
AN1522 1 Fri Dec 15 11:40:36 1995

 Motorola, Inc. 1994

SEMICONDUCTOR
APPLICATION NOTE

MOTOROLA

Analog Phase Locked Loop for H4CPlus , H4EPlus 
and M5C Series Arrays
Prepared by: Roy Jones
Edited by: Clarence Nakata
Application Specific Integrated Circuits Division, Chandler AZ

AN1522

Order this document
by AN1522/D

Table of Contents Page
1.0 Introduction . 1
2.0 Feature Description. 1
3.0 APLL Modelling for Simulation 4
4.0 Test Strategy for APLL Arrays. 11
Appendices . 12

1. Introduction
This application note describes the implementation and

use of an analog phase locked loop, or APLL, which is avail-
able on two families of CMOS gate arrays offered by Motoro-
la: the H4CPlus Series arrays, H4EPlus Series arrays and the
M5C Series arrays.

Section 2 describes the various versions of the APLL
which are offered as different library macros. This section
also contains APLL performance data and signal descrip-
tions, and shows the physical placement of the APLL on
H4CPlus, H4EPlus and M5C arrays.

Section 3 describes how the APLL Verilog simulation
model works and how it is used for “system-mode” simula-
tions (as opposed to “option release” simulations).

Section 4 describes Motorola’s strategy for testing
H4CPlus, H4EPlus and M5C arrays that contain an APLL. A
Motorola-internal test program is used to test the APLL itself,
while user-supplied option release test vectors are used to
test the remainder of the chip.

The Appendix shows a schematic of the test circuitry built
into the APLL as well as a table of the various operating
modes of this circuitry, which is controlled by the Motorola-in-
ternal test program.

2. Feature Description
Appendix D and Appendix E contain a comprehensive dis-

cussion and analysis of the use of Motorola’s digital PLL
(DPLL) to speed-up chip-to-chip data transfer by cancelling
out on-chip clock network insertion delay. This analysis also
applies to an analog PLL (APLL), which can be used for the
same purpose.

Compared to the DPLL, the APLL can run faster, and has
less in-lock phase error. The APLL also provides on-chip fre-
quency synthesis, which allows a slower/quieter backplane
clock frequency to be multiplied up to the desired on-chip
clock frequency. The DPLL is not offered in H4CPlus,
H4EPlus or M5C Series Arrays.

The following table lists the APLL macros available in
H4CPlus, H4EPlus and M5C arrays.

PECL is defined as positive- or pseudo-ECL. Table 2 sum-
marizes the performance of the H4CPlus, H4EPlus and M5C
APLL macros. The “Output Frequency Range” is the linear
range of the VCO; its full range extends somewhat further.
“Max clk tree delay” is the maximum delay that the APLL can
handle in its feedback loop before going unstable.

Note 1: All of the performance numbers in Table 2 are
preliminary! The guaranteed values for these parameters
are in the respective H4CPlus, H4EPlus and M5C Design
Reference Manuals.

Note 2: On H4CPlus and H4EPlus arrays which may
use both 3.3V and 5V power, the APLL I/O must be pow-
ered by the same voltage level as the array core.

All H4CPlus, H4EPlus and M5C Series APLLs require the
following six pins (see Figure 2):

• AVDD: analog power

• AVSS: analog ground

• FREF: reference frequency input pin (also used by
tester to clock the core logic)

• TESTSEL: configures the APLL for tester measure-
ments

• TESTOUT: divided-down APLL output frequency for
tester

• VCOCTL: for measuring VCO control voltage and
charge pump current

TESTOUT, TESTSEL, and VCOCTL are dedicated test
pins which must be grounded during normal system opera-

Table 1 APLL Macros

Macro Technology
Analog
Power

FREF
Input Type

N, Loop
Divider

AP1 H4CPlus, H4EPlus 5 V CMOS 1 - 4

APD1 H4CPlus, H4EPlus 5 V PECL 1 - 4

AP2 H4CPlus, H4EPlus 5 V CMOS 5 - 16

APD2 H4CPlus, H4EPlus 5 V PECL 5 - 16

APL1 H4CPlus, H4EPlus 3.3 V CMOS 1 - 4

APDL1 H4CPlus, H4EPlus 3.3 V PECL 1 - 4

APL2 H4CPlus, H4EPlus 3.3 V CMOS 5 - 16

APDL2 H4CPlus, H4EPlus 3.3 V PECL 5 - 16

APL1 M5C 3.3 V CMOS 1 - 16

APDL1 M5C 3.3 V PECL 1 - 16

AN1522 2 Fri Dec 15 11:40:36 1995

2

MOTOROLA AN1522

tion. An additional input pin, FREFB, is required if the refer-
ence frequency is a PECL differential clock (see Figure 3).
Each APLL also has the following five signals which interface
to the array core:

• FREF_CORE: output of FREF pin input buffer; drives
FREF_MUX directly, or through a PLLDELAY macro
to cancel phase error due to a core divider (see Sec-
tion 4.1)

• FREF_MUX: phase detector reference frequency
input

• FVCO: VCO output frequency

• FVCO_DIV2: FVCO frequency divided by 2

• FFB: phase detector feedback frequency input

Referring to Figure 2 and Figure 3, for each type of APLL
(CMOS-input and PECL-input), a buffer (buffer B) compara-
ble to the FREF input buffer is included at the FFB feedback
input to the phase detector in order to prevent the FREF input
buffer’s prop delay from adding to the phase error between
the FREF pin and the clock tree. In addition, the PLLDELAY
macro can be placed in the array core between the APLL’s
FREF_CORE output and FREF_MUX input in order to pre-
vent a core divider’s prop delay from adding to the phase er-
ror between the FREF pin and the clock tree (see Section
4.1). No external components are required for filtering of the

VCO control voltage. Up to two APLLs can be used on an
H4CPlus or H4EPlus array, in the lower left and upper right
corners where they are isolated from digital pwr/gnd/signal in-
terconnects to minimize coupling of digital noise into the
APLL. If only one APLL is used on an array, the APLL must
reside in the lower left corner.

2.1 APLL Macrocell Descriptions
The APLL macro symbol is shown in Figure 1 and is sup-

ported in Motorola’s H4CPlus or H4EPlus Series library.
Three test pins are utilized to bypass the APLL to test the core
logic and to test the APLL. The three test pins are tied to
AVSS in the application.

On M5C Series arrays, up to three APLLs can be used. If
only one APLL is used, it must reside in the upper left corner.
If two APLLs are used, they must reside in the upper left and
upper right corners. If three APLLs are used, the only restric-
tion is that there is no APLL in the lower left corner.

As shown in Figure 4, an APLL macro covers the corner
and also four adjacent I/O sites (five I/O sites if FREF is a
PECL input - see Figure 5). Accordingly, the pad locations are
fixed for the APLL I/O signals. The Manufacturing Rules Ver-
ification (MARV) program contained in Motorola’s OACS
system checks that the designer has made correct pin assign-
ments for the APLL I/O. ERC also checks compliance with the
APLL placement restrictions described in the previous two
paragraphs.

Figure 1 Analog PLL Macro Symbols

FREF_CORE

X
X

X
X

X
X

X
X

FFB

FVCO

FREF

TESTOUT

VCOCTL

TESTSEL

FREF_MUX

FVCO_DIV2

AVSS

X
X

FREF_CORE

X
X

X
X

X
X

X
X

FFB

FVCOFREF

TESTOUT

VCOCTL

TESTSEL

FREF_MUX

FVCO_DIV2

AVSS

AN1522 3 Fri Dec 15 11:40:36 1995

3

AN1522 MOTOROLA

Figure 2 Analog PLL Block Diagram (CMOS Input)

Table 2 APLL Performance*

H4CPlus, H4EPlus
M5C

3.3 V 5 V

Output Frequency Range
FVCO (MHz)
FVCO_DIV2 (MHz)

60 - 160
30 - 80

70 - 250
35 - 125

100 - 300
50 - 150

Output Duty Cycle
FVCO
FVCO_DIV2

25% - 75%
50%

25% - 75%
50%

25% - 75%
50%

Loop Divider Value, N
APxx1 macros
APxx2 macros

1 - 4
5 - 16

1 - 4
5 - 16

1 - 16

Reference Frequency
Range (MHz)
Normal use:
APxx1 macros
APxx2 macros
On tester (N=8) all macros

15 - 160
3.8 - 32
7.5 - 20

17.5 - 250
4.4 - 50

8.75 - 31.2

6.25 - 300

12.5 - 37.5

Phase Error
CMOS Singe-Ended Inputs
PECL Differential Inputs

50ps
200ps

50ps
 200ps

50ps
200ps

Jitter 200ps 200ps 200ps

Max. Clock Tree Delay
(Worst-Case)

25ns 20ns 20ns

Max. Lock-Acquisition
Time

10µs 10µs 10µs

* All specs are preliminary.

