
1 REV 0 Motorola, Inc. 1996

6/96

�	����
Application Note

Prepared by
Douglas M. Shade
Motorola Programmable Logic Products

������ ��� �
� ������
������ ��� ����

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

2

APPLICATION NOTE
Tuning the MPA Design System for Speed

by Douglas M. Shade, Motorola Programmable Logic Products

Introduction

This application note covers methods for maximizing the
clock frequency of a given design using the MPA1000
generation of Motorola MPAs. The discussion is limited to
those areas specific to the MPA Design System: MPA library
components, pin, net and instance attributes, MPA Design
System Tool Options and clock files. Generic fast logic design
techniques such as look ahead carry and pipelined logic are
not covered in this note. A section which covers the progress
monitors of the tool is also included.

Front end techniques discussion is limited to schematic
entry however the basic concepts of each of the sections of
this application note apply to all design entry methods.

Taking Advantage of the Architecture

A very good investment of your design time is to spend a
while reviewing the data book section “MPA1000 Architectural
Overview” and the extensive on line documentation included
with the MPA Design System. In particular use the pull down
menus: “Help > Help on Device”, and “Help > Help on
Libraries”. Read these sections thoroughly.

Clock Resources
Each member of the MPA1000 family has an identical set of

clock distribution resources. Two pads on each edge of the die
may be dedicated to driving the 8 clock distribution lines.
These primary clock distribution lines roughly bisect the die
along the horizontal and vertical. From there, the lines branch
to form a load balanced distribution comb covering the entire
die. Skew is held to within 1nS for the complete clock network.

Using these clock resources to distribute register clock and
latch enables is a conventional requirement of most designs.
These resources are mentioned in this application note
because they may also be used to distribute internal logic
(non–clock or reset) signals with high fanout or otherwise tight
skew requirements. Speeding up high fanout signals by
putting them on one of the 8 available clock networks is
accomplished by appending the output of the source driver
with an ACLK or ARST buffer.

Similarly, external non–clock and non–reset signals can be
distributed throughout the array on the clock network by using
the IPCLK or IPRST input buffers at one of the 8 valid pad
locations. Using one of these buffers without specifying the
pad location will result in the MPA Design System
automatically assigning the buffer to one of these 8 valid pad
locations.

The MPA Design System treats ACLK and ARST
identically. The same holds IPCLK and IPRST. However, each
Zone is limited to two unique primary clock and two unique
primary reset signals. Since most designs have more clocks
than resets, it may be more prudent to use ARST and IPRST
macros for routing speed critical high fan out nets.

Taking Advantage of the I/O Cell
The standard I/O cell of the MPA array is very feature rich.

The complexity of this structure is apparent in the large
number of choices available in the I/O macro library IOLIB.
(Here again, the reader is encouraged to invest some time in
the on–line help facility, in particular “Help on Libraries > Input
and Output Pads” and “Help on Device > Functional
Description > I/O Cell”. Defining a bookmark for these two
particularly useful help sections will provide a short cut for
referencing them in the future.)

Each of the macros in the IOLIB fit in a single I/O cell.
Couple these relatively complex functions with the availability
of P–Bus routing resources and it becomes clear that
significant functionality can be achieved before ever having to
slow down to use the normal internal resources of the array.
Another advantage to using the registers in the I/O cells is
guaranteed clock to out timing.

Figure 1. A Three Bit Address Decoder, Only I/O Cell and
P–Bus Resources Used

In the example above, a three bit address decoder was
implemented using only the resources available in the
complex I/O Cells and the associated P–Bus. No internal logic
or routing resources were consumed. The features used
unique to the I/O Cell and P–Bus include: input delay to
synchronize external data with the buffered clock signal,
APBUF used to bus a common internal enable to signal to
several I/O sites, XNOR used to compare external and internal
address values, and finally the Wired–OR P–Bus line. The
P–Bus Wired–OR of Figure 1 is shown only for reference.

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

3 MOTOROLA

Wired–OR should be avoided on speed critical nets; explained
more fully in the next section.

Of course, all of this functionality could be moved internal to
the array, using only the simple I/O macros, but the design will
generally incur a slight speed penalty when doing so.

Wired–OR, Not the best choice
Several elements of the MPA library give you access to the

chip’s Wired–OR (open drain) structures. While the high to low
transition time of such nets is generally acceptable, the low to
high ‘drive’ of such nets is provided only by pull–up resistors.
As such, the low to high transition time suffers and so such
structures should be avoided on speed critical nets.

