the busy
signal to the transmitter. The IBF flag is
set and data is latched on the positive
edge of IDS.

2. Writing to the CSR bit 4 controls the
AFLAG output and therefore the
acknowledge line.

The receiver is interrupted on the negative
edge of the data strobe. Data is latched in on
the positive edge of the strobe pulse (see
Figure 17). Since the strobe pulse is normally
very short, there is little time lost between
receiving the interrupt and having valid data
in the input latch. The receiver is free to do
other tasks prior to receiving the INTO
interrupt.

8

80C451

ODS AFLAG

BFLAG IDS

P5.0

BFLAG

ACK

STROBE

BUSYIDS

Bus
Receiver

Bus
Driver

ReceiverTransmitter

ODS

Cable 80C451

P6 P6

AFLAG

INT0
Int0

SU00344

Figure 13. Interrupt Driven Parallel Interfaces Using 80C451 Controllers

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 9

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

0

MB0 MA1 MA0 OBFC IDSM OBF IBF

1 1 0 1 1

SU00345

Figure 14. CSR Programmed for Use as an Interrupt Driven Parallel T ransmitter

PSEND:

Set DPTR to
Start of RAM

Buffer

Disable Interrupts,
Stop and

Reset Timer

Is Bus Busy?

Start Timer,
Enable Interrupts

Enable INT0,, Start
Strobe,

Increment DPTR,
End Strobe

No

PSEND1:

Write Byte
to P6

End of Text
Character?

No

Return to
Interrupted
Program

Disable INT0

Yes
Timeout?

Increment
T/D Counter

Yes

Re-Pulse
Strobe

Yes

No

SU00346

Figure 15. Flow Chart for an Interrupt Driven Parallel T ransmitter

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 10

CSR 7 CSR 6 CSR 5 CSR 4 CSR 3 CSR 2 CSR 1 CSR 0

MB1

1

MB0 MA1 MA0 OBFC IDSM OBF IBF

0 0 1 1 0

SU00347

Figure 16. CSR Programmed for Use as an Interrupt Driven Parallel Receiver

INT0:

Clear CSR Bit 4
to Assert

Acknowledge

Read Port 6

CSR Bit 0 Set?
Input Latch Full?

No

Return to
Calling

Program

Set CSR Bit 4
to Deassert Ac-

knowledge

Yes

SU00348

Figure 17. Flow Chart of Interrupt Driven Parallel Receiver Operation

SOFTWARE EXAMPLES
The software for the interrupt driven parallel receiver is similar to the polled receiver example. However, after an interrupt is received, this
routine checks to confirm that data has been latched by the positive edge of the strobe pulse before proceeding with the routine.

INIT: MOV CSR,#090H ;INITIALIZE CSR
SETB EX0 ;ENABLE INTERRUPT 0
SETB IT0 ;SET NEG EDGE TRIGGERED INTERRUPTS
SETB EA ;ENABLE ALL INTERRUPTS

ORG EXTI0 ;INTERRUPT 0 VECTOR
JMP RCVR

RCVR:
RCVR: JNB CSR.0,# ;CONFIRM DATA LATCHED

CLR CSR.4 ;START ACKNOWLEDGE PULSE
MOV R7,#02H ;INITIALIZE THE DELAY COUNTER
DJNZ R7,# ;TIME ACK PULSE
MOV A,P6 ;READ BYTE – RESET BUSY LINE
MOV R7,#02H ;INITIALIZE THE DELAY COUNTER
DJNZ R7,$;TIME ACK PULSE
SETB CSR.4 ;END ACK PULSE
RET1

Philips Semiconductors Microcontroller Products Application Note

AN40880C451 operation of port 6

March 1988 11

This is the software for the interrupt driven parallel transmitter example.

; XMIT ROUTINE DRIVEN BY ACK PULSE GENERATED INTERRUPTS, OR TIME GENERATED INTERRUPTS
; FOR NON ACKNOWLEDGING PRINTERS. READS DATA BUFFER IN EXTERNAL RAM STARTING AT 100H
; AND READING UNTIL 04H IS FOUND.

ORG RESET
JMP 26H

ORG TIMER0
JMP PSEND1

ORG EXTI0
JMP PSEND1

ORG 26H
MOV CSR,#064H ;PORT 6 MODE
MOV TMOD,#002H ;CONFIGURE TIMER 0 TO 16 BITS
SETB TO0 ;INT0 IS EDGE TRIGGERED
SETB EA ;ENABLE INTERRUPTS

PSEND: MOV DPTR,#0100H ;SET DPTR TO START OF TEXT
;BUFFER

PSEND1: CLR EA ;DISABLE INTERRUPTS AND STOP
;TIMER

CLR TR0 ;IF ENABLED
CLR ET0
MOV R7,00H ;CLEAR TIMEOUT COUNTER
MOV R6,00H
MOV TH0,#–4 ;SET TIMER INTERRUPT PERIOD
MOV TL0,#00H
JB 0C8H,BB ;BUS BUSY
MOV ACC,#00H ;CLEAR ACCUMULATOR
MOVX 1,@DPTR ;RETRIEVE FIRST BYTE
MOV 06,ACC ;OUTPUT FIRST BYTE
CJNE A,#004H, CONT1 ;LOOK FOR END OF TEXT
JMP EOTB

CONT1: SETB ERX0 ;ENABLE INTO
CKR 0EEH ;START STROBE PULSE
INC DPTR
MOV ACC,DPH ;LOOK FOR PHYSICAL END OF
JB ACC.2,EOTB ;TEXT BUFFER
SETB 0EEH
JMP CONT

EOTB: CLR EX0 ;END OF TEXT FOUND, DISABLE
;INT0

SETB 0EEH
SETB EA
RETI

BB: INC R7 ;COUNT TIMER TIMEOUTS ON
;BUS BUSY

CJNE R7,#00H, CONT ;LOOK FOR OVERFLOW
INC R6 ;COUNT OVERFLOWS
CJNE R6,#10H, CONT ;TIMEOUT APPROX 5 SEC
JMP TO

CONT: SETB TR0 ;ENABLE TIMER INTERRUPT
SETB ET0 ;START TIMER
SETB EA
RETI

TO: CLR 0C9H ;SEND NEW STROBE PULSE IN
;RESPONSE TO TIMEOUT

NOP
NOP
MOV R6,#00H ;RESET TO COUNTER
MOV R7,#00H
SETB 0C9H ;END OF STROBE PULSE
JMP PSEND1

	INTRODUCTION
	PORT 6 AS A PROCESSOR BUS INTERFACE
	OPERATION
	SOFTWARE EXAMPLES
	USING PORT 6 AS A STANDARD QUASI-BIDIRECTIONAL I/O PORT
	IMPLEMENTATION OF PARALLEL PRINTER PORTS USING PORT 6
	THE INTERFACE
	PARALLEL PRINTER INTERFACES USING POLLING
	SOFTWARE EXAMPLES

	INTERRUPT DRIVEN PARALLEL PRINTER INTERFACE
	SOFTWARE EXAMPLES