AN1522 4 Fri Dec 15 11:40:36 1995

4

MOTOROLA AN1522

Figure 4 Analog PLL Layout (CMOS Input) Figure 5 Analog PLL Layout (PECL Input)

Figure 3 Analog PLL Block Diagram (PECL Input)

AN1522 5 Fri Dec 15 11:40:36 1995

5

AN1522 MOTOROLA

ro is a delay element for matching the delay of the M di-
vider block when M > 1. As an example, assume a 5.0
Volt core, and a 40 MHz clock tree is desired. With an
input reference frequency of 20 MHz, L = 2 and M = 2.

By selecting N = 8, (2 x 2 x 2), the FVCO_DIV2 is
forced to 80 MHz. This is approximately the middle of
the operation frequency range, since the FVCO_DIV2
range is between 35 and 125 MHz. (In this example,
macro PLLDELAY is used to adjust delay times.)

3.1.1 APLL Operation
Figure 7 contains a block diagram of the APLL mac-

ro. Basically, the APLL is a classical second order sys-
tem that compares the phase of the input reference
clock (FREF) with the phase of the feedback signal
(FFB), and adjusts the phase of the FFB signal to be
locked in phase and frequency with the FREF signal. It
uses a type IV phase/frequency detector that sends
correction pulses to a charge pump. The charge pump,
based on the correction pulses, either adds or subtracts

charge from the on-chip passive loop filter, thereby al-
tering the control voltage of the VCO. The VCO, in turn,

produces a different phase and frequency which is
fedback to the phase detector. Correction pulses are
generated until the APLL is locked. Frequency multipli-
cation is easily implemented by putting a digital divider
in the feedback path.

3.1.2 APLL Power Supply
A separate analog power supply is not necessary to

provide power to an APLL; however, to ensure a jitter
free APLL operation, the analog AVDD and AVSS pins
must be noise free. The ideal noise rejection circuitry is
design/board environment dependent. The following
two schemes are recommended as possible solutions.

3. Design Considerations

3.1 APLL Application
Figure 6 contains a typical application of the APLL.

The divider blocks (÷ L and ÷ M) are used to adjust for
desired clock frequencies and to center the APLL
FVCO and FVCO_DIV2 outputs. The PLLDELAY mac-

Figure 6 Clock Distribution with APLL
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAAAPLL I/O Macro

FREF_MUX

Clock
Tree

ASIC

CIRCUIT
BOARD

Board-Level
System Clock

FVCO_DIV2

D Q

D Q

D Q

FFB

÷ L

÷ M

FREF

FREF_CORE

FVCO

AP1

CORE Macros

AAA
AAA
AAA

AAA
AAA
AAAPLLDELAY

AN1522 6 Fri Dec 15 11:40:36 1995

6

MOTOROLA AN1522

3.1.2.1 Isolation Scheme 1
Figure 8 shows an analog isolation scheme 1 which

can be effective in most applications.

Figure 8 Analog Isolation Scheme 1

The inductors are necessary to ensure jitter-free
(<600 ps) operation in a digital environment. The VCO
has a gain of approximately 25 MHz/V. It is extremely

Board VDD

Board VSS

AVDD

AVSS

1.5 - 220 µH

0.1 µF

1.5 - 220 µH

sensitive to any noise on the power and ground planes.
Surface mount inductors were used on production
boards to successfully isolate the analog portion from a
noisy digital environment with long-term jitter being less
than +300 ps.

A range of inductor values (1.5 -- 220 µH) was spec-
ified since it is impossible to predict the magnitude and
frequency of noise present in every system. Surface
mount inductors with identical footprints are available in
this range of values from several vendors. Several in-
ductor manufacturers and respective part numbers are
listed in Table 3

In addition to the 0.1 µF bypass capacitor shown in
the analog isolation diagram, there should be a 0.1 µF
bypass capacitor between each of the other (digital)
four VCC pins and the board ground plane. This will re-
duce output switching noise caused by the 88915 out-
puts, in addition to reducing potential for noise in the
“analog” section of the chip. These bypass capacitors
should also be tied as close to the 88915 package as
possible.

Figure 7 APLL Block Diagram
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FREF

Phase
Detector

ASIC I/O Cells

APLL

FVCO_DIV2

FFB

Charge
Pump

Loop
Filter

VCO

Test Logic

FVCO1

0 S

MUX

1

0 S

MUX

1

0 S

MUX
÷ 2

÷ 2

A

A

FREF_MUX

FREF_CORE

to A

TESTOUT

VCOCTL

TESTSEL

A

Die Pads ASIC Core

AN1522 7 Fri Dec 15 11:40:36 1995

7

AN1522 MOTOROLA

3.1.2.2 Noise Filter Scheme 2
Figure 9 shows a noise filter scheme 2 associated

with the analog VDD port.
For both schemes suggested, the components in-

volved should be tied as close to the associated analog
pin(s) as possible.

Figure 9 Noise Filter Scheme 2

4. APLL Modelling for Simulation

4.1 Overview
Figure 10 is a generic block diagram showing clock distri-

bution using an APLL. Either or both of the divide-by-L and di-
vide-by-M may be used. If used, they reside in the array core.
The phase detector reference frequency iFREF is actually an
internal signal in the APLL. As shown in Figure 2 and Figure
3, iFREF drives directly into the phase detector and is de-
layed from the APLL’s FREF_MUX input port by a mux prop
delay. Similarly, iFFB is actually an APLL internal signal
which connects directly to the phase detector and is delayed
from the APLL’s FFB input port by the prop delay through a
buffer and a mux. These mux and buffer delays are such that

Board VDD

Board VSS

AVDD

0.01 µF

10 Ω

22 µF

when the APLL has phase-locked iFFB to iFREF, then the
FREF pin will be phase-locked to the clock tree output, which
is the ultimate objective. A special PLLDELAY macro can be
used to cancel phase error between the clock tree and FREF
which is caused by the divide-by-M. The PLLDELAY macro
has the same delay as the CK->Q of a resettable flip-flop,
therefore if a divide-by-M is used it should be designed using
resettable flip-flops.

Note: Use of another divider in place of the PLLDELAY
macro is not supported. The Motorola-internal vectors
used to test the APLL in silicon require that the frequen-
cy at iFREF be the same as the frequency at the FREF pin.
See Section 4 for details of the test strategy for APLL ar-
rays.

The feedback loop between the VCO and phase detector
resides in the array core, external to the APLL, and contains
the clock tree and possibly a frequency divider, which will be
referred to as the core divider. If a core divider exists it typi-
cally would follow the clock tree as does the divide-by-M.
However the core divider could also precede the clock tree,
as does the divide-by-L, if the clock tree is to be driven by a
frequency lower than the minimum possible FVCO_DIV2
from the APLL. A third possibility is that the core divider is
composed of both the divide-by-L and divide-by-M.