The pull–up resistor structure is provided in the WPUP
component. The number of parallel pull–up resistors used in
the WPUP is under control of the DPLD_PUP attribute. If it
becomes necessary to use such a net on a speed critical path,
be sure to use the DPLD_PUP attribute set to BOTH.

The available macros for the internal Wired–OR functions
are: WND2, WINV, WOR2, WBUF. When using these macros,
exaclty one WPUP is required per Wired–OR net. The
maximum number of drivers of a single Wired–OR signal is
given by

1
2

of core cells� .
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

MPA Family Member

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

Max Drivers

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

MPA1016
MPA1036
MPA1064
MPA1100

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

20
30
40
50

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 2. Maximum Drivers on a Wired–OR Signal

If the number of drivers on the Wired–OR net is below half
of the maximum allowed, then only a single pull–up resistor is
recommended for power conservation. The allowable values
for the DPLD_PUP attribute are 1, 2 or BOTH. Resistors 1 & 2
are of equal value, so it makes no difference which one you
select. BOTH ties resistors 1 & 2 in parallel and decreases the
low to high transition time, but at the expense of extra power
consumption.

Figure 3. The diamond symbol reminds the user that
these outputs can not source a logic high, but are only

able to pull the output to logic low.

Adding Wired–OR drivers to the net WIRED_OR_SIGNAL
will slow it down. Adding inputs to the net has little effect on
speed.

The ability to construct Wired–OR nets is not limited to
signals internal to the array. Peripheral Bus (P–Bus)
Wired–OR nets can be constructed using APWBUF (or
APWINV) and their associated pull–up structure PWPUP.
However, using these features requires the user to be aware
of the natural consequences of adding capacitance and
pull–ups to a resistive bus. Adding additional segments of
P–Bus (by assigning I/Os to different edges of the die)
increases capacitance that effects fall and especially rise
times. Also, the somewhat resistive nature of the P–Bus can
cause Vol noise margin problems if the active low P–Bus
driver is far from the pull–up element and driven element.

The assignment of P–Bus pull–up resistors is automatic.
On import, all PWPUP instances defined by the designer are
removed from the netlist. The tool automatically balances the
number of pull–up resistors against the P–Bus loading
(incurred by the use of multiple die edges) by automatically
inserting additional pull–up capacity for each P–Bus segement
used. During autolayout, the MPA Design System re–attaches
a single peripheral bus pull–up resistor per occupied die edge,
for each unique P–Bus signal. For example, if several I/Os that
use a P–Bus Wired–OR signal get split between the ‘top’ and
‘right’ edges of the die during autoplacement, the tool would
assign two pull–up resistors to the net.

The Wired–OR resources are provided to help simplify
some logic designs, however, their use should be avoided on
speed critical paths.

Guiding Layout with Attributes

The MPA Design System’s import process can accept a set
of attributes to help the front end designer tune the layout and
routing processes. The system also accepts I/O attributes to
specify CMOS/TTL compatibility, I/O drive, package pin
assignment and slew rate control. Declaring attributes in the
schematic will result in their being passed into the EDIF netlist
and then imported into the MPA Design System. Optionally the
designer may prefer to include attributes in an external .PAT
file of the same root file name as the EDIF netlist. The
designer may otherwise choose to use the combination of the
two methods, but is should be noted that attributes passed into
the MPA Design System in .PAT files will always take
precedence if declared in both places.
ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

Sch.
Comp’nt

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

Attached Place and
Route Attribute

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

Attached
I/O Attribute

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

Net

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_IGNORE_TIMING

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_CLUSTER_SEED

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_PLACE_PRIORITY

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

Symbol

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_IGNORE_TIMING

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_PUP

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

(instance)

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_PAD_PLACE (I/Os only)

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

PULLUP or PULLDOWN

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_OPDRIVE

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_OPLEVEL

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_OPSLEW

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_IPLEVEL

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DPLD_PAD_PROPERTIES

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

Formal Port

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

DPLD_IGNORE_TIMING

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

Figure 4. All Valid Attributes. Place and Route Attributes
can be used to affect a design speed up.

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

4

Place and Route Attributes
Place and Route Attributes can be used to affect a design

speed up by providing guidance to the autolayout tool about
which are the unimportant nets, and which nets and should be
clustered and placed tightly together. Absolute placement of
I/Os and relative placement of instances are also used as
autolayout guides.