Figure 10 Clock Distribution Using an Analog PLL

In addition to generating the VCO frequency FVCO, the
APLL contains a divide-by-2 to generate FVCO_DIV2, which
has a 50% duty cycle. FVCO_DIV2 typically is the signal
used to drive the clock tree, where FVCO is available for fast-

Table 3 Inductor Manufacturers, Part Numbers, and Selected Specifications

Inductor
Manufacturer

Part
Number

Inductance
Self Resonant

Frequency
Footprint (W x L x H)

Telephone
Number

Coilcraft
Coilcraft

1812CS-822
1812LS-224

8.2 µH
220 µH

80 MHz
6 MHz

0.15 x 0.195 x 0.135 (in)
0.15 x 0.195 x 0.135 (in)

(708) 639-6400

Dale
Dale

IMC-1812 1.5 H + 10%
IMC-1812 220 H + 10%

1.5 µH
220 µH

70 MHz
4 MHz

0.126 x 0.177 x 0.126 (in)
0.126 x 0.177 x 0.126 (in)

(605) 665-9301

Toko
Toko

380LB-1R5K
380HB-221K

1.5 µH
220 µH

75 MHz
3.9MHz

2.5 x 3.2 x 2.2 (mm)
2.5 x 3.2 x 2.2 (mm)

(708) 297-0070

Murata-Erie
Murata-Erie

LQH3C2RM03M00-01
LQH3C221K03M00-01

2.2 µH
220 µH

64 MHz
6.8 MHz

2.5 x 3.2 x 2.0 (mm)
2.5 x 3.2 x 2.0 (mm)

(404) 436-1300

AN1522 8 Fri Dec 15 11:40:36 1995

8

MOTOROLA AN1522

er clocking of a small, localized block of logic.There fo re ,
throughout this document it is assumed that the clock tree is
driven by FVCO_DIV2 rather than FVCO. In this case, FVCO
gets divided by 2 (within the APLL itself) and then divided
again by the core divider, if one exists, before arriving at the
phase detector feedback input FFB. The product of these two
divider values equals the loop divider value “N.” The APLL
model measures the reference frequency iFREF and the loop
divider value N and generates VCO frequency required for
phase-lock, FVCO = N x iFREF. The phase of FVCO_DIV2
compensates for the clock tree plus core divider delay in the
core feedback loop such that the output of the clock tree is in
phase with the board reference clock at the FREF pin.

In its default mode, the model acquires phase-lock ap-
proximately 20 cycles after the start of iFREF (or after reset of
the core divider eliminates its ‘X’ state at simulation startup).
However, if the user prefers, the model can also be set-up to
emulate the actual time required by the APLL to achieve
phase-lock in the real-world. During this “acquisition delay”
the model puts out a constant (but not phase-locked) VCO
frequency, which will change abruptly to the phase-locked fre-
quency FVCO = N x iFREF after 10us has expired. Other than
accurate acquisition delay, this behavior does not model the
true transient response of the APLL. However, what is impor-
tant is accurate modeling of the APLL’s steady-state perfor-
mance after phase-lock has been achieved.

The model generates FVCO and FVCO_DIV2 such that af-
ter phase-lock is achieved the clock signal fed back to the
phase detector, iFFB, has the specified worst-case phase er-
ror relative to the phase detector reference clock, iFREF. The
user can select this steady-state phase error to be leading,
lagging, or randomly jittering between the two as described in
Section 4.6. The model also does a variety of checks for such
things as loss of phase-lock, the FVCO frequency required is
out of range, etc.

The Verilog model emulates the APLL only during system
simulations and not during option release simulations, which
generate test vectors used for testing of parts. The reason is
that the APLL is inactive during tester application of option re-
lease test vectors, which verify all circuitry except for the
APLL. Consequently, during option release simulations the
clock applied at the APLL’s FREF pin will bypass the APLL
and drive the core directly. For information on how to control
the APLL during option release simulations, as well as infor-
mation on how the APLL is verified on the tester, see Section
4, “Test Strategy for APLL Arrays.”

4.2 Initialization/Reset of Dividers
When an APLL array is on a board in a system, it is

unnecessary to reset the two dividers in Figure 10. However,
during system-mode simulation these dividers must be
initialized to a known state before the FREF and FVCO clocks
can propagate to phase detector inputs iFREF and iFFB,
respectively. Unfortunately, prior to phase-lock, FVCO and
FVCO_DIV2 have no fixed timing relationship with respect to
the chip’s input pins. Consequently, trying to do a
synchronous hardware initialization/reset of the core divider

may be difficult to do without generating timing violations,
such as a reset recovery time violation. A more practical
approach during system-mode simulations (but not option
release simulations) would be to use the Verilog “force” and
“release” commands to initialize the states of the flip-flops in
the core divider. This can be done by “forcing” the D inputs of
the divider flops to known states until FVCO starts, at which
time these states will get clocked into the flops. When
“release” occurs the flops are released to function normally.
“Release” can occur at any time with respect to the arrival of
clock edges at the core divider without causing the divider
state to go unknown.

Alternatively, an asynchronous set/reset of the dividers
can be done via chip logic or a pin at simulation start-up, be-
fore the iFREF clock starts toggling, since the model will not
generate an FVCO clock until iFREF starts to toggle. In this
way an asynchronous set or reset of all dividers can be done
without generating timing violations.

Note: The reset signal for these dividers cannot be
shared with any circuitry that must be reset after phase-
lock is acquired, since resetting the APLL’s dividers
would cause the APLL to lose phase-lock.

Artificial initialization of the core dividers using “force” and
“release” can be used for system-mode simulations but not
for option release simulations, where simulation output states
must match chip output states on the tester. By driving the
clock tree, the divide-by-L in Figure 10 affects chip output
states. Therefore during option release simulations the di-
vide-by-L must be initialized/reset via chip logic or a pin, and
not by using “force” and “release.” The same is true of the di-
vide-by-M if it is made observable at an output pin in order to
test it. If the divide-by-M drives only FFB then it affects no out-
put pin during option release simulations and is therefore not
testable (since the APLL is inactive). In this case it need not
be initialized. The divide-by-M still needs to be initialized/re-
set during system-mode simulations, however.

4.3 Acquisition Mode
The APLL model starts in acquisition mode at simulation

start-up. It measures the frequency of the phase detector ref-
erence clock, iFREF, as well as the loop divide-by-N in order
to calculate the required VCO lock frequency FVCO = iFREF
x N. The model starts generating an FVCO clock which has
an arbitrary phase relationship to iFREF. The resulting feed-
back clock at the phase detector, iFFB, has an initial phase
error with respect to iFREF. The model measures this phase
error and corrects the phase of FVCO such that iFFB will be
in phase with iFREF, producing phase-lock.

At the start of simulation the model waits for a clock signal
to appear at iFREF, and then measures the period of iFREF
by keeping track of the time between successive iFREF rising
edges. The model now starts generating FVCO and
FVCO_DIV2, where FVCO is the center frequency of the
VCO. While the VCO free-runs, the model waits until the
state at iFFB is no longer 'X,’ indicating that the core divider
has been initialized to a known state as described previously.
The model then waits until a 0->1 rising edge occurs at iFFB

AN1522 9 Fri Dec 15 11:40:36 1995

9

AN1522 MOTOROLA

(as opposed to an X->1 rising edge), indicating that the core
divider has been released to function normally after having
been initialized/reset.

When the second iFFB rising edge occurs the model mea-
sures the frequency at iFFB and calculates the loop divider
ratio 'N', where N = FVCO frequency/(iFFB frequency). If N is
not within the specified range for the APLL macro used (see
Section 2), the model stops the simulation after printing a
message to the effect that the user must modify the loop di-
vider circuitry such that N does lie within the specified range.
If N is within the specified range but iFREF x N = FVCO is not
within the specified frequency range for the VCO, the user
must modify FREF and/or N such that FVCO does lie within
the VCO’s range. To modify N, circuitry in the array core must
be changed; however, FREF can be modified interactively
during Verilog simulation as described in Section 4.6. If iF-
REF x N = FVCO is, in fact, out of the VCO’s range the model
will now return to the start of the acquisition mode. Otherwise
operation proceeds as follows.

Once a “legal” loop divider ratio N has been determined,
the following information is printed to the screen:

- Loop divider value, N
- Phase detector reference frequency, iFREF
- VCO frequency, FVCO
- VCO/2 frequency, FVCO_DIV2
- Duration of FVCO high and low pulses (FVCO duty

cycle, effectively)

Then a series of pulses is generated at FVCO for use in
measuring the propagation delay through the feedback loop,
which is equal to the sum of the clock tree propagation delay
and loop divider propagation delay.

This is done in order to verify that the loop delay is not so
large as to cause the APLL to go unstable and never acquire
phase-lock. After generating an FVCO pulse the model waits
long enough to see if the FVCO pulse causes a rising edge at
iFFB. It will take anywhere from 1 to N FVCO pulses to gen-
erate a rising edge at iFFB, depending on the initial state of
the loop divider. When a rising edge does occur at iFFB, the
loop delay is measured as the time delay between the rising
edge at iFFB and the last FVCO rising edge. If the loop delay
is larger than the specified limit, the model prints a message
to that effect and stops the simulation to allow the clock tree
or loop divider to be re-designed. Otherwise the model will
now begin its 10us acquisition delay, as described in Section
4.1. At the end of this delay, the VCO stops long enough for
the clock tree to empty of all pulses generated by the free-run-
ning VCO during the acquisition delay. (If the APLL was not
set-up to emulate the real-world acquisition delay, the model
will skip down to this point if the feedback loop delay mea-
sured was within spec.) The APLL model now waits for the
next rising edge of iFREF to start generating N cycles of the
VCO lock frequency FVCO = iFREF x N. N cycles of FVCO
span a complete cycle of iFREF, and the last of these N
FVCO cycles should produce the next rising edge at iFFB
(due to the state in which the loop divider was left after the
loop delay was measured). The rising edge of the first of
these N FVCO cycles is delayed from the iFREF rising edge
by the “VCO_offset” such that the resultant iFFB rising edge

is aligned with a subsequent iFREF rising edge (within the
APLL’s specified phase error), producing phase-lock. The
model calculates the VCO_offset using the previously mea-
sured feedback loop delay.

If the Nth FVCO pulse does not produce a rising edge at
iFFB, something's probably wrong with the core divider; for
example, it may have been disabled or reset. In this case, the
APLL will print an error message to that effect and then restart
its acquisition routine to try again to acquire phase-lock. If, on
the other hand, phase-lock has indeed been acquired, the fol-
lowing information is printed to the screen:

- Time at which phase-lock was acquired.
- APLL steady state phase error at iFFB with

respect to iFREF.

Now the APLL model goes into tracking mode.

4.4 Tracking Mode
Whenever a rising edge occurs on iFREF, the model mea-

sures the time difference between this edge and the associ-
ated rising edge on iFFB. If this “phase error” is less than the
specified worst-case phase error of the APLL, then the APLL
is still in lock. In this case the model will generate the next N
FVCO cycles in the manner described previously in Section
4.3, in order to produce the next rising edge on iFFB. Howev-
er if the phase error between iFREF and iFFB is greater than
the specified worst-case phase error of the APLL, lock has
been lost. In this case the model prints a “loss-of-lock” mes-
sage which includes the simulation time at which lock was
lost. The model waits long enough for the clock tree to empty
of all ‘pipelined' FVCO pulses, and then returns to acquisition
mode to try to re-acquire phase-lock.

4.5 Initialization of APLL Simulation Parameters
For best accuracy, Verilog simulations involving APLL’s in

system mode should be done with the following timescale set-
ting: ‘timescale 1ns/1ps

Therefore the timescale statement in the asic_verilog ‘ver-
ilog.control’ file should be changed to 1ps resolution, as
shown above. For option-release simulations, the timescale
can be left at the default value of 10ps.

In addition, there are four user-settable parameters
whose range of values are hard-coded inside the APLL Ver-
ilog model because they cannot be specified in the Standard
Delay Format (SDF) verilog.timing file output by DECAL.
These parameters are:

• jitter -- determines whether iFFB will always lead,
always lag, or randomly jitter between leading and
lagging with respect to iFREF. The amount of lead or
lag is always equal to the APLL’s maximum steady-
state phase error. Valid values for jitter are “lead”,
“lag” or “random”. The default value is “random”.

• use_silicon_delay -- determines whether the model
will emulate the real-world APLL acquisition delay
(described in Section 4.1). Valid values for
use_silicon_delay are “yes” or “no”. The default
value is “no”.

AN1522 10 Fri Dec 15 11:40:36 1995

10

MOTOROLA AN1522

• vco_duty_cycle -- determines the duty-cycle of the
FVCO output for this simulation. Valid values for
vco_duty_cycle are “min”, “typ” or “max”. The default
value is “min”.

• ptv -- determines whether the best-, typical-, or
worst-case process/temperature/voltage (PTV)
value is to be used for the maximum feedback loop
delay. Valid values for ptv are “bst”, “typ” or “wst”.
The default value is “wst”.

These four parameters are used only during system-mode
simulations. They are not used during option release simula-
tions, during which the FREF input clock bypasses the APLL
and drives the clock tree directly. (See Section 4 for details
regarding option release simulations.)

In a non-interactive simulation, the value used for maxi-
mum feedback loop delay is determined by one of the follow-
ing Verilog command line “plus arguments”: +mindelays,
+typdelays or +maxdelays. Therefore if the OACS tool
asic_verilog is used, the maximum feedback loop delay value
will be chosen automatically according to the PTV conditions
selected for the array; the ptv parameter is ignored. However
in an interactive simulation, the maximum feedback loop de-
lay value is determined by assigning the ptv parameter a val-
ue of “bst”, “typ” or “wst”. In this case the designer must set
the ptv parameter value to match the PTV conditions chosen
for the array. Otherwise the value for maximum feedback loop
delay may be for a different PTV condition than that used for
the rest of the array.

The FVCO_DIV2 output has a 50% duty cycle, but the
FVCO duty cycle can vary over a wide range. Designs which
use the APLL’s FVCO output, system-mode simulations
should be done at the following four sets of conditions:

i) PTV = best-case, vco_duty_cycle = “min”

ii) PTV = best-case, vco_duty_cycle = “max”

iii) PTV = worst-case, vco_duty_cycle = “min”

iv) PTV = worst-case, vco_duty_cycle = “max”

Because of the way that the APLL model generates “ran-
dom” jitter, it is possible that the model will falsely swallow
low-going FVCO pulses when vco_duty_cycle = “max”, if the
FVCO is operating at the upper end of its frequency range.
These two conditions, coupled with random jitter, can com-
bine to make the low-going FVCO pulses narrow enough that
they get swallowed by the FVCO output buffer within the
APLL model. In such cases, if FVCO is used in the design
then the jitter parameter must be restricted to values of “lead”
or “lag”.

The user can assign a value to a particular parameter by
putting a ‘defparam’ statement in the HDL stimulus file, such
as:

defparam stim.cell1.\TC_TOP/APLL.448P_4
.core_apll.ptv = “wst”;

The pathname is taken from a real design named
“TC_TOP.” “stim” is the name of the module which applies

stimulus to “TC_TOP”, “cell1” is the name of the instantiation
of “TC_TOP” within module “stim”, “\TC_TOP/APLL.448P_4”
is the instance name generated by the OACS NETLIST tool
for the APLL macro used in “TC_TOP”, and core_apll is the
sub-module within the APLL Verilog model in which the ptv,
jitter, vco_duty_cycle, and use_silicon_delay parameters are
defined. Note that in this particular design a space is required
after the APLL instance name because its first character is a
backslash. Similar statements can be used to assign values
to the jitter, vco_duty_cycle and use_silicon_delay parame-
ters, for example:

defparam stim.cell1.\TC_TOP/APLL.448P_4
.core_apll.jitter = “lead”;

defparam stim.cell1.\TC_TOP/APLL.448P_4
.core apll.vco_duty_cycle=“max”;

defparam stim.cell1.\TC_TOP/APLL.448P_4
.core apll.use_silicon_delay=“yes”;

Alternatively, these four parameters can be changed “on
the fly” within an interactive Verilog run if the designer wishes
to re-simulate without having to re-compile. If such a re-
simulation is to be at a different PTV, the ptv parameter must
be changed accordingly. The following interactive Verilog
commands show how to change these parameters prior to a
re-simulation (“>” represents the Verilog prompt in interactive
mode):

> $reset;
> $scope(stim.cell1.\TC_TOP/APLL.448P_4

.core_apll);
> ptv = “wst”;
> jitter = “lead”;
> vco_duty_cycle = “max”;
> use_silicon_delay = “yes”;
> .

The designer may even want to change one of these three
parameters prior to the first simulation after compilation. If so,
a $stop command could be included at the start of the HDL
stimulus to cause Verilog to stop at time zero and give a “>”
prompt. At this time the designer can enter the same interac-
tive Verilog commands shown above, although in this case
the $reset command is unnecessary. Alternatively, ‘def-
param’ statements can be put in the HDL stimulus file, as de-
scribed previously.

This same method can be used to change FREF interac-
tively if necessary. If the VCO frequency FVCO = iFREF x N
is out of the APLL’s range, the APLL model prints a message
to the screen stating that iFREF and/or N must be changed.
Referring to Figure 10, changing N

(N = L x M) requires a circuit change. However if the de-
signer chooses to change only FREF, he can do so by scop-
ing into his HDL stimulus module and updating the FREF
period parameter.