DPLD_IGNORE_TIMING

The DPLD_IGNORE_TIMING attribute is used to inform
the tool which nets to ignore timing on. It may be set on an
symbol (instance), a net or an external pin (formal port). If a
net has the attribute set, then all delay paths associated with
that net are ignored. If an instance has the attribute set, then
all input delay paths driving and all delay paths being driven
from that instance are ignored. Assigning the attribute to a
formal port has exactly the same effects as assigning to the
I/O instance itself. Once all the objects to be ignored have
been identified, their paths are propagated forwards and
backwards through combinatorial gates until clocked objects
(or top level circuit I/O) are reached. The result is that
additional segments other than those explicitly specified may
be ignored for timing purposes as well.

You are required to use a dummy value with this attribute,
but the value stated is otherwise ignored.

Assigning this attribute to a symbol, net or formal port frees
the timing driven autolayout algorithms to more optimally
cluster, place and route the speed critical nets.

DPLD_CLUSTER_SEED

Once a netlist import is complete, the first step of autolayout
is clustering. During clustering the tool attempts to group
related chunks of logic together. This helps simplify the place
and route problem by reducing the total number of ‘things’ the
place and route algorithm has to deal with.

The DPLD_CLUSTER_SEED attribute is used to assign a
cluster seed to a net. This will cause the clustering to treat all
instances that connect to that net specially. The action taken
depends on the value of the attribute, as follows:

0 ignore this net during clustering. Setting this
attribute on a net is likely to cause the net to be
implemented in global interconnect.

1 default operation

<1000 weight this net by the given factor in the
clustering

Assigning a high value cluster seeds on your most speed
critical nets results in a tighter clustering and consequently
shorter delays for these nets.

DPLD_PLACE_PRIORITY

The DPLD_PLACE_PRIORITY attribute can be applied to
a net to guide the software to lay out that net in a physically
smaller area – in other words, to physically place the instances
connected to that net closer together. The value of
DPLD_PLACE_PRIORITY should be an integer in the range 1
to 10 (1 is the default). Higher values of place priority let you
prioritize nets relative to each other.

DPLD_PAD_PLACE

 DPLD_PAD_PLACE – instructs the I/O pad to be allocated
to the package pin number specified. Only one pad is
allocated to any pin. Automatic placement of I/O pads usually
results in a better layout, so this attribute should only be added
when it is necessary to back fit an existing PCB layout.
Example: DPLD_PAD_PLACE=C2

Assigning Attributes in a Schematic
In PROSeries, the method of assigning attributes is straight

forward. With a left mouse click, select the desired net or
symbol (instance). A net’s color will change or a bounding box
will appear around the instance, identifying it as the currently
selected object. Then from the “Add” pull down menu, select
“Object Attribute”, the bottom of the screen (the text input
area) will then prompt you with “Attribute Text String”. Type in
the attribute and the value (if appropriate) and hit enter. The
attributes will then be included in the EDIF netlist once
EDIFNETO is run.

Figure 5. The net “NETA” attributed with DPLD_CLUSTER_SEED=0, The AN2 is attributed with DPLD_IGNORE_TIMING.
The selected component “OPBUF $1I4” and its attached attributes are boxed.

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

5 MOTOROLA

Assigning Attributes & Instances in an External
.PAT File

Assigning attributes to a long series of instances, or a
variety of nets in the above manner can be time consuming
and may be error prone. The MPA Design System gives the
designer the option to enter all the valid attributes in an
external .PAT file. Entries in the .PAT file take precedence over
any attributes that may have also been instantiated in the
EDIF netlist via schematic entry.

The external attributes file supports four main operations:

1) Insertion of attributes to specify pin placements and
pad characteristics.

2) Insertion of special pad cells, IPCLK/IPRST, to drive
the primary clock/reset network.

3) Insertion of special buffer primitives into a named net.

This has two uses:

a) Force a named net onto/off the peripheral bus,
by inserting the primitives APBUF/PABUF
respectively.

b) Force a named net onto the pr imary
clock/reset network, by inserting the primitives
ACLK/ARST respectively.

4) Attaching place and route attributes to existing nets,
instances and formal ports.

The external attributes file must exist in the same directory and
with the same name as the EDIF netlist, with the file extension
.PAT During import, the MPA Design System automatically
checks for the existence of a .PAT file and uses it when one is
found.

Syntax of the External Attributes (.PAT) File

The external attributes file contains a list of commands, one
per line. Each command contains up to five fields, as follows:

<object–class> <object–name> <operation> <name> [<value>]

where:

<object–class> is one of port, net, or instance.

<object–name> is the netlist name of the object (port,
net or instance) being operated on.

<operation> is one of attribute or instance.

<name> is the name of a definition or an
attribute.

<value> is only used in attribute operations,
and is the value to be given to the
attribute. This field is only required
when an attribute requires a value.

The following are specific syntax forms of all valid attribute or
instance assignments.

port <name> instance

(name here can only refer to input instances with one
input pin and one output pin)

ipclk

iprst

port <name> attribute

dpld_ignore_timing dummy_arg

dpld_pad_place <value, see data book for package being
used>

pullup 1|0

pulldown 1|0

dpld_opdrive 6ma|12ma

dpld_oplevel 3v|5v

dpld_opslew high|low

dpld_iplevel CMOS|TTL

dpld_pad_properties 0|1, 0|1, CMOS|TTL, 3v|5v, 6ma|12ma,
high|low

net <name> attribute

dpld_cluster_seed n (where, 1 is default, 0 means ignore net)

dpld_place_priority n (where, 1 is default, 10 is highest priority)

net <name> instance

aclk

apbuf

arst

pabuf

instance <name> attribute

dpld_ignore_timing dummy_arg

dpld_pad_place <value, see data book for package being
used>

pullup 1|0

pulldown 1|0

dpld_opdrive 6ma|12ma

dpld_oplevel 3v|5v

dpld_opslew high|low

dpld_iplevel CMOS|TTL

dpld_pad_properties 0|1, 0|1, CMOS|TTL, 3v|5v, 6ma|12ma,
high|low

The nomenclature of port, net and instance and their use
can be a little confusing, I’ll attempt to clarify a bit. A ‘net’ is
simply the name of the net of interest. In Figure 6 the valid net
names are SEG[0:8]. An ‘instance’ is the unique designator for
the instantiated library macro. In Figure 6, $1I46 is the
instance of the OR gate. A ‘port’ refers to only formal ports
(external I/O pins).

Another point of confusion is that the valid attribute sets for
“port <name> attribute” and “instance <name> attribute> are
identical and each guides the MPA Design System to respond
in an identical fashion. You may use either syntax, but for the
sake of simplicity, stay consistent in your methodology.

Example .PAT File Entries

The following sample .PAT file entries reference the simple
schematic shown in Figure 6. The entries of Figure 7 should
be considered one at a time; considering them all to be part of
the same .PAT file, all operating on this simple circuit
simultaneously is not the intended interpretation.

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

6

Figure 6. A sample schematic to add .PAT file attributes to. Nets are named SEG[0:8].

// This is a comment

This is a comment as well

port seg0 instance ipclk

//This results in the top IPBUF being replaced by an IPCLK, forcing the

//net SEG3 onto a clock network.

port seg0 attribute dpld_pad_place 22

//This results in the top IPBUF being placed on the pad associated with

//package pin 22.

port seg2 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored

//for the entire delay path driven from the formal port SEG2. A dummy

//argument is required for this attribute.

net seg5 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored

//for the entire delay path associated with the net SEG5. For the design

//of Figure 6, this statement has the same effect as the previous one.

//A dummy argument is required for this attribute.

net seg5 attribute dpld_cluster_seed 500

//During clustering, the MPA Design System will strongly associate

//the top and bottom OR2s. The resulting layout will likely have

//these two instances in the same cluster.

net seg5 attribute dpld_place_priority 10

//With the net SEG5 attributed with a high place priority, the autolayout

//tool will likely place the top and bottom OR2s physically adjacent to one

//another.

net seg5 instance aclk

//This results in an ACLK buffer being inserted after the bottom OR2’s output

//and the top OR2’s B input. The B input of the top OR2 will now be driven

//off of a primary clock routing resource.

instance $1I23 attribute dpld_opdrive 12ma

//This results in the OPBUF getting 12ma drive capability.

instance $1I46 attribute dpld_ignore_timing dummy_arg

//For place and route purposes, the design’s timing parameters are ignored

//for the all nets associated with the instance $1I46. A dummy

//argument is required for this attribute.

Figure 7. Sample .PAT file entries showing the major syntax variations allowed. Consider each entry individually, this
entire figure is not applicable as a .PAT file for the referenced design.

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

7 MOTOROLA

Tool Options – Autolayout

Referring to Figure 8, clicking on the Tool Options button brings you to the Tool Options window of Figure 9.