4.6 Example Simulations of an APLL
Figure 11 shows the Verilog graphical waveforms for an

interactive system mode simulation using an APLL. Also
shown is a portion of the transcript window containing mes-
sages printed out by the APLL model. For this simulation, the

AN1522 11 Fri Dec 15 11:40:36 1995

11

AN1522 MOTOROLA

APLL model has been set-up to not emulate the real-world
acquisition delay of the APLL. Note that the TSTSEL wave-
form, which corresponds to the TESTSEL input on the APLL,
is held low throughout the simulation. (For an option release
simulation, TSTSEL = TESTSEL would be taken high after
the first test cycle, and held high throughout the rest of the
simulation. See Section 5.1, “Testing the Array Core”.) Refer-
ring to Figure 10, at simulation start-up the APLL is configured
with L = 1 and M = 2.

In this example, the divide-by-M is reset by a RESETB sig-
nal (top waveform in Figure 11) rather than by the “force” and
“release” commands, which were previously described in
Section 4.6. While the divide-by-M is held in reset iFFB re-
mains low.

Initially, FVCO and FVCO_DIV2 are unknown, as is FFB
prior to reset of the loop divider. The loop divider consists of
a divide-by-2 flip-flop in the array core along with the flip-flop
internal to the APLL which divides FVCO down to
FVCO_DIV2. When RESETB goes active the loop divider
state becomes known, at which time the APLL model outputs
a low on both FVCO and FVCO_DIV2. Now the loop divider’s
reset signal, RESETB, can return to its inactive state, since
there is no longer an ‘x’ at the clock input to the loop divider.
Since FVCO and FVCO_DIV2 will start toggling as soon as
FREF starts toggling, FREF is not started until after RESETB
goes inactive in order to prevent reset recovery time viola-
tions in the loop divider (discussed in Section 4.2).

The APLL model waits for the first two iFREF pulses to
determine the frequency of iFREF and to start generating
FVCO_mid and FVCO_mid/2, where FVCO_mid is the VCO
center frequency. The model waits for feedback pulses at
iFFB. After the second iFFB rising edge, the model measures
the iFFB frequency and calculates the loop divider value.

N = FVCO_max/(iFFB frequency). N is then used to calcu-
late the in-lock VCO frequency:

FVCO = iFREF x N. N, iFREF, FVCO, and FVCO_DIV2
are printed to the screen, as well as the high and low pulse
widths of FVCO (FVCO duty cycle, effectively). At this point
the model stops generating FVCO long enough for the clock
tree to empty of all pulses. After this pause the model starts
generating individual FVCO pulses and looking for a rising
edge to result at iFFB. In this example it takes 3 FVCO puls-
es to cause the next rising edge on iFFB, due to the initial
state of the loop divider. These three pulses are followed by
N additional FVCO pulses (N happens to be four in this case)
to verify that N more FVCO pulses will cause another iFFB ris-
ing edge at the expected time. At this point the model starts
generating the in-lock frequency FVC0 = N x iFREF, with the
proper phase such that the next rising edge of iFFB will be
phase-locked to iFREF.

Figure 7 shows Verilog graphical waveforms and part of
the transcript window for a non-interactive system mode sim-
ulation in which the APLL model has been set-up to emulate
the real-world acquisition delay of the APLL. (Section 4.5 ex-
plains how to do this.) For this example simulation, the acqui-
sition delay was shortened in order to fit the waveforms on the
page. At the end of the acquisition delay the model stops gen-
erating the VCO center frequency at FVCO and waits long
enough for the clock tree to empty of all pulses. After this
pause the model starts generating the in-lock frequency
FVC0 = N x iFREF, with the proper phase such that the next
rising edge of iFFB will be phase-locked to iFREF.

Figure 8 shows Verilog graphical waveforms and part of
the transcript window for the start of an option release simu-
lation using an APLL. Note that the TSTSEL waveform, which
corresponds to the TESTSEL input on the APLL, is taken high
after the first test cycle and held high throughout the rest of
the simulation. The FREF clock is low at simulation start-up,
and stays low until after TESTSEL goes high. Similarly RE-
SETB, which resets the loop divider, is inactive (high) until af-
ter TESTSEL goes high.

AN1522 12 Fri Dec 15 11:40:36 1995

12

MOTOROLA AN1522

Figure 11 Example Verilog System-Mode Simulation of an APLL (acquisition delay excluded)

Date: Apr 14, 1994 09:31:15 Time Scale From: 0.50 ns To: 589.16 ns Page: 1 of 1

User: Roy Jones

Header:

TSTSEL

RESETB

 FREF

 iFREF

 FVCO

FVCO/2

 iFFB

TIME
0.50 ns 147.66 ns 294.83 ns 442.00 ns

###
###
###
Parameter ‘ptv’ has been given a value of “wst” for APLL instance
stim.cell1.APLLOACS22/APLL.27P_1.core_apll
Worst-case timing must also be used for the rest of the design.
###
###
###

Assigned values for user-settable parameters for APLL instance
 (stim.cell1.APLLOACS22/APLL.27P_1.core_apll):
 vco_duty_cycle = “max”
 jitter = “lag”
 use_silicon_delay = “no”

###
###

 To backannotate timing before simulation -
 type one of the following :

 (If more than one is activated, last choice
 overrides the rest.)

 Type “ba_timing_wcs;” for worst case timing
 Type “ba_timing_typ;” for typical case timing
 Type “ba_timing_bcs;” for best case timing

 Else, type “.” (period) to simulate with
 unit timing.
L84 “aplloacs22/design_data/verilog.control”: $stop at simulation time 0.00 ns
Type ? for help
C1 > ba_timing_wcs;
C2 > .

 Back-annotating worst case timing
 .
 .
 .
Operating environment for APLL instance
 (stim.cell1.APLLOACS22/APLL.27P_1.core_apll.acquire):
 N = 4 (Loop divider value)
 iFREF = 50 MHz (Phase detector reference frequency)
 FVCO = 200 MHz (VCO frequency)
 FVCO_DIV2 = 100 MHz (VCO/2 frequency)
 VCO_high = 3.75 ns (VCO high pulse width)
 VCO_low = 1.25 ns (VCO low pulse width)

APLL instance (stim.cell1.APLLOACS22/APLL.27P_1.core_apll.track)
 ACQUIRED PHASE-LOCK at time 447.46 with phase error = 0.25 ns

L97 “/home/cdc1/aplltc/tc_top/sub_blocks/aplloacs22/vectors/stimulus/hdl.stim”:
$stop at simulation time 590.00 ns
C2 >

AN1522 13 Fri Dec 15 11:40:36 1995

13

AN1522 MOTOROLA

Figure 12 Example Verilog System-Mode Simulation of an APLL (acquisition delay included)

Date: Apr 14, 1994 09:38:39 Time Scale From: 0.00 ns To: 899.31 ns Page: 1 of 1

User: Roy Jones

Header:

TSTSEL

RESETB

 FREF

 iFREF

 FVCO

FVCO/2

 iFFB

TIME
0.00 ns 224.83 ns 449.66 ns 674.48 ns

###
###

Assigned values for user-settable parameters for APLL instance
 (stim.cell1.APLLOACS22/APLL.27P_1.core_apll):
 vco_duty_cycle = “min”
 jitter = “lead”
 use_silicon_delay = “yes”

###
###

 Back-annotating worst case timing

 *** SDF Annotator version 1.0.10
 *** SDF file: aplloacs22/timing/veritool.timing
 *** Back-annotation scope: stim
 *** Configuration file: /home/bass1/oacs2.x/oacs_apll_tools2.0/sdf.config
 *** SDF Annotator log file: aplloacs22/timing/reports/sdf.log
 *** MTM selection parameter specified: MAXIMUM

 *** SCALE FACTORS parameter specified: 1.000000:1.000000:1.000000

 *** SCALE TYPE parameter specified: FROM_MTM

 Parsing configuration file...

 Configuring for back-annotation...

 Reading SDF file and back-annotating timing data...