Figure 8. A sample tool context window. In this example, two design (.DSN) files are available.

Figure 9. Almost all autolayout parameters are adjusted from this window. ‘Seed’ is available under the Advanced
Autolayout tab.

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

8

The ‘Parameter Group’ roll down menu has a scrollable list
of pre–defined tool settings to choose from: Default, High
Utilisation, Minimum Delay, Try Harder, and Ignore Timing.
Each of these parameter groups was established as a result of
studying many sample designs, each with varying design
styles and densities. These provided Parameter Groups are
generally very good starting points for guiding the MPA Design
System through optimization of your designs. If after some
experience, you find a new unique set of parameter settings
that works better for you, you may save your own custom
parameter groups. (The changes are written to a file called
PMEL.INI in the Windows installation directory.)

Target Delay

Minimum 1 Maximum 9999 Default 50 (5nS)

Target delay is the most significant guiding parameter of the
autolayout process. The ‘delay’ of a combinatorial network is
calculated as the longest path from input to output. For
synchronous circuits, path delays are calculated as I/O to
clocked element (register), register to I/O and from register to
register.

Autolayout attempts to keep the delay of each of these
paths types below the target delay value. For a single clock
design, you set the target delay to the reciprocal of the desired
operating frequency.

The units are 10–10s. For example, 80 yields an 8ns delay
target. (A screen shot of Version 2.2.3 of the MPA Design
System is shown in Figure 9. The panel shows the units as
“ns”, this is incorrect and will be corrected on version 2.2.4 and
later.)

Utilisation

Minimum 1 Maximum 150 Default 80

The percentage of the recommended maximum number of
core cells partitioning will attempt to use in a zone. Partitioning
will exceed this number if necessary to complete.

For the MPA1000 family, the recommended number of cells
per zone to use is around 50. Setting utilisation to 100% tells
the partitioning tool to consume approximately 50 of the 100
possible cell sites per zone. If the utilisation parameter is set
too high, then the autolayout tool may spend a lot of effort on a
few highly utilized zones, while other zones are left empty or
underutilized. If the utilisation parameter is too low, then the
autolayout tool will adjust the parameter upward until it is
compatible with the design. Increasing the value of the
utilisation parameter may increase the operating speed of the
circuit, only at the cost of increased tool run time. Values
greater than 100% are not recommended.

Effort

Minimum 1 Maximum 100 Default 30

The relative amount of work applied to the partitioning
phase. When setting utilisation high, effort should be set high
as well.

The two major phases of autolayout that typically consume
the most time are partitioning and zone routing. The time taken
in partitioning is directly related to effort.

Start Temp
Minimum 1 Maximum 100 Default 10

Partitioning and zone routing are performed using a
simulated annealing algorithm. Setting the start temperature
higher gives the partitioning and zone routing tools the
freedom to make more aggressive moves in the search for the
optimal solution. With the start temp set low, the respective
algorithms may only be free to find local minimum solutions
whereas the best overall solution lies over some other cost
hump that the tool was otherwise constrained from traversing.
It is usually best to increase start temp in a highly utilized
device. If increasing start temp, be sure to increase effort as
well.

Fanout
Minimum 1 Maximum 100 Default 2

This is the maximum fanout of a net which is still included in
the clustering. All nets which have a fanout greater than the
number specified are ignored in the clustering phase. Any nets
ignored during clustering are more likely to be routed on global
resources (typically a bit slower than medium or zonal routing
resources).

Attempts
Minimum 1 Maximum 20 Default 1

The number of runs through partitioning phase. More runs
typically yield a better solution, only at the expense of
extending tool run time.

Min Zone Delay
Minimum 1 Maximum 9999 Default 5 (0.5nS)

The units are 10–10s. The zone router will attempt to keep
the delay of all net segments within the zone being routed to
less than the value specified.

Back Off
Minimum 0% Maximum 100% Default 30%

Percentage of relaxation to apply if the target delay was
unobtainable. Expressed as a percentage of the previously
described Target Delay.

Delay Cost
Minimum 1 Maximum 100 Default 5

This is the weighting given to timing during partitioning. If a
particular partition includes a net that is failing to meet its
timing target, then the cost of that partition will be artificially
raised by an amount proportional to the delay cost. Increasing
the delay cost is likely to trade off against achievable
utilization. Setting delay cost to zero will result in much
reduced tool run times and increased achievable utilization,
however this is accomplished at the expense of lowering the
design’s maximum frequency.

Seed
A ‘seed’ value may be set in the Advanced Autolayout panel

of the Tool Options window. The seed is as a starting point for
the autolayout’s pseudo–random number generator. Random
numbers are used in several of the autolayout algorithms.
Because it is note a true random number generator, two layout
runs with identical settings will yield identical results.
Changing nothing but the seed value may yield significantly

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

9 MOTOROLA

different solutions. The PC and Workstation versions of the
MPA Design System have different pseudo–random
generators and so solutions from each will always differ in
spite of identical initial seed values. It is mentioned here only
for completeness. Changing the seed value does not
guarantee a faster place and route solution, only a different
one.

Clock Files

In a simple single clock design, it is sufficient to declare a
Target Delay value in the autolayout panel of the tool options
window. The autolayout attempts to achieve a place and route
solution in which all I/O to clocked element path delays and all
clocked element to clocked element path delays are shorter
than the target delay.

However, more complex designs may have multiple clocks,
each running at unrelated frequencies. In such instances it
may be unwise to ask the autolayout tool to constrain every
path of the design to the delay target of the fastest path
required.

Clock files provide a method of grouping related
components of your design into unique timing groups. The
timing groups may then each be assigned unique clock
specifications, only as restrictive as required. This assists the
autolayout tool by guiding it to complete the more speed

critical nets using the more valuable placement, routing and
switching resources as required.

Clock files also provide a method of specifying target delays
between such timing groups. The syntax presented below can
be a bit daunting at first. Please read through to the examples,
and it should become a bit clearer on just how to use a clock
file.

Clock File Syntax
The following meta–syntax conventions are used in this

definition:

::= introduces a rule

; terminates a rule

{...}+ Indicate one or more occurrences of
the phrase inside the braces

{...}* Indicates zero or more occurrences of
the phrase inside the braces

[...] I nd i c a tes an op t i ona l s i ng le
occurrence of the phrase inside the
brackets

| Separates alternative choices

Timing groups identify those portions of the design driven
by a particular clock with a particular specification. The syntax
for Timing Group Definitions is given as:

timingGroupDefinitions ::=‘(‘ ‘timingGroupDefinitions‘ {timingGroup}+ ‘)‘;

 where

 timingGroup ::= ‘(‘ ‘timingGroup‘ timingGroupDef [clock]
 timingGroupInstanceList ‘)‘;

 where

 timingGroupDef ::= timingGroupName; any string, ie my_timing_group

 clock ::= ‘(‘ ‘clock‘ period [phase] ‘)‘;

 where

 period ::= time_in_units_10 –10_seconds (50 = 5nS), ie ‘50‘

 phase ::= time_in_units_10 –10_seconds

 timingGroupInstanceList ::={allIO|allFlipFlops|netRef|instanceRef}+;

 where

 allIO ::= ‘(‘ ‘allIO‘ ‘)‘;

 allFlipFlops ::= ‘(‘ ‘allFlipFlops‘ [clockInputSense] ‘)‘;

 where

 clockInputSense ::= ‘INVERTED‘|‘NONIVERTED‘

 netRef ::= ‘(‘ ‘netRef‘ netName [clockInputSense] ‘)‘;

 where

 netName ::= any string, ie my_net_name

 clockInputSense ::= ‘INVERTED‘|‘NONIVERTED‘

 instanceRef ::= ‘(‘ ‘instanceRef‘instanceName ‘)‘;

 where

 instanceName ::= ‘“‘any_instance ‘”‘, ie “$1I19”

Intended Target Delay is the method used to limit the delay between the previously defined timing groups.

The syntax for Intended Target Delay is given as:

intendedTargetDelay ::=‘(‘ ‘intendedTargetDelay‘ targetDelay driverGroupRef

 drivenGroupRef ‘)‘;

 where

 targetDelay ::= time_in_units_10 –10_seconds (50 = 5nS), ie ‘50‘

 driverGroupRef ::= timingGroupName; any string, ie my_timing_group

 drivenGroupRef ::= timingGroupName; any string, ie my_timing_group

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

10

Clock File Examples
The syntax specification is for clock files is harder to read than it is to type, and it wasn’t easy to type. So in an effort to clarify the

topic some, lets look at some clock file examples.