 *** SDF back-annotation successfully completed

Operating environment for APLL instance
 (stim.cell1.APLLOACS22/APLL.27P_1.core_apll.acquire):
 N = 4 (Loop divider value)
 iFREF = 50 MHz (Phase detector reference frequency)
 FVCO = 200 MHz (VCO frequency)
 FVCO_DIV2 = 100 MHz (VCO/2 frequency)
 VCO_high = 1.25 ns (VCO high pulse width)
 VCO_low = 3.75 ns (VCO low pulse width)

APLL instance (stim.cell1.APLLOACS22/APLL.27P_1.core_apll.track)
 ACQUIRED PHASE-LOCK at time 824.46 with phase error = -0.25 ns

L128 “/home/cdc1/aplltc/tc_top/sub_blocks/aplloacs22/vectors/stimulus/hdl.stim”:
 $stop at simulation time 900.00 ns
Type ? for help
C1 >

AN1522 14 Fri Dec 15 11:40:36 1995

14

MOTOROLA AN1522

Figure 13 Example Verilog Option Release Simulation of an APLL

Date: Apr 14, 1994 09:42:35 Time Scale From: 0.00 ns To: 242.80 ns Page: 1 of 1

User: Roy Jones

Header:

TSTSEL

RESETB

 FREF

 iFREF

 FVCO

FVCO/2

 iFFB

TIME
0.00 ns 60.70 ns 121.40 ns 182.10 ns

###
###

Assigned values for user-settable parameters for APLL instance
 (stim.cell1.APLLOACS22/APLL.27P_1.core_apll):
 vco_duty_cycle = “min”
 jitter = “random”
 use_silicon_delay = “no”

###
###

 Back-annotating worst case timing

 *** SDF Annotator version 1.0.10
 *** SDF file: aplloacs22/timing/veritool.timing
 *** Back-annotation scope: stim
 *** Configuration file: /home/bass1/oacs2.x/oacs_apll_tools2.0/sdf.config
 *** SDF Annotator log file: aplloacs22/timing/reports/sdf.log
 *** MTM selection parameter specified: MAXIMUM

 *** SCALE FACTORS parameter specified: 1.000000:1.000000:1.000000

 *** SCALE TYPE parameter specified: FROM_MTM

 Parsing configuration file...

 Configuring for back-annotation...

 Reading SDF file and back-annotating timing data...

 *** SDF back-annotation successfully completed

TESTSEL pin went high at time 24.30 ns
 for APLL instance (stim.cell1.APLLOACS22/APLL.27P_1.core_apll)
 FREF will now bypass the APLL and appear at the FVCO output.
 (If APLL output ports FVCO_DIV2 and FVCO stay ‘x’, then
 TESTSEL was not held low long enough, unless port FREF_CORE is also ‘x’).

L96 “/home/cdc1/aplltc/tc_top/sub_blocks/aplloacs22/vectors/stimulus/hdl.stim”:
$stop at simulation time 250.00 ns
Type ? for help
C1 >

AN1522 15 Fri Dec 15 11:40:36 1995

15

AN1522 MOTOROLA

5. Test Strategy for APLL Arrays

5.1 Testing the Array Core
On the tester, customer “option release” test vectors are

used to test all of the array except the APLL, which is powered
down during this time. Consequently the APLL is not used to
clock the array core. The ASIC designer must use an external
test clock to generate test vectors for option release, as is
done for any non-APLL design. This external test clock is ap-
plied at the FREF pin.

At simulation start-up TESTSEL must be low, and must
stay low for at least one test cycle, in order to initialize some
flip-flops inside the APLL. During this time the model must
output an ‘x’ on APLL outputs FVCO and FVCO_DIV2, since
the VCO will be oscillating freely in silicon. To ensure that
FVCO and FVCO_DIV2 remain ‘x’ while TESTSEL is low, the
following two conditions must be met:

1. FREF should be low at simulation start-up, and should
remain low at least until TESTSEL goes high.

2. If there is a reset signal for the loop divider, this reset
must be inactive at simulation start-up, and must
remain inactive at least until TESTSEL goes high. This
condition is required because as soon as a known logic
state appears at iFFB, the model outputs a known (low)
state at FVCO and FVCO_DIV2 to facilitate reset of the
loop divider during system simulations.

After TESTSEL goes high the APLL will be powered down,
and the reference clock at the FREF pin will bypass the APLL
and come out at the APLL’s FVCO port (see Figure 2 and Fig-
ure 3). Similarly, FREF/2 comes out on the APLL’s
FVCO_DIV2 port. Once TESTSEL goes high it must stay
high throughout the rest of the option release simulation.

5.2 Testing the APLL
The APLL is tested at Motorola by a canned test routine,

during which the rest of the array does not toggle. This proce-
dure is used to eliminate coupling of digital switching noise
into the APLL through AVDD and AVSS, which are tied to the
core VDD and VSS on the tester in order to eliminate the need
for special test hardware for APLL arrays. In a customer’s
system, of course, AVDD and AVSS provide isolated power
and ground for the APLL.

The APLL contains a divide-by-4 which is driven by VCO/
2 in order to produce a frequency at the TESTOUT pin which
is slow enough to be measured on a production tester. As
shown in Table A.1 in the Appendix, the following tests are
performed on the tester while in APLL test mode (TSTQ1 = 1):

i) Allow the APLL to lock at its center frequency and
measure the VCO/8 frequency at the TESTOUT pin,
with the VCOCTL pin turned off.

ii) Allow the APLL to lock at its center frequency and
measure the VCO/8 frequency at the TESTOUT pin,
and the VCO control voltage at the VCOCTL pin.

iii) Allow the APLL to lock at its center frequency and
measure the VCO/8 frequency at the TESTOUT pin,
and the charge pump current at the VCOCTL pin.

iv) Measure the dynamic IDD of the APLL. (A CMOS
input APLL still will be in phase-lock from the previ-
ous step. For a PECL input APLL, the PECL input
will be turned off by ENID (“Enable IDD” pin, see
OACS User/Reference Guide); therefore the
dynamic IDD measurement will be made while the
APLL is not phase-locked but is free running at the
minimum possible VCO frequency, since the phase
detector reference frequency input, iFREF, will not
be toggling).

On the tester, frequency measurement is effectively done
by locating an edge on TESTOUT and then examining sever-
al more cycles to see that subsequent edges occur within the
expected window. CMOS-input APLL’s will remain phase-
locked when moving from test (i) to test (ii), and from test (ii)
to test (iii), etc. However PECL-input APLL’s will lose lock
when moving from one test to another. As shown in Table
A.1, toggling the ENID pin is what causes the transition from
one test to the next. However taking ENID high also powers-
down the PECL input buffer, at which time a PECL-input
APLL will lose phase-lock. Therefore after ENID is taken back
low to begin the next test, a PECL-input APLL must be given
time to re-acquire phase-lock before measurements are tak-
en.

Tests i-iv are repeated at the APLL minimum and maxi-
mum operating frequencies, which are the most extreme fre-
quencies achievable within the linear range of the VCO
transfer function. These frequency limits are given in Section
2.

The VCOCTL pin is used to measure the VCO control
voltage and charge pump current. These measurements can
be related to the stability and bandwidth of the APLL. This pin
should be tied to analog VSS in the customer’s system to pre-
vent noise from being injected onto the VCO control voltage
during normal system operation.

During static IDD testing of the chip as a whole, which oc-
curs during tester application of option release vectors, APLL
bias currents are turned off under control of the ENID pin.

The canned APLL vector set, which performs tests (i)-(iv)
above, toggles the ENID pin, which has no simulation model.
Therefore, the customer cannot simulate these canned
vectors.

AN1522 16 Fri Dec 15 11:40:36 1995

16

MOTOROLA AN1522

Appendix A: APLL Internal Test Circuitry
Figure A.1 and Figure A.2 are more detailed versions of Figure 2 and Figure 3, respectively, showing the test control circuitry

built into the APLL. Table A.1 shows how the TESTSEL and ENID signals are used to control this circuitry in order to move the
APLL into each of its operating modes. The top portion of Table A.1 shows how the Motorola-internal APLL test program per-
forms the tests described in Section 5.2.

Figure A.1 Analog PLL Schematic and Test Logic (CMOS Input)

Figure A.2 Analog PLL Schematic and Test Logic (PECL Input)

AN1522 17 Fri Dec 15 11:40:36 1995

17

AN1522 MOTOROLA

Table A.1 APLL Simulation and Test Mode Sequence

Test

Inputs APLL Internal Nodes

Simulation and Test Modes
T

E
S

T
S

E
L

E
N

ID

T
S

T
Q

1

T
S

T
Q

2

T
S

T
Q

3

A
P

LL
 T

es
t P

ro
vi

de
d

at
 M

ot
or

ol
a

(N
ot

 U
se

r
D

efi
ne

d)

0 0 0 0 0 Reset test flops.

0 1 0 0 0 (Set-up Test)

1 1 1 0 0 (Set-up Test)

1 0 1 0 0 Measure frequency; VCOCTL pin 3-state.

1 0 1 0 0 (Running Test)

1 1 1 1 0 (Set-up Next Test)

1 0 1 1 0 Measure frequency & VCO control voltage.

1 0 1 1 0 (Running Test)

1 1 1 0 1 (Set-up Next Test)

1 0 1 0 1 Measure frequency & charge pump current.

1 0 1 0 1 (Running Test)

1 1 1 1 1 Measure dynamic IDD of APLL.

1 1 1 1 1 (Running Test)

C
or

e
Te

st
(U

se
r

D
efi

ne
d)

0 0 0 0 0 Reset test flops.

1 0 0 0 0 Start functional testing of array core with APLL inactive.

1 0 0 0 0 (Running Test)

1 1 0 0 0 IDD vector (at Motorola only)

1 0 0 0 0 (Running Test)

1 0 0 0 0 (Running Test)

0 0 0 0 0 Customer board simulation with APLL active.

* User can only simulate states in which ENID is low/inactive.

__
H4CPlus, H4EPlus and M5C are trademarks of Motorola, Inc.
Verilog is a trademark of Cadence Design Systems, Inc.
Synosys is a trademark of Synopsys, Inc.

AN1522 18 Fri Dec 15 11:40:36 1995

18

MOTOROLA AN1522

Appendix B: Transfer Functions
The APLL is a classical second order control system. Its

transfer functions are:

Phase Detector Transfer Function:
Kp = Ip/2π
where Ip is the charge pump current.

Filter Transfer Function:
Kf = R + 1/sC
where R is the loop resistor and C is the loop capacitor.

VCO Transfer Function:
Ko = Kv/s
where Kv is the gain of the VCO in the linear region.

Open Loop Transfer Function:
G(s) = Kp(Kf)(Ko)/N
where N is the value of the divider in the feedback path.

Closed Loop Transfer Function:
H(s) = G(s)/(1 + G(s))
H(s) = 2ζωns + ωn

2/(s2 + 2ζωns + ωn
2)

where ωn = (KvIp/2πCN)1/2

Damping factor = ζ = RCωn/2

Typical values for the loop parameters are given in Table
B.1.

From these typical values and the closed loop transfer
function, the user can determine the characteristics of the
loop and generate Bode Plots, if desired.

Appendix C: VCO Frequency vs. Voltage
Select a VCO frequency in the middle of the linear region

of Figure C.1 to optimize damping.

Example: Using a 5V APLL, if the desired clock tree fre-
quency (CLK) is 50 MHz (see Figure 10) and FREF is 25
MHz, select “/M” = 2 and “/L” = 2. This gives CLK = 50 MHz,
VCO_DIV2 = 100 MHz and VCO = 200 MHz which is in linear
region of Figure C.1.

Table B.1 Typical Loop Parameter Values

Parameter 3.3 V 5 V

Ip (µA) 70 100

Ko (MHz/V) 150 200

R (Ohm)
N = 1-4 2100 1400

N = 5-16 4200 2500

C (pF) 50 50

Figure C.1 VCO Frequency vs. Voltage

Table C.1 Minimum Operating Frequency

Divide
Factor,

N

3.3 V 5 V

Filter
Resister,

R

Damp-
ing, ζ

Fpdmin
(MHz)

Filter
Resister,

R

Damp-
ing, ζ

Fpdmin
(MHz)

1 2100 0.76 66 1400 0.70 84

2 2100 0.54 33 1400 0.49 42

3 2100 0.44 22 1400 0.40 28

4 2100 0.38 17 1400 0.35 21

5 4200 0.68 26 2800 0.63 34

6 4200 0.62 22 2800 0.57 28

7 4200 0.58 19 2800 0.53 24

8 4200 0.54 17 2800 0.49 21

9 4200 0.51 15 2800 0.47 19

10 4200 0.48 13 2800 0.44 17

11 4200 0.46 12 2800 0.42 15

12 4200 0.44 11 2800 0.40 14

13 4200 0.42 10 2800 0.39 13

14 4200 0.41 9 2800 0.37 12

15 4200 0.39 9 2800 0.36 11

16 4200 0.38 8 2800 0.35 11

Notes:
Ip=0.07mA, C=50 pF,
VCO gain =1.5x108 MHz/V

 Ip=0.1mA, C=50 pF,
 VCO gain =2x108 MHz/V

Select VCO freq.
in linear regions

AN1522 19 Fri Dec 15 11:40:36 1995

19

AN1522 MOTOROLA

Appendix D: PLL Basics
(From application note “ASIC Distribution Using a Phase

Locked Loop (PLL)”, AN1509)

D.1 INTRODUCTION
Transferring data between ASIC chips at frequencies

above 40 MHz requires special on-chip circuitry in current
sub-micron technologies. Phase locked loops can provide
skew management in ASIC devices to help compensate for
clock-tree insertion delays and process, temperature and
voltage variations allowing maximum multi-chip system per-
formance.

This application note is written to help designers of multi-
chip ASIC systems maximize system performance by manag-
ing clock distribution and optimizing clock skew and data path
relationships. It contains equations relating measurable tim-
ing and skew parameters to maximum frequencies of opera-
tion. It explains techniques available to minimize critical
parameters which contribute to clock skew.

D.2 BACKGROUND
D.2.1 REGISTER-TO-REGISTER DATA TRANSFER
BETWEEN ASIC CHIPS

When determining the maximum frequency at which data
can be transferred from one ASIC device to another, a de-
signer must carefully consider both the delay of the data path
and the skew of the clock. The data path is the delay from a
register in the sending ASIC (including clock to Q) to the D in-
put of a register in the receiving ASIC (including the setup and
hold times), see Figure D.1. The clock skew or Tskew is the
difference between a rising edge on ClkA in ASIC1 and ClkB
in ASIC2.

Figure D.1 Chip-to-Chip Timing Parameters

Tskew in this document refers to clock skew in both the
positive and negative directions. Positive skew is when the
rising edge of ClkB occurs later than a rising edge of ClkA.
Positive skew affects data transfer from a hold time stand-
point. Negative skew is when the rising edge of ClkB occurs
earlier than a rising edge on ClkA. Negative skew affects data
transfer from a setup time standpoint. A complete analysis of
clock skew is performed in Appendix E.

D.2.2 SETUP AND HOLD TIME CONSIDERATIONS
To insure error-free data transitions between ASIC1 and

ASIC2, the data path from the sending flip- flop in ASIC1 to
the receiving flip flop in ASIC2 must not be so long that a set-
up time violation is realized on the receiving flop- flop. The
same data path must also be long enough to avoid a hold-
time violation on the receiving flip-flop. This setup and hold
time relationship must take into consideration clock skew be-
tween the rising edge of ClkA, which initiates the data transfer
and the rising edge of ClkB which clocks in the transferred da-
ta.

D.2.3 INSERTION DELAY AND THE EFFECT OF
THE CLOCK-TREE

Insertion delay is defined as the delay from the rising edge
of the external system clock to the rising edge of the clock on
any given flip-flop on the ASIC. In Figure D.2, it’s the delay
from SYSCK to ClkA or ClkB. Insertion delay is made up of
the clock input buffer and clock-tree delays. The insertion de-
lay in one ASIC can be very different from the insertion delay
in another ASIC, depending on the size of the ASIC and the
number of elements that must be clocked by the cloc- tree.
Differences in insertion delays between ASIC devices directly
contribute to clock skew (Tskew). In the example circuit (Fig-
ure D.2): if ASIC1 has an insertion delay of 5 ns and ASIC2
an insertion delay of 10 ns, then a rising edge in ASIC 1 will
be skewed by at least 5 ns from a rising edge in ASIC 2.

D.2.4 PTV VARIATIONS
Process, Temperature and Voltage (PTV) variations can

increase the difference in insertion delays. Most ASIC tech-
nologies use a multiplier to adjust delays due to PTV. In the
H4C technology, a worst-case multiplier (WCM) and a best-
case multiplier (BCM) are used. The WCM modifies a typical
delay to represent worst-case conditions. The WCM is great-
er than one. The BCM is less than one and modifies a typical
delay to represent a best-case condition. The “process
spread” is the difference between a best-case delay and a
worst-case delay for a given data path. The process spread
can be found by dividing the WCM by the BCM (WCM/BCM).
Choosing a technology with a minimum process spread will
allow higher overall performance.