(timingGroupDefinitions

 (timingGroup My_Flip_Flops

 (clock 50)

 (allFlipFlops)

)

 (timingGroup My_IO

 (allIO)

)

)

(intendedTargetDelay 10000000 My_Flip_Flops My_IO)

(intendedTargetDelay 10000000 My_IO My_Flip_Flops)

In the above example all of the flip–flops are intended to be clocked with a 5nS period clock. I’m further specifying that I don’t
care how long it takes to get signals in and out of the design by defining a very large intendedTargetDelay between groups and not
specifying a target clock period set for “allIO”,

(timingGroupDefinitions

 (timingGroup My_CLK1_Group

 (clock 200)

 (netRef CLK1)

)

 (timingGroup My_CLK2_Group

 (clock 100)

 (netRef CLK2)

)

)

In the above example, two clock groups were specified: ‘My_CLK1_Group’ and ‘My_CLK2_Group’. All instances driven with the
clock named CLK1 will be placed and routed to meet a 20nS delay criteria, and all instances driven with the clock named CLK2 will
accommodate a 10nS clock.

(timingGroupDefinitions

 (timingGroup My_Group

 (clock 200)

 (instanceRef “$1I*”)

)

)

In the above example, the wild card * is used to define the instances that are members of the timing group ‘My_Group’.

(timingGroupDefinitions

 (timingGroup My_CLK1_Group

 (clock 200)

 (netRef CLK1)

)

 (timingGroup My_CLK2_Group

 (clock 100)

 (netRef CLK2)

)

)

(intendedTargetDelay 100 My_CLK1_Group My_CLK2_Group)

(intendedTargetDelay 100 My_CLK2_Group My_CLK1_Group)

In the above example, two clock groups were specified: ‘My_CLK1_Group’ and ‘My_CLK2_Group’. All data paths between these
two groups are constrained to meet the more restrictive of the two timing requirements.

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

11 MOTOROLA

Tool Progress Monitoring

As the you gain experience and the density of your designs
starts to increase, and our your speed requirements become
more restrictive, you may find the MPA Design System
working longer on your designs. As such, this section is
included to give you a clear explanation of all the status
windows and displays the system gives you during the course
of design importation and auto layout.

Import

Figure 10. Importing and Retargeting

During the import and retarget phase, the MPA Design
System takes the EDIF netlist in, checks it for compatability
and errors. The macro elements of the EDIF netlist are
mapped to the cell definitions available to the MPA family. If
there are no problems found, the import phase concludes with
the output of a .NET file, the native netlist format of the tool.

Autolayout

Figure 11. The beginning of Autolayout

During the brief initialization period of the autolayout
process, the previously mapped component nets are read in,
the package information is read in, I/O pads are counted along
with core cells. A figure of utilization is echoed back and the
tool proceeds to the clustering phase. No status bars are
presented in this step.

Clustering

Figure 12. The Clustering Status

Clustering combines groups of related logic together to help
break up the place and route problem into more manageable
chunks. In Figure 12: Problem refers to the number of root
level clustering problems to be solved. A root level clustering
problem is a cluster containing sub–clusters or and I/O. Index
refers to the 3 phases of clustering for that problem. Phase 1 is
the stage where the clustering algorithm decides which
clusters are root level clusters, and is already complete.
Therefor the progress bar starts on 2 and finishes on 3. Pass
refers to the estimated number of items per root level problem.

Partitioning and Pre–Placement

About half of the tool’s time is spent in the partitioning
phase. During this phase, the MPA Design System places the
clusters formed in the previous process into zones.
Pre–placement refers to the placement of I/O sites that were
optionally fixed via the DPLD_PAD_PLACE attribute.

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

12

Figure 13. The Initial Partitioning Phase

The first part of the partitioning algorithm completes the
initial placement tasks. Passes refers the fixed number of
passes at the placement problem. The first pass yield an initial
placement of clusters, the remaining 4 passes are refinements
of this initial placement. Objects refers to the number of
clusters created in the previous clustering phase.

Figure 14. The Second Partitioning Phase

This phase takes the initial placement results and refines it
by assigning specific zones and routing ports to the clusters.
Attempts refers to the number of times this entire phase

will/has run. Attempts is set as a autolayout tool option
‘Attempts’. Partitioning is the most important phase of the
autolayout process. If you are looking for more speed from
your design this is a good place to experiment. Increasing
‘Attempts’ in the autolayout tool options will generally yield
improved results, but at the expense of extending the tool’s
run time of course. Steps refers to the number of steps the tool
must take to complete the partitioning. The step rate increases
as the tool proceeds. This is the indicator to watch to get the
best feel for how long partitioning will take. Cost refers to the
total cost of the design (the sum of the cost of the nets plus the
cost of the cost of the parts). Cost generally starts off high and
proceeds in a downward trend as a solution is approached. It
gives you an indication of the quality of the partition in the
current stage, whether or not the tool is converging to a
solution, how good that solution is, and how sensitive the
design is to changes in the way the clusters are placed. Area
is proportional to the sum of the number of instances in the
zones in excess of the number specified in the utilisation
parameter. IO refers to number of over congested areas in the
IO zones.

Global Routing

Figure 15. Global Routing Phase

After partitioning has assigned all the clusters to zones,
global routing assigns signals to zone port cells and routes
these ports to one another as required. Attempts refers to the
number of attempts to route all segments. If global router fails
to complete the routes on the fifth iteration it will give up.
Passes refers to the number of attempts per segment to route
globally (1000 per segment). Segments refers to the total
number of segments to be routed.

AN1569

ECLinPS and ECLinPS Lite
DL140 — Rev 3

13 MOTOROLA

Zone Routing

Figure 16. Simple Zone Routing Example

Zone routing is the final major step in completing the
autolayout problem. The tool can often spend more than half
of its time completing this task. Partitioning has placed
clusters into zones, and global routing has assigned and
routed signals from zone to zone and zone to I/O. Now the
zone routing tool must complete the connections at the lowest
level of hierarchy. Zones refers to which zone is currently
being processed. Attempts is the number of attempts taken at
completing the zone routing. If the zone router fails to route the
zone on the fifth iteration, it will give up on the current
placement solution and attempt to replace instances within the
zone as described in Figure 17. Object refers to the total
number of objects to be placed and routed in the zone.

Figure 17. Complex Zone Routing Problem

If the instance placement solution provided by partitioning
can not be zone routed, the tool (zone router) gives up on the
process described in Figure 16 and moves to a second phase
of zone routing. In this phase the tool discards the placer’s
solution and provides new possible solutions to try. In this
case, Zones refers to the zone currently being processed.
Attempts is the number of attempts taken at completing the
zone routing. Iteration is the number of attempts to take to
achieve the targets for zone routing. Step refers to the
maximum number of steps (per iteration) to obtain the zone
routing targets.

Back Annotation

Figure 18. Back Annotation Status

Once you’ve successfully completed a layout, you may
want to generate a back annotation file so timing data can be
passed back to your simulator. In this process the estimated
RC and routing switch delays are compiled and passed back
to a netlist format of your choosing. Output ports refers to the
every driving pin of the design. Input ports (expressed as a
percentage) refers to all the inputs that could possibly affect
the output port being considered.

AN1569

MOTOROLA ECLinPS and ECLinPS Lite
DL140 — Rev 3

14

Summary

Figure 19 is a matrix that shows how each of the methods
discussed in this application note interacts with the various
phases of the autolayout process. You can see from this
matrix that the most critical phase of the autolayout process is
partitioning. If you are having trouble meeting a restrictive
timing requirement, this is where you should concentrate your
efforts.

The number of different combination of design styles, tool
settings and use of attributes is very large and so it is
impossible to give exact guidance on how to use the MPA
Design System to get the absolute best possible speed
solution for your particular design. However, the MPA Design
System and the MPA1000 architecture were co–developed
and as such should provide you with a total system ready to
implement your requirements quickly and easily with no need
to adjust the parameters and attributes as described in this
note. If however your timing requirements are not met on your
first pass through the tool, hopefully you have been provided
with enough information in this note to start experimentation in
an informed manner.

M
ap

 (
im

po
rt

)

P
re

–P
la

ce

C
lu

st
er

P
ar

tit
io

n

G
lo

ba
l

Z
on

al

Front End Design

Macro Selection X

PIN Attribute

DPLD_IGNORE_TIMING X X X X

INSTANCE Attribute

DPLD_IGNORE_TIMING X X X X

NET Attributes

DPLD_IGNORE_TIMING X X X X

DPLD_CLUSTER_SEED X

DPLD_PLACE_PRIORITY X

DPLD_PAD_PLACE X

Tool Options

Target Delay X X X X

Utilization X

Effort X

Start Temp X

Fan Out X

Attempts X

Min Zone Delay X

Back Off X X X

Delay Cost X X X

Seed X X X X

Figure 19. Effected Modules for Macros, Attributes, and
Tool Option Settings

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed : Motorola Literature Distribution; JAPAN : Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC : Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

AN1569/D

��	�������
◊