D.2.5 MAXIMUM FREQUENCY OF OPERATION
An equation can be derived that relates setup and hold

times, insertion delay and process spread to determine the
maximum frequency at which data can be safely transferred
from chip-to-chip. A full derivation of this equation is provided
in Appendix E. The equation in terms of the minimum period
is,

MinPer = Tskew (WCM/BCM + 1) + WCM (Tsu + Th + TDm) (D.1)

where,

MinPer Minimum clock period in ns (1/max frequency of
operation).

AN1522 20 Fri Dec 15 11:40:36 1995

20

MOTOROLA AN1522

Tskew Total skew (positive and/or negative) between
rising edges of ClkA and ClkB (see Figure D.2).

WCM Worst Case Multiplier.
BCM Best Case Multiplier.
Tsu Setup delay of flip flop in receiving ASIC (ASIC2

in Figure D.2).
Th Hold delay of flip flop in receiving ASIC (ASIC2

in Figure D.2).
TDm Data path delay margin

Two things become apparent in looking at Equation (D.1).
First, Tskew is the dominant parameter affecting the maxi-
mum frequency at which data can be transferred between
ASIC devices. Secondly, the process spread for the chosen

technology is also very important. Clearly, Tskew and the pro-
cess spread must be minimized to allow maximum perfor-
mance.

To address the problem of clock skew, a Phase Locked
Loop (PLL) can be added to each ASIC device to reduce the
effects of insertion delay differences and help manage the
skew from chip-to-chip. The PLL will synchronize the rising
edge on SYSCK such that it will be simultaneous with a rising
edge on flop ck, see Figure D.3. If the PLL is used on each
ASIC device, all flop ck signals on every ASIC will be simulta-
neous within the error of the PLL. The PLL will compensate
for differences in insertion delays from ASIC-to-ASIC as well
as PTV variations.

Figure D.2 Effect of Clock Tree on T skew

Figure D.3 PLL Solution

AN1522 21 Fri Dec 15 11:40:36 1995

21

AN1522 MOTOROLA

Appendix E: Derivation of Minimum Period
Equation

(From application note “ASIC Distribution Using a Phase
Locked Loop (PLL)”, AN1509)

This section contains a derivation of the equation that re-
lates clock skew, process spread, and flip-flop specifications
to determine the minimum period or maximum frequency at
which data can be transferred between ASIC devices. Figure
E.1 illustrates the data and clock paths between two ASICs.
If data is to be transferred reliably from ASIC1 to ASIC2, the
set up and hold time requirements of the receiving flip flop in
ASIC2 must be satisfied in the presence of clock skew and
process spread. First, we will analyze the setup and hold time
requirements of the receiving flip flop. This is similar to the
classic shift register problem where clock skew can cause
setup or hold problems on the receiving flip flop.

The data delay path from ASIC1 to ASIC2 includes 1) the
delay from a rising edge of ClkA to the output of ASIC1 - TD-
out, 2) the delay of the PC board trace - TDbrd and 3) the de-
lay of the input path of ASIC2 - TDin. The setup and hold time
parameters of the receiving flip flop Tsu and Th must also be
considered. The total data path delay is,

TD = TDout + TDbrd + TDin (E.1)

When considering the setup time requirements of ASIC2,
the worst case path from ASIC1 to ASIC2 must be consid-
ered. The minimum period at which data can be safely trans-
ferred in the presence of clock skew without violating the
setup requirements of the receiving flip flop is,

MinPer = WCM(TD + Tsu) + Tskew (E.2)

Note that typical delay values are used in these equations.
These values are modified for best case and worst case by
the multipliers BCM and WCM respectively. Additionally, the
worst- case path assumes the edge direction, rising or falling
that results in the longest delay.

Figure E.2 illustrates the setup time requirement. The
dashed lines on ClkB represent clock skew.

When considering the hold- time requirements of ASIC2,
the best-case path must be considered. The best-case path
assumes the edge direction, rising or falling that results in the
shortest delay. The equation relating the data path, hold time
and Tskew is,

BCM(TD) ≥ Tskew + BCM(Th) (E.3)

We now have two equations relating the data path. To find
the minimum period, first consider the ideal case, then gener-
alize it. Ideally, assume the data path delay TD is just long
enough to prevent a hold-time violation, or the best-case dat-
adelay is equal to the hold time plus the clock skew,

Figure E.1 Chip-to-Chip Data Transfers

Figure E.2 Clock Skew and Setup Time Requirements

AN1522 22 Fri Dec 15 11:40:36 1995

22

MOTOROLA AN1522

BCM(TD) = Tskew + BCM(Th) (E.4)

If true, we could solve this equation for TD and put that val-
ue into the setup time equation,

TD = (Tskew+BCM(Th))/BCM (E.5)

MinPer = WCM(((Tskew+BCM(Th))/BCM) + Tsu) +
Tskew (E.6)

Notice that Tskew appears twice in this equation. Skew in
the positive direction affects hold time and skew in the nega-
tive direction affects the setup time. Generally, we don’t know
if the clock skew is in the positive or negative direction so we
consider it twice.

Figure E.4 illustrates this equation. The minimum period is
found by taking the best-case data path delay that is just long
enough to prevent a hold-time violation in the presence of
clock skew, BCM(TD), multiply that delay by the worst-case
multiplier WCM(TD), and add to that the worst-case setup
time and the clock skew.

Figure E.3 Clock Skew and Hold Time Requirements

Equation (E.5) can be reduced to become very close to our
final equation,

MinPer = WCM (Tskew/BCM + Th + Tsu) + Tskew

MinPer = WCM/BCM (Tskew) +WCM(Th +Tsu) + Tskew
combining the Tskew terms,

MinPer = Tskew (WCM/BCM+1) + WCM (Tsu+Th) (E.7)

It is unrealistic to assume all data paths can be tuned to be
just long enough to prevent a hold-time violation. We should
therefore introduce some margin in the data path. Generally,
this margin would be defined by the shortest chip-to-chip data
path delay on one end of the spectrum and the longest chip-
to-chip data path delay on the other end. This assumes, of
course, that these paths are long enough or short enough to
prevent hold time or setup time violations respectively. When
designing shift registers from discrete components, it is com-
mon to add delay to the data path to insure there is not a hold
time violation in the presence of clock skew. If the maximum
frequency of a system is limited by the data path delay from
chip-to-chip (see Equation (E.2)) it may be necessary to add
delay to shorter data paths to prevent hold times. There
should always be a 1-2 ns margin (typical delays) between
the shortest data path and the longest data path to allow room
for variation in delay as the paths are tuned to prevent viola-
tions. If this margin TDm is added, a new equation and timing
diagram result. From Equation (E.5) we add the margin TDm
to the typical data delay TD,

TD = ((Tskew+BCM(Th))/BCM) + TDm (E.8)

The minimum period is,

MinPer=WCM((((Tskew+BCM(Th))/BCM)+TDm)+Tsu)
 +Tskew

MinPer = WCM(Tskew/BCM + Th +TDm + Tsu) + Tskew

MinPer=WCM/BCM(Tskew)+WCM(Th+TDm)+Tsu)
 +Tskew

MinPer = Tskew (WCM/BCM + 1) + WCM (Tsu + Th +
TDm) (E.9)

Note that if the period of operation is larger than the mini-
mum defined above, the data path margin TDm will be larger
and there will be more room for data path tuning.

Figure E.4 Ideal Minimum Period Considering Setup and Hold Time

AN1522 23 Fri Dec 15 11:40:36 1995

23

AN1522 MOTOROLA

Notes:

AN1522 24 Fri Dec 15 11:40:36 1995

AN1522/D

ASIC REGIONAL DESIGN CENTERS - U.S.A.

California, San Jose Illinois, Chicago Massachusetts, Marlborough
(408) 749-0510 (708) 490-9500 (508) 481-8100

ASIC REGIONAL DESIGN CENTERS - International

European Headquarters, England, Aylesbury, Bucks France, Vanves
Germany, Munich (0296) 395252 (01) 40355877
(089) 92103-0

Holland, Eindhoven Hong Kong, Kwai Chung Italy, Milan
(04998) 61211 480 8333 (02) 82201

Japan, Tokyo Sweden, Stockholm
(03) 440-3311 (08) 734-8800

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarding the suitability of its
products for any particular purpose, nor dose Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, includ-
ing “Typicals” must be validated for each customer application by customer’s technical experts. Motorola dose not convey any licence under its patent rights nor of oth-
ers. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indi-
rectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912, Phoenix, Arizona 85036
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Miltion Keynes MK14 5BP, England
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong

