
 Motorola, Inc. 1994

SEMICONDUCTOR
APPLICATION NOTE

MOTOROLA

IEEE Std. 1149.1 Boundary Scan for H4C TM Arrays
With H4CPlus TM and H4EPlus TM Supplement
Prepared by: Roy Jones and Nick Spence
Edited by: Clarence Nakata
Application Specific Integrated Circuits Division, Chandler AZ

AN1500

Order this document
by AN1500/D

Table of Contents Page
1.0 Introduction . 1
2.0 H4C JTAG Macro Descriptions 1
3.0 JTAG Cock & Control Signal Distribution 3
4.0 Mustang-Compatible JTAG. 7
5.0 JTAG I/O Macro Placement and

Pin-out Assignment . 16
6.0 CAD Design Flows . 18
Appendix
A. Electronic Rule Checker (ERC) Rules for JTAG . . . 23
B. BSC Modelling & TAP Controller Design for

Mustang Compatibility . 27
C. EDIFMERGE Attribute File Entries for Peripheral

JTAG Macros . 29
D. JTAG for H4CPlus and H4EPlus. 31

1. Introduction
This application note describes how IEEE standard bound-

ary scan, commonly referred to as “JTAG,” has been imple-
mented on Motorola’s H4C family of sub-micron CMOS gate
arrays. The user is assumed to have a working knowledge of
JTAG boundary scan. For background information refer to the
IEEE specification entitled “Standard Test Access Port and
Boundary-Scan Architecture, IEEE Std. 1149.1-1990,” and to
the textbook entitled “The Test Access Port and Boundary-
Scan Architecture” by Maunder and Tulloss, published by the
IEEE Computer Society Press.

Section 2. describes the macros which have been added
to the H4C library to facilitate designing boundary scan cir-
cuitry into an H4C gate array.

Section 3. describes how the JTAG clock and control sig-
nals are distributed around the chip periphery to each pin’s
boundary scan cell (BSC). The design constraints associated
with the distribution of these signals are also described.

Section 4. describes how to add boundary scan to a chip
whose system logic has been designed using conventional
scan techniques. Mustang, Motorola’s scan ATPG (Auto-
matic Test Pattern Generation) tool, is used to test the JTAG
circuitry as well as the system scan circuitry.

Section 5. presents an example JTAG circuit and de-
scribes the process the designer must go through to establish
the chip pin-out. The constraints described in Section 3.0
must be taken into consideration.

Section 6. describes the CAD design flows used when de-
signing an H4C array which incorporates JTAG boundary
scan.

Appendix A lists the ERC (Electrical Rule Checker) rules
that are specific to JTAG circuitry. The majority of these rules

are associated with the design constraints described in Sec-
tion 3.

Appendix B provides background information relevant to
the “Mustang-Compatible JTAG” discussed in Section 4.

Appendix C describes how to build the EDIFMERGE “At-
tribute file” for JTAG designs using Synopsys logic synthesis.

Appendix D provides H4CP specific procedures.

2. H4C JTAG Macro Descriptions
Technical data, including logic diagrams, for all JTAG mac-

ros in the H4C library can be found in the H4C Series Design
Reference Guide. These macros have been placed in three
categories in the descriptions that follow: I/O macros, core
macros and special purpose macros.

2.1 I/O Macros
I/O macros include the input, output and bidirectional

boundary scan cells. The JTAG boundary scan logic associ-
ated with these macros is diffused into the peripheral I/O
sites. The JTAG logic in a given I/O site is used only if a JTAG
BSC macro is instantiated at the package pin bonded to that
I/O site.

Non-JTAG hi-drive output and bidirectional macros have
always carried a “hi-drive” property to differentiate them from
their normal-drive counterparts. However, hi-drive versions of
the JTAG output and JTAG bidirectional macros have no
such hi-drive property. Instead, there is a separate macro for
each JTAG hi-drive so that the timing of these macros can be
modeled correctly.

2.2 Core Macros
Macros residing in the core of the array include the Bypass

Register (BPREG), Device Identification Register (IDREG),
Instruction Register (MC_IREG4), and TAP Controller
(FMC_TAPC).

The IDREG and BPREG are hard macros in the H4C li-
brary. Motorola will assign device identification codes accord-
ing to the following format:

Bit #: 31-28 27---22 21--------------1211----------------0
Value: VVVV 000111 DDDDDDDDDD000000011101

where
Bits 31-28: version number assigned by Motorola ASIC
Bits 27-22: unique number assigned to Motorola ASIC
Bits 21-12: sequence number assigned by Motorola ASIC
Bits 11-0: unique number assigned to Motorola Inc.

2

MOTOROLA AN1500

The MC_IREG4 is a soft macro; it consists of a schematic
capture symbol (or Verilog HDL module) which is comprised
of individual gate and flip-flop hard macros, which are placed
and routed individually by GateEnsemble. There is no fixed
layout for the MC_IREG4 as an entity. A functional diagram of
the MC_IREG4 is shown in Section 4.3, Figure 4-2.

The FMC_TAPC is a firm macro; it is like a soft macro in
that it is comprised of, and modeled as, individual gate and
flip-flop hard macros. Unlike a soft macro, a firm macro such
as the FMC_TAPC has been placed and routed as a single
entity by Gate Ensemble. Consequently, both the internal
metal interconnect and timing of a firm macro are fixed and do
not change when the chip is laid out. A functional diagram of
the FMC_TAPC is shown in Figure B-4 in Appendix B, which
discusses this macro in detail.

2.3 Special Purpose Macros
2.3.1 TAP macros: TCK, TMS, TRSTB, TDI, TDO
and TDOA.

TCK, TMS, TRSTB and TDI are simply input buffers with
no BSC logic. Each must be used at the pin driven by the
JTAG signal of the same name.

A functional diagram of the TDO macro is shown in Figure
2-1. The ‘IR’ port receives scan data from the TDO port of the
Instruction Register. The ‘DR’ port receives scan data from
whichever JTAG data register is activated by the current
JTAG instruction. Therefore the multiplexer contained in the
TDO macro selects either the Instruction Register or the cur-
rently active JTAG data register to be shifted out through the
TDO pin.

The TDO macro is used with the “small array” scheme for
distribution of the JTAG control signals. (See Section 3.3.)

The TDOA macro is functionally identical to TDO. TDOA is
used with the “large array” scheme for distribution of the
JTAG control signals. (See Section 3.2.)

Figure 2-1 TDO Macro (TDO, TDOA)

A
B
SL

X

2 to 1
MUX

INTERNAL LOGIC

PERIPHERY

D Q

CK QB
F-F

PAD

TDI

EN SL IR DR TCKB TDO

2.3.2 ENSCANI/J/P
The ENSCAN BSC’s are used to drive the enable port of 3-

state bidirectional and output BSC’s. The ENSCANI, EN-
SCANJ, and ENSCANP are functionally identical. The differ-
ences among the three are:

ENSCANJ must reside on a non-power I/O site.
ENSCANP must reside on a power I/O site.
ENSCANI must reside in the array core.
In the example of Figure 2-2 an ENSCANP supplies the 3-

state enable to an output bus. The BSEN input is driven from
the core by the system 3-state enable signal, and the OEN
output feeds into the core where it can be buffered if neces-
sary before driving the EN inputs of the 3-state output buffers.

Figure 2-2 ENSCANP Driving 3-State Enable of 8-bit
Output Bus

If an ENSCANI had been used instead, it would go at the
end of the BSC scan chain closest to TDO as shown in Figure
2-3. The BSC scan data path enters the core through a port
on the TDO/A macro, passes through all ENSCANI’s, then
gets multiplexed with the scan paths from all other JTAG data
registers before passing to the DR port of the TDO macro on
its way off chip. (Note that test data must shift counter-
clockwise through the BSC’s around the periphery of the
chip.) ENSCANI’s in the core receive CKDR, SHDR, UDDR,
and OMC directly from the core signals which drive the inputs
to the peripheral CKDRMID, SHDR, UDDR, OMCDR, and
OMCDR buffers, respectively.

It is recommended that ENSCANI’s be used only if there
are no power sites or unused I/O sites available on which to
place ENSCANP’s or ENSCANJ’s.

3

AN1500 MOTOROLA

2.3.3 TDBUF(P)
If consecutive peripheral BSC’s are separated by more

than seven I/O sites, a TDBUF or TDBUFP buffer macro must
be inserted between them since a BSC’s TDO output has lim-
ited drive strength. The TDBUF(P) must not be more than
seven I/O sites away from the BSC driving it.

2.3.4 I/O BSC Control Signal Buffers
These are the buffers that distribute CKDR, SHDR, UDDR,

IMC and OMC to the peripheral BSC’s. These buffers are de-
scribed in detail in Section 3.0, “JTAG Clock & Control Signal
Distribution.”

Figure 2-3 Position of ENSCANI 3-State Enable Macros
within I/O Boundary Scan Register

3. JTAG Clock & Control Signal Distribution

3.1 Overview
On Motorola’s sub-micron H4C arrays the JTAG boundary

scan cells are diffused into the periphery, or I/O area, of the
chip. The advantages realized, as compared to implementing
the BSC’s with core macros, are as follows:

1. Area savings

i) 100% utilization in the periphery versus 60-70% in
the core (i. e., no unused gates in the periphery).

ii) transistor sizes can be optimized to their small, non-
varying loads

iii) interconnect between BSC’s is done by abutment,
minimizing wire length. For these reasons, diffusing
the BSC’s into the I/O area conserves a significant
amount of chip area compared to implementing the
BSC’s in the array core, even though the chip I/O
area is ~20% larger than it would be if it did not
include built-in JTAG logic.

2. There is less additional data path delay due to the mux
in the input BSC’s since it has been optimized in terms
of transistor size and minimum wire interconnect.

3. There are no distribution “trees” for the BSC control sig-
nals to increase routing congestion in the core.

4. RAM and MPU diffused blocks don’t interfere with the
peripheral distribution “rings” for these control signals,
preventing increased signal skew.

5. Hold time violations cannot occur when shifting the
boundary scan register since all BSC’s share a com-
mon clock net.

The five JTAG clock and control signals are CKDR, SHDR,
UDDR, IMC and OMC. Two methods are provided for distrib-
uting these signals to the boundary scan cells located in the
periphery of H4C arrays. The “large or high speed array”
scheme can be used to maximize performance on any array
size, but it must be used on the larger arrays (H4C086 and
above) to ensure that edge-rate limits are not violated on the
peripheral clock and control lines, which have a large number
of BSC loads. The “small or low speed array” scheme is more
simply implemented and can be used on smaller arrays which
have no such edge-rate problem (H4C057 and below), when
maximum performance is not required. The “large or high
speed array” scheme should enable the boundary scan cir-
cuitry to operate at > 25Mhz.

In Figures 3-1 to 3-6, a dotted line marks the boundary be-
tween the core and periphery of the array. All of the special
buffers for the JTAG clock and control signals reside in power
sites or unused I/O sites in the periphery in order to:

i) maximize the drive capability of these buffers by uti-
lizing the large transistors that normally drive off-
chip, and to

ii) facilitate optimum buffer placement to achieve:

a) minimum insertion delay for each signal,

b) minimum skew for each signal between a buffer's
nearest and farthest BSC loads, and

c) minimum SHDR-to-CKDR skew and CKDR-to-
UDDR skew at any given BSC.

Use of the “P” versions of these buffers allows them to be
placed on power sites, which conserves I/O sites for other
uses such as hi-drive outputs.

For packages with highly inductive leads HSPICE simula-
tions have shown large voltage spikes on OUTVDD and OUT-
VSS (the output driver power and ground buses) due to
simultaneously switching outputs (SSO). These spikes can
couple to the outputs of “quiet” (inactive) drivers. For this rea-
son the JTAG buffers are powered from INPVDD/INPVSS

4

MOTOROLA AN1500

(the core power and ground buses), since they drive BSC's
which are also powered from INPVDD/INPVSS. These buff-
ers are also slew-rate controlled in order to inject as little
switching noise as possible onto INPVDD and INPVSS. The
JTAG buffers are all roughly equivalent to an ON4S4 output
buffer.

3.2 Large or High Speed Arrays
3.2.1 CKDR Distribution

Because the CKDR ring must encircle the entire chip, the
resistance of the metal can be several hundred ohms. The
same is true of the control lines as well. As a result, one very
large buffer cannot drive the ring without suffering severe per-
formance loss in terms of long prop delays and edge-rates at
the more distant BSC’s. A much better approach is to use
multiple, distributed buffers to drive the ring. As shown in Fig-
ure 3-2, the TAP controller drives a CKDRMID buffer, which
in turn drives one CKDRCC1 and one CKDRCC2 buffer via
an “extra” ring. The CKDRCC1 and CKDRCC2 each drive
roughly half of the JTAG I/O cells on the chip via the CKDR
ring. Because these two buffers are placed diametrically op-
posite to each other, only half of the extra ring is needed to
distribute CKDR to them. By detaching the unneeded half of
the extra ring, metal capacitance on this net is greatly re-
duced and substantial speed improvement is realized. In ad-
dition, the Gate Ensemble place and route software can
correctly model metal interconnect resistance and capaci-
tance (RC's) on this net only if it is not a closed loop. (Gate
Ensemble must see only one path from a net's driver to any
given load on that net.) There is a physical cut in the extra ring
within the CKDRCC1 and CKDRCC2 macros such that de-
tachment of the unneeded half of the extra ring is accom-
plished automatically when these macros are placed.

There is a physical cut in the CKDR ring within the TDOA
macro. However, closing the CKDR ring on the opposite side
of the chip from TDOA is important because it guarantees
that, over any range of operating conditions, there will never
be race conditions/hold time violations during shifting of the I/
O boundary scan register. This is true due to the fact that all
I/O BSC's share a common clock (CKDR) net. Nor is there a
“bus contention” problem on the CKDR ring, due to the wide
separation (roughly two sides of the chip) and minimal skew
between the CKDRCC1 and CKDRCC2 buffers which drive
this ring. However, Gate Ensemble cannot correctly model
distributed RC's for nets driven by more than one source if
these sources are active simultaneously. The solution is to
capture the schematic, or write the HDL circuit description,
such that, as in Figure 3-1, CKDRCC1 drives all BSC's on
CKDRNET1 and CKDRCC2 drives all BSC's on CKDRNET2,
so that the CAD system actually sees a gap in the ring. The
performance of the CKDR ring is identical with or without the
gap under the following conditions (refer to Figure 3-1):

i) branches (a) and (c) are perfectly balanced in terms
of number of loads and length of metal interconnect

ii) branches (b) and (d) are perfectly balanced in terms
of number of loads and length of metal interconnect

iii) CKDRMID is perfectly centered between CKDRCC1
and CKDRCC2.

Figure 3-1 CKDR Distribution (Netlist Interconnect for
Large or Fast Arrays)

Figure 3-2 CKDR Physical Distribution (Physical
Interconnect for Large/Fast Arrays)

In reality, the ASIC designer will not be able to achieve this
perfect balance. However, RC's for loads on the CKDR ring,
which has no gap in silicon, can be calculated within 5% error
by Gate Ensemble if:

iv) the number of loads on branch (a) is within 15% of
the number of loads on branch (c)

5

AN1500 MOTOROLA

v) the number of loads on branch (b) is within 15% of
the number of loads on branch (d)

vi) the number of I/O sites between CKDRMID and
CKDRCC1 is within 15% of the number of I/O sites
between CKDRMID and CKDRCC2.

ERC errors are generated if the above conditions are not
met. In addition, ERC warnings are generated if the following
two conditions are not met:

vii)the number of loads on branch (a) is within 15% of
the number of loads on branch (b)

viii)the number of loads on branch (c) is within 15% of
the number of loads on branch (d)

Simulation accuracy does not suffer if (vii) and (viii) are vi-
olated, therefore the chip designer may choose to ignore
these two ERC warnings. However best performance is
achieved by adhering to these two conditions.

Note: Since the gap in Figure 3-1 is not a gap in silicon,
it does not correspond to any particular I/O site and
therefore its placement is not constrained by the avail-
ability of an unused I/O site. The designer has complete
freedom as to where this gap is “placed,” which is done
by connecting some BSC’s to CKDRCC1 and the others
to CKDRCC2 as in Figure 3-1. Consequently, the imbal-
ance between the number of loads on CKDRNET1 and
the number of loads on CKDRNET2 should never be
greater than one (which would occur if there are an odd
number of peripheral JTAG macros driven by CKDR).

CKDR, SHDR, UDDR and OMC are routed within the core
directly from the TAP Controller to ENSCANI bidirectional en-
able BSC's, which reside in the core.

3.2.2 SHDR, UDDR Distribution
SHDR and UDDR use a distribution scheme which is dif-

ferent from the CKDR scheme, which was able to make use
of the extra ring. SHDR will be used for illustration (see Figure
3-3).

The TAP controller drives two SHDR buffers, each of
which drives roughly half of the JTAG I/O cells on the chip via
the SHDR ring. Gap 1 and gap 2 are both actual physical cuts
in the SHDR ring, unlike the gap in the CKDR ring. As a result
the ASIC designer does not need to balance the number of
BSC loads on nets 1 and 2 in order for Gate Ensemble to cor-
rectly model the distributed RC's for these loads. Gap 1 is de-
signed into the TDOA macro. To create gap 2 the ASIC
designer must place a special “ISO” macro on a power or I/O
site near the point diametrically opposite from the TDOA mac-
ro. This ISO macro cuts the SHDR and UDDR rings. A break
in these lines does not cause timing problems as it would in
the CKDR line, and it frees the designer from the need to bal-
ance loads on these lines as he has to do on CKDR. Even so,
ERC warnings are generated if the following two conditions
are not met:

i) the number of loads on branch (a) is within 15% of
the number of loads on branch (b)

ii) the number of loads on branch (c) is within 15% of
the number of loads on branch (d)

As stated above, simulation accuracy does not suffer if (i)
and (ii) are violated, therefore the chip designer may choose
to ignore these two ERC warnings. However best perfor-
mance is achieved by adhering to these two conditions. The
ERC warnings are simply to alert the designer that his buffer
placement will not achieve minimum insertion delay and max-
imum shift speed. Note: The ISO macro has nothing to do
with the CKDR gap in Figure 3-1.

Figure 3-3 SHDR, UDDR Distribution (Large/Fast Arrays)

3.2.3 IMC, OMC Distribution
The distribution scheme for IMC and OMC is similar to the

scheme for SHDR. The difference is that the SHDR line is cut
by the TDOA and ISO macros, whereas the IMC and OMC
lines are cut by the CKDRCC1 and CKDRCC2 macros. The
IMCDR and OMCDR buffers can now be placed in a different
area from the SHDR and UDDR buffers (see Figures 3-3 and
3-4), relieving buffer congestion so that as many JTAG buff-
ers as possible can be placed on power sites, allowing more
efficient use of the I/O sites.

6

MOTOROLA AN1500

Figure 3-4 IMC, OMC Distribution (Large/Fast Arrays)

3.3 Small or Low Speed Arrays
3.3.1 CKDR Distribution

As shown in Figure 3-5, the TAP controller drives one
CKDR buffer, which drives the CKDR ports of all JTAG I/O
cells on the chip via the CKDR ring. The CKDRCC1 and
CKDRCC2 buffers, and therefore the extra ring, are not need-
ed. Consequently there is no balancing of loads to be done,
as for large or high speed arrays. There is a physical cut in the
CKDR ring within the TDO macro so that Gate Ensemble can
correctly model distributed RC's for BSC loads on this ring.
The netlist interconnect matches the physical interconnect,
unlike the large/high speed array scheme. The TDO macro
replaces the TDOA macro used in the large/high speed array
scheme.

3.3.2 SHDR, UDDR, IMC, OMC Distribution
SHDR, UDDR, IMC and OMC all use the same distribution

scheme, which is also the same as the CKDR scheme since
the extra ring is not being used. As shown in Figure 3-6, the
TAP controller drives one SHDR buffer which drives the
SHDR ports of all JTAG I/O cells on the chip via the SHDR
ring. The ISO macro is not used so that gap 2 in the SHDR
and UDDR lines (see Figure 3-3) does not exist. Likewise,
gaps 1 and 2 in the IMC and OMC lines (see Figure 3-4) do
not exist, since CKDRCC1 and CKDRCC2 are not used in the
CKDR scheme. There is only one gap in each control line,
and that gap occurs in the TDO macro.

Figure 3-5 CKDR Distribution (Small/Slow Arrays)

Figure 3-6 SHDR, UDDR, IMC, OMC (Small/Slow Arrays)

7

AN1500 MOTOROLA

4. Mustang-Compatible JTAG

4.1 Introduction
On the Motorola H4C family of CMOS arrays, JTAG

boundary scan circuitry has been designed to be compatible
with Motorola’s Mustang ATPG product, which was designed
to do automatic test pattern generation for conventional scan
designs. However, as defined by the IEEE 1149.1 specifica-
tion, JTAG boundary scan violates several conventional scan
design rules. Section 4.0 and Appendix B describe how the
JTAG boundary scan circuitry has been implemented on H4C
arrays in order to allow it to be tested by Mustang.

The user is assumed to have a working knowledge of
Mustang. For more information on Mustang itself refer to Tim
Boland’s Application Note, number AN1096, entitled “Guide-
lines for Using the Mustang ATPG System,” and to the Mus-
tang User’s Guide portion of Motorola’s Open Architecture
CAD System (OACS) documentation.

4.2 Design Overview
Motorola has designed scan-compatibility into the JTAG

circuitry in two respects:
1. Special Mustang modeling has been done for the

boundary scan cell, which contains a non-scannable
latch.

2. The TAP Controller has been modified to include scan-
nable flip-flops, and to satisfy some Mustang timing
requirements. For detailed explanations of items 1 and
2 see Appendix B. In addition, the user is responsible
for:

• ensuring that no timing problems arise due to clock
skews, and

• interconnecting all JTAG circuitry such that Mustang
compatibility is maintained.

4.2.1 Handling of Clock Skew
Motorola’s H4C arrays use the gated-clock JTAG imple-

mentation shown in IEEE 1149.1. That is, the original clock
TCK is gated within the TAP Controller and the instruction de-
coding logic to provide the CKIR, CKDR, UDIR and UDDR
signals to the JTAG cells. This can cause skew problems in
Mustang test mode, particularly due to the large clock delays
to the boundary scan cells. Section 4.3 addresses the preven-
tion of timing problems due to clock skew.

4.2.2 JTAG Circuitry Interconnection
An extra pin, called “MTST” for “Mustang test mode” in this

document, must be added to the chip to logically reconfigure
the JTAG circuitry when Mustang testing is to be done. When
this input is active all circuit elements including the TAP Con-
troller will become scan-compatible, the JTAG TMS pin will be
used as the scan/shift enable control signal, and the scan
chain connected between the TDI and TDO pins will contain
all the flip-flops which are part of the JTAG circuitry. The
JTAG logic must also be correctly controlled in Mustang scan
mode to ensure that the scan paths are completed (requires

that IMC and OMC both be low). Section 4.4 describes in de-
tail how to properly hook-up all JTAG circuitry for Mustang
compatibility.

4.3 Handling of Clock Skew
The JTAG design can suffer from clock skew problems

during Mustang test mode because the gated clocks (CKIR,
UDIR, CKDR’s for each data register) must be enabled at the
same time. The problems occur when the clock arrives early
to one flip-flop causing its output to change before the clock
arrives at the next flip-flop. This can result in hold time viola-
tions and/or the wrong data being loaded.

The JTAG logic does not suffer from this problem during
normal operation because some sections are clocked on the
rising edge of TCK while others are clocked on the falling
edge, such that input data to each JTAG register always
changes on the inactive edge of the clock to that register. For
example, a new instruction becomes active when the shadow
latches in the instruction register are “clocked” by UDIR,
which occurs on the falling edge of TCK. The new instruction
drives decode logic which enables CKDR to the appropriate
data register (e. g. the Identification Register, Bypass Regis-
ter or peripheral boundary scan register). These CKDR en-
able signals change on the falling edge of TCK in order to be
stable during the rising edge of TCK/CKDR. Likewise the
SHDR and TDI signals, which feed each data register,
change on the falling edge of TCK in order to be stable during
the rising edge of TCK/CKDR. Also, the flip-flop within the
TDO macro is clocked on the falling edge of TCK because its
input data, which comes from either the “CKIR” flops in the In-
struction Register or from one of the data registers, changes
on the rising edge of TCK.

As described above, during normal JTAG operation input
data to each JTAG register always changes on the inactive
edge of the clock to that register, so that the data is stable dur-
ing clocking of the state elements. However, when operating
in Mustang test mode all flip-flops must clock on the same
edge of the clock signal. This can cause problems both during
scan operation (the shift in and shift out of scan data) and also
during the pulsing of the system or TCK clocks. (A Mustang
scan test consists of three parts: shift in of scan stimulus,
pulsing of zero or one of the clocks -- referred to as “clock
pulse mode,” and shift out of the chip’s response to the scan
stimulus.)

As described in Section 4.4, all JTAG registers will be in-
cluded in the same scan chain during Mustang testing. Each
data register is clocked by its own gated version of CKDR,
and the Instruction Register’s CKIR and UDIR flops are
clocked by CKIR and UDIR respectively. Consequently, the
JTAG scan chain is operated by several different clocks
which have different insertion delays, creating the potential
for skew problems during the scan operation. Skew problems
during scanning can be controlled by putting registers whose
clocks have longer insertion delays at the beginning of the
scan chain. Since the I/O boundary scan register has the
slowest clock distribution it should be the first part of the scan
chain. Also, if timing analysis shows it to be necessary, delays
can be added between flip-flops driven by different clocks.

8

MOTOROLA AN1500

In order to prevent skew problems when Mustang pulses
the system or TCK clocks, the JTAG clock gating must be al-
tered so that the clock pulse is applied either to the flip-flops
that would normally change on the rising edge of TCK or to
the flip-flops that would normally change on the falling edge
of TCK. This is done by adding a flop to the TAP controller
which controls the clock gating only during Mustang clock
pulse mode. (This flop is labeled “TCK/TCKB Select Flop” in
Figure B-4 of Appendix B.) Putting this flop inside the TAP
Controller allows all of the JTAG logic within the TAP control-
ler to remain in a single scan chain.

As shown in Figure 4-1 the Instruction Register UDIR
latches have been changed to flops, for the following reasons:

1. to eliminate the undetectable stuck-at-one faults which
are present on each latch gate input (for more details
see Section B.1 of Appendix B),

2. to enable separate clocking of the UDIR flop, which
must change on the falling edge of TCK. The UDIR sig-
nal can now be applied separately from the CKIR signal
to remove the possibility of skew.

Figure 4-1 Single-Bit Instruction Register Cell
(MC_IREG).

The “MC_IREG4” four-bit Instruction Register macro is
shown in Figure 4-2. During scan mode CKIR and UDIR are
active simultaneously, with CKIR leading UDIR by a few
nanoseconds at the output of the TAP Controller. Conse-
quently, to prevent hold-time violations during scan mode, the
“UDIR flops” must precede the “CKIR flops” in the JTAG scan
chain. For this purpose, SDI and SDO ports are provided on
the MC_IREG and MC_IREG4 macros to serve as “Scan-
Data-In” and “Scan-Data-Out” for the UDIR flops (see Figures
4-1, 4-2 and 4-3). As shown in Figure 4-3, during Mustang
scan mode (MSE high) scan data from the TAP Controller’s
“TDO” port enters the UDIR flops in the MC_IREG4 via the
SDI port. After exiting at SDO, the scan data is fed back to the
MC_IREG4 “TDI” port to pass through the CKIR flops. During
normal JTAG operation (MSE low), JTAG test data from the

TAP TDI pin is passed to the CKIR flops in the MC_IREG4 as
required.

Extra delays are included in the scan paths within the
MC_IREG4 because it is currently a soft macro. As such, the
metal interconnect between its four MC_IREG cells will differ
somewhat from layout to layout, potentially causing a small
amount of CKIR or UDIR skew between the four cells. The
DLY8 macros within the MC_IREG4 add delay in the scan
path to compensate for any such skew.

Referring to the Mustang-compatible TAP Controller in Ap-
pendix B, Figure B-4, note the inclusion of the following cir-
cuitry:

1. A “TCK/TCKB Select Flop” to control the clock gating in
Mustang clock pulse mode.

2. An extra delay on TDO to prevent skew problems
caused by the early clocking of the flip-flops in the TAP
Controller. The TDO signal would normally be passed
onto the Instruction Register as shown in Section 4.4.
The Instruction Register clock CKIR will arrive later
than the clock to the flip-flops in the TAP Controller
because of the clock gating circuitry within the TAP
Controller.

3. A delay macro in the scan path between the top left flip-
flop and the top right flip-flop because these flops have
separate clocks which pass through different gating
logic. A buffer was also added to the clock for the “TCK/
TCKB Select Flop” for similar reasons.

Since the FMC_TAPC Mustang-compatible TAP Control-
ler is a firm macro, its fixed layout guarantees no timing prob-
lems will ever arise internal to the FMC_TAPC.

It is very difficult to control clock skew between core/sys-
tem flip-flops and the boundary scan cells because of the long
insertion delay of clock CKDR in the periphery. In order to
prevent skew problems from occurring between the JTAG
logic and the system logic during Mustang test mode, either:

i) the clock TCK should be different from the system
clock, or

ii) circuitry similar to the “TCK/TCKB Select Flop” and
“Clock Select” gates in the TAP Controller should be
implemented to prevent Mustang from pulsing both
TCK and the system clock in the same clock cycle.

It is important that timing analysis be done to verify that no
setup or hold time violations occur due to the aforementioned
sources of clock skew. Veritime is able to take into account
the effects of variations in process/voltage/temperature
across a chip.

9

AN1500 MOTOROLA

Figure 4-2 MC_IREG4 Functional Diagram

Figure 4-3 Scan Chain Hook-up of MC_IREG4

10

MOTOROLA AN1500

Figure 4-4 Non-Scan JTAG Example Circuit

11

AN1500 MOTOROLA

Figure 4-4 Non-Scan JTAG Example Circuit (continued)

12

MOTOROLA AN1500

4.4 JTAG Circuitry Interconnection
First a non-scan, JTAG design will be discussed to show

the essential circuitry required to implement JTAG on H4C ar-
rays. Afterwards, the requirements for a Mustang/scan-com-
patible JTAG design will be discussed and illustrated.

4.4.1 Non-Scan JTAG Interconnection
If the system logic is not a scan design, Mustang cannot be

used for ATPG. An example of a non-scan, JTAG design is
shown in Figure 4-4. Note that:

• the MTST pin is not required

• the MSE and TDO TAP Controller outputs are not
used

• the TAP Controller MTST input and Instruction Regis-
ter MSE input should be tied low

Except for the three flip-flops labeled “System Logic,” all of
the circuitry in Figure 4-4 is part of the JTAG logic. The BSC’s
and peripheral JTAG buffers are located around the periphery
of the schematic. Note that test data must shift counter-
clockwise through the BSC’s around the periphery of the
chip.

On H4C arrays, JTAG boundary scan uses a gated CKDR
signal as described in the IEEE 1149.1 specification. That is,
CKDR is gated to the appropriate data register (peripheral
boundary scan register, Bypass Register, Device Identifica-
tion Register, etc.) under control of the Instruction Register
decode logic. For example, if the Instruction Register holds
the Sample, INTEST or EXTEST instruction, then CKDR and
UDDR will be gated to the peripheral boundary scan register.
In addition, the Instruction Register decode logic must gener-
ate the Input Mode Control (IMC) and Output Mode Control
(OMC) signals. IMC and OMC control the select lines of the
data path multiplexers within the input and output BSC’s, re-
spectively. Since users may define their own JTAG instruction
sets, the Instruction Register decode logic is design specific;
therefore it is not implemented as a special macro in the H4C
library. However, in this example a DEC8 macro from the
H4C library is sufficient to implement the Instruction Register
decoder.

Because instruction decoding is done by combinatorial log-
ic, the decoded control signals may glitch temporarily when
UDIR activates a new instruction. Such glitches are harmless
on some control signals, but not on others. Control signals
which cannot afford to be glitched should be decoded from
the instruction register CKIR flops instead of the UDIR flops.
The decoded signals then drive flops which are clocked by
UDIR. In Figure 4-4 the “Glitch-Free IMC/OMC Decode” block
uses this method to decode the IMC/OMC, HI-Z and UDEF1
signals. The IREG3 is a 3-bit instruction register built from
three 1-bit MC_IREG cells in order to bring out the CKIR flop
outputs at the TDO0, TDO1 and TDO2 ports (see Figure 4-5).
These signals are used to decode the IMC/OMC, HI-Z and
UDEF1 signals as shown in Figure 4-6. Alternatively, all in-
struction decoding could be performed on the instruction reg-
ister CKIR flops, with each decoded signal driving its own
“UDIR” flop.

Note that even though IMC and OMC are independent
lines in the chip periphery, driven by separate IMCDR and

OMCDR drivers, both IMC and OMC are functionally equiva-
lent to the “Mode” control signal defined in IEEE 1149.1.
Therefore they would normally have a common source in the
array core. In Figure 4-4 this common source is labeled “IMC/
OMC.”

The ENSCANP and ENSCANJ macros have been
hooked-up such that they can be reset either by resetting the
TAP Controller or by loading a “HI_Z” instruction, which puts
all 3-state outputs in the hi-impedance state.

Figure 4-5 IREG3 3-Bit Instruction Register

Figure 4-6 Glitch-Free IMC/OMC Decode Block

13

AN1500 MOTOROLA

4.4.2 Mustang-Compatible JTAG Interconnection
In order to make a JTAG design Mustang-compatible the

FMC_TAPC TAP Controller of Figure B-4 must be used, as
well as an Instruction Register like the one in Figure 4-2. The
designer must also add extra circuitry to link up all of the
JTAG registers into one scan chain during Mustang test
mode. The requirements, which are illustrated in Figure 4-7,
are as follows:

1. An extra MTST input pin, which will only be active
during Mustang testing, must be added to the
design. A pull-up/pull-down resistor may be used
to hold this pin inactive during normal operation.
Note: the input macro driven by MTST must be
either a non-JTAG macro or a “sample-only”
macro such as an ICNCKHJ.

2. The Mustang test mode input pin must be con-
nected to the MTST input of the TAP Controller
and to OR gates which perform clock gating for
JTAG data registers. This will cause all of the
JTAG scan chains (i. e. the TAP Controller,
Instruction Register, and data registers) to be
clocked together in Mustang test mode, during
which they are part of one scan chain between
TDI and TDO.

3. The Mustang scan path through the JTAG logic
must be connected starting with the boundary
scan chain, then any internal data registers (e.g.
Bypass register and ID code register), then the
TAP Controller and finally the Instruction Register.
This reduces the probability of clock skew prob-
lems occurring.

4. Two-input multiplexers must be placed on the
connections between the TDI pin and each inter-
nal/core JTAG scan chain to enable all JTAG scan
chains to be connected up as one long chain dur-
ing Mustang test mode. The output of each multi-
plexer will feed the input to a JTAG scan chain.
The select input on the multiplexer must be con-
nected to the TAP Controller’s Mustang Scan
Enable (MSE) output (MSE is TMS logically
AND’ed with MTST). The TDI signal should be
connected to the A input of the multiplexers. The
B input of the multiplexers should be connected to
the end of the previous JTAG scan chain, where
the order is that defined in item 3 above.

5. In order to use JTAG input and output BSC’s as
the input to or output from a scan chain they must
be forced into transparent mode. If the output has
an enable line then this too must be activated dur-
ing scan. This is done by adding gating logic to
the IMC and OMC control lines to force them low
during scan mode.

6. If the TCK and system clocks are derived from
the same source then they must be clocked on
the same edge of the source clock. This may
require placing an exclusive-or gate on the TCK
input to the TAP Controller, as well as adding

clock gating circuitry similar to that built into the
TAP Controller, which is described in Appendix B.
This circuitry would serve to prevent race condi-
tions between the BSC’s and the system/core
logic.

7. Mustang requires all asynchronous control lines
to be controlled only by an external input. An
asynchronous reset line which enters the chip
through a normal input BSC can be controlled by
the jlatch (see Appendix B) within that BSC.
Therefore the reset line must be gated with MTST
in the array core so that the reset will be disabled
during Mustang testing. Alternatively, the asyn-
chronous reset can enter the chip through a “sam-
ple-only” cell. In this case gating the reset signal
with MTST is not required, however the reset is
no longer controllable from the JTAG BSC ring.

4.5 Mustang-Compatible JTAG Example Circuit
In Figure 4-7 the non-scan JTAG design in Figure 4-4 has

been modified, according to the requirements of Section 4.4-
2, to create a Mustang-compatible JTAG design. The system
logic in this example consists solely of the “System Scan
Reg,” which is a conventional scan design consisting of one
scan chain starting at the IN0 input and exiting at the OUT0
output. The remaining circuitry implements JTAG boundary
scan which, during Mustang testing, is configured as one
scan chain which enters the chip at pin TDI and exits at pin
TDO, as described in Section 4.4-2. (Larger designs typically
have multiple scan chains for the system logic because of the
long time taken to load/scan them.) As in Figure 4-4, the
BSC’s and peripheral JTAG buffers are located around the
periphery of the schematic. Note that test data must shift
counterclockwise through the BSC’s around the periph-
ery of the chip. The “Glitch-Free IMC/OMC Decode” block
functions as described in Section 4.4-1, except that the flops
inside it are now scan flops.

Mustang test mode is established by forcing the MTST pin
high. During Mustang test mode the TMS pin controls scan
mode (MTST and TMS high), during which bidirectional pins
must be disabled. Using TRSTB, instead of TMS, to disable
the bidirectionals during scan mode improves the fault cover-
age of the bidirectionals. During scan mode all JTAG regis-
ters are configured into one scan chain via 2-input
multiplexers at the TDI inputs of the Device Identification Reg-
ister, Bypass Register, TAP Controller, and Instruction Regis-
ter. Within the Instruction Register, UDIR flops as well as
CKIR flops become part of this same chain as described pre-
viously in Section 4-3. The scan chain order is as follows:

TDI, BSC’s, IDREG, BPREG, FMC_TAPC, MC_IREG4,
TDO. Also, during Mustang scan mode IMC and OMC are
forced low so that I/O BSC’s will pass scan data into and out
of the chip.

The Mustang control file used is as follows:

SCAN_OUTPUT TDO
SCAN_OUTPUT OUT0
SCAN_MODE TMS 1

14

MOTOROLA AN1500

SCAN_CLOCK TCK 1 1
SCAN_CLOCK SCLK 1 2
SYSTEM_CLOCK TCK 1 1
SYSTEM_CLOCK SCLK 1 2
ASSERT MTST 1
BIDIRECT_CONTROL TRSTB 1
SCAN_MODE TRSTB 1

The fault coverage obtained for this example circuit was
>95%. This fault coverage is essentially that of the JTAG cir-
cuitry alone since the system logic in this example consists
solely of one 3-stage shift register. The fault coverage for a
real-world chip design would be much higher, since the vast
majority of the circuitry would be scannable system logic with
close to 100% fault coverage.

The implementation of the “System Scan Reg” shown in
Figure 4-7 is just an example of what could be done. When a
user-defined JTAG instruction (code = binary 101) is active,
the “E1” input to the System Scan Reg becomes the IDLE
output from the Tap Controller so as to allow the System Scan
Reg to be clocked while in the “Run-Test/Idle” state. When
the user-defined test is completed the contents of the System
Scan Reg can be shifted out through TDO under control of
SHDR from the TAP Controller, just like any other JTAG test
data register such as the Bypass register or peripheral bound-
ary scan register. If the user has no interest in doing such a
test, E1 could be tied high (always enabled) and SE could be
wired directly to MSE, for example.

Figure 4-8 Glitch-Free IMC/OMC Decode Block

4.6 Conclusions
The methodology presented here allows Mustang to be

used with JTAG by modifying the designs of the TAP Control-
ler and the Instruction Register. The results show that it is
possible to achieve high fault coverage using fully automated
test pattern generation with Mustang. However, Mustang
cannot test the gate (G) input to the BSC shadow latches. Nor
can Mustang test all of the JTAG Instruction Register decod-
ing logic. Testing of these areas should be achieved by sup-
plementing the Mustang test patterns with some manually
written vectors which test the JTAG circuitry in its normal
functional mode of operation. Merging of these functional vec-
tors with the Mustang vectors is accomplished by TESTPAS,
which is one of the OACS CAD tools.

5. JTAG I/O Macro Placement and Pin-out
Assignment

5.1 Pin & I/O Site Placement of JTAG I/O Macros
5.1.1 Placement of Test Access Port (TAP) Pins

For each array size there are 32 fixed pad pairs which can
interface to 64 high-speed scan channels on the Typhoon
tester. These pad pairs are marked with asterisks on each
Pad-to-Pin cross reference table in the H4C Design Refer-
ence Guide. Test Access Port (TAP) pins TMS, TCK, TDI and
TDO each must be assigned to a pin which is bonded to one
of these “*” pads. It is recommended that TMS be adjacent to
TCK, and that TDI be adjacent to TDO. TDI must be counter-
clockwise from TDO, and no BSC’s should be placed be-
tween TDI and TDO (clockwise from TDI) because these
BSC’s would not be contained in the I/O boundary scan data
register.

5.1.2 Placement of Non-bonded JTAG Macros
“Non-bonded” macros reside in I/O or power sites but have

no off-chip connections. These macros include TDBUF/P,
ENSCANJ/P, ISO/P, and the special buffers for CKDR,
SHDR, UDDR, IMC and OMC:

CKDRMID, CKDRMIDP (large or high speed arrays only)
CKDRCC1, CKDRCC1P (large or high speed arrays only)
CKDRCC2, CKDRCC2P (large or high speed arrays only)
CKDR, CKDRP (small or low speed arrays only)
SHDR, SHDRP
UDDR, UDDRP
IMCDR, IMCDRP
OMCDR, OMCDRP
ISO, ISOP

Referring to the “H4C123 160 QFP PAD-to-Pin Cross Ref-
erence” in the H4C Series Design Reference Guide, each
non-bonded macro must reside on a specific power or I/O site
which:

• does not connect to a pad (e. g., I/O sites 58 & 59), or

• connects to a pad which is not bonded out to a pack-
age pin (e. g., I/O sites 47 and 48), or

• connects to a power/ground pad (e. g., I/O sites 50
and 51); the “P” version of the macro is used at
power/ground sites.

15

AN1500 MOTOROLA

In addition, the JTAG buffers must reside within 25 sites of
the nearest INPVSS and INPVDD (or BOTHVSS and BOTH-
VDD). The Pin-to-Pad Cross Reference for the pertinent array
and package is used to select a site for each non-bonded
macro.

5.1.3 Placement of JT AG I/O Macros within
Schematic Capture

The user must assign a package pin number to the
“IO_PIN1” property on each I/O macro, including input, output
and bidirectional BSC’s and the TAP macros. In addition, a
FIX property whose initial value is “IOXX” is already attached
to each non-bonded JTAG macro, which the user places by
substituting the I/O site # for the “XX” portion of the FIX value.
In Figure 4-7 the JTAG buffers have been placed according
to the “large or fast array” scheme (see Section 3.2), using the
“Pad to Pin” for an H4C123 array in a 160QFP package. Note
the inclusion of TDBUF’s to buffer BSC TDO output ports
where the following BSC is >=7 I/O sites away. In determining
the pin-out and I/O site placement, follow the guidelines in
Section 5.2.

5.1.4 Placement of JT AG I/O Macros within
Synopsys/Verilog HDL Flow

For Verilog HDL design entry followed by Synopsys logic
synthesis, the designer creates a Verilog netlist for the JTAG
I/O and the non-bonded macros. The designer also creates
the EDIFMERGE “Attribute” file, which contains I/O site
placement information in the form of FIX properties for all of
the peripheral JTAG macros. The Verilog netlists for the
JTAG I/O, the core JTAG logic, and the system logic are com-
bined into one EDIF netlist using Synopsys. This “Synopsys
EDIF” netlist, along with the Attribute file, are subsequently in-
put to EDIFMERGE to create the “Motorola EDIF” netlist re-
quired by the OACS tools. (EDIFMERGE creates a Motorola
EDIF netlist from the Synopsys EDIF netlist by adding prop-
erties which are specific to Motorola’s H4C technology. For
more information on EDIFMERGE see the Synopsys/ED-
IFMERGE Application Note for OACS.)

Had Verilog HDL been used instead of schematic capture
to enter the circuit in Figure 4-7, the JTAG portion of the At-
tribute file would appear as shown in Fig. C-1 (Appendix C).

5.2 Guidelines for Finding an ERC-Compatible
Chip Pin-out

In both procedures that follow, the JTAG clock and control
signal buffers should be placed on power sites to the extent
possible.

5.2.1 Full Boundary Scan Pin-Out Guidelines
In selecting the pin-out for a chip which uses full boundary

scan (the vast majority of system signal pins use BSC’s), it is
recommended that the following steps be done in sequence:

1. Place TDI and TDOA on a pair of adjacent high-
speed scan tester pins. TDI must be counter-
clockwise from TDO. In the same general area as
TDI and TDOA, place TCK and TMS on high-

speed tester pins and TRSTB on a normal pin.
2. Place remaining system pins, and any additional

power/ground pins required, in conformance with
the ERC rules governing the placement of output
drivers relative to power pin locations. Also keep
in mind the rules governing sharing of a single I/O
site by two different macros.

3. Place ENSCANJ/P 3-state control BSC’s on avail-
able I/O or power sites.

4. Between every pair of BSC’s separated by >7
non-BSC I/O sites, a TDBUF/P must be inserted
on an I/O site within 7 sites of the BSC whose
TDO port drives the other’s TDI port. (TDBUF/P is
built from the input buffer portion of an I/O site,
and can therefore share an I/O site with a non-
JTAG output driver or with a “paralleled” output
driver used to build a hi-drive.)

5. Place the CKDRCC1/P and CKDRCC2/P buffers
such that, in Figure 3-1, nets CKDRNET1 and
CKDRNET2 are balanced as described in Section
3.1.

6. Place the CKDRMID/P buffer equidistant between
CKDRCC1/P and CKDRCC2/P as shown in Fig-
ure 3-1.

7. Place the ISO/P macro diametrically opposite
from TDOA (approximately), as in Figure 3-3.

8. Place the SHDR/P buffers approximately in the
center of nets 1 and 2 as shown in Figure 3-3. Do
the same for the UDDR/P buffers.

9. Place the IMCDR/P buffers approximately half-
way between the CKDRCC1/P and CKDRCC2/P
buffers, which create gap 1 and gap 2 in Figure 3-
4. Do the same for the OMCDR/P buffers.

5.2.2 Partial Boundary Scan Pin-Out Guidelines
“Partial boundary scan” refers to a chip on which many sys-

tem signal pins use non-JTAG I/O macros. In selecting the
pin-out for such a chip, it is recommended that the following
steps be done in sequence:

1. Place system pins (i. e., all pins except TDI,
TDOA, TMS, TCK, and TRSTB), and any addi-
tional power/ground pins required, in conform-
ance with the ERC rules governing the placement
of output drivers relative to power pin locations.
Also keep in mind the rules governing sharing of a
single I/O site by two different macros.

2. Place ENSCANJ/P 3-state control BSC’s on avail-
able I/O or power sites.

3. Choose a pair of adjacent high-speed scan tester
pins for TDI and TDOA (with TDI counterclock-
wise from TDO) such that a line drawn from
TDOA through the center of the chip creates two
halves which each contain an equal number of
BSC’s, and to the extent possible, an equal num-
ber of non-JTAG pins. In the same general area
as TDI and TDOA, place TCK and TMS on high-
speed tester pins and TRSTB on any pin.

16

MOTOROLA AN1500

4. Between every pair of BSC’s separated by >7
non-BSC I/O sites, a TDBUF/P must be inserted
on an I/O site within 7 sites of the BSC whose
TDO port drives the other’s TDI port. (TDBUF/P is
built from the input buffer portion of an I/O site,
and can therefore share an I/O site with a non-
JTAG output driver or with a “paralleled” output
driver used to build a hi-drive.)

5. Place the CKDRCC1/P and CKDRCC2/P buffers
such that between each buffer and TDOA there is
an equal number of BSC’s, and to the extent pos-
sible, an equal number of non-JTAG pins. Refer to
Figure 3-1.

6. Place the CKDRMID/P buffer equidistant between
CKDRCC1/P and CKDRCC2/P (typically near
TDOA). Refer to Figure 3-1.

7. Place the ISO/P macro diametrically opposite
from TDOA (approximately), as in Figure 3-3.

8. Place the SHDR/P buffers approximately halfway
between the TDOA and ISO/P, in terms of BSC’s
(see Figure 3-3). Do the same for the UDDR/P
buffers.

9. Place the IMCDR/P buffers approximately half-
way between the CKDRCC1/P and CKDRCC2/P
buffers, in terms of BSC’s (see Figure 3-4). Do the
same for the OMCDR/P buffers.

6. CAD Design Flows
For Mentor QSIM simulation on the HP/Apollo platform,

entry of an H4C design would likely be done via schematic
capture. The corresponding “Schematic Capture/QSIM De-
sign Flow” in Section 6.1 follows a “bottom-up” design meth-
odology.

For Verilog simulation on either the Sun or HP/Apollo plat-
form, design entry can be done by either schematic capture
or, for Synopsys users, by writing a Verilog HDL circuit de-
scription. The “Schematic Capture/Verilog Design Flow” in
Section 6.2 and the “Synopsys/Verilog Design Flow” in Sec-
tion 6.3 both follow a “top-down” design methodology where
the chip is initially described behaviorally using Verilog HDL.
In Section 6.2 the HDL is manually converted into gates using
schematic capture, whereas in Section 6.3 the HDL is synthe-
sized into gates using Synopsys.

For real world schematic capture designs, it may be more
practical to capture the BSC’s in rows rather than trying to
capture the I/O in the shape of a chip footprint as in Figure 4-
7.

During pre-layout simulations, estimated parasitic resis-
tance and capacitance values are used for the metal intercon-
nect between peripheral JTAG macros, as is done for
interconnect between core macros. As a result, it is possi-
ble to get pre-layout DECAL edge-rate warnings or errors
for nets in the periphery. These warnings and errors are
invalid, since the peripheral nets have been shown by
SPICE to have no edge-rate problems. After layout the ac-
tual resistance and capacitance values are used, at which
time no edge-rate errors should occur on peripheral nets.

6.1 Schematic Capture/QSIM Design Flow
IV.Determine Chip Pin-Out and Capture JTAG I/O

1. Use CAPTURE to capture a schematic of the
JTAG I/O, following the “Guidelines for Finding an
ERC-Compatible Chip Pin-Out” in Section 5.2.

2. Verify JTAG I/O conform to electrical design rules:
a. Run FLATTEN to generate a QSIM database.
b. Run NETLIST to generate an EDIF netlist

(used by ERC).
c. Run ERC for peripheral rule checks. Repeat

steps 1 and 2 until ERC passes.

V. Design Chip’s System (Non-JTAG) Logic
A. Design Individual Sub-Blocks

3. Use CAPTURE to capture a schematic for one
system sub-block “Y”.

4. Run FLATTEN to generate QSIM database for Y.
5. (Optional) Verify Y via unit-delay QSIM simula-

tion. Repeat steps 3-5 until Y’s functionality is cor-
rect.

6. Run NETLIST to create the required Motorola
netlists:
a. an EDIF netlist (used by ERC and DECAL)
b. a TEGAS/TDL netlist (used by MUSTANG) if

the chip is a scan design.
7. Run ERC to verify Y conforms to electrical design

rules. If violations occur return to step 3 to correct
the schematic.

8. If the chip is a scan design, run the MUSTANG
design rule checker to verify Y conforms to scan
design rules. (Also generate test patterns if Y’s
fault coverage is desired.) If violations occur
return to step 3 to correct the schematic.

9. Verify Y via real-time simulation:
a. Run DECAL to calculate real-time delays. If

edge-rate violations occur, return to step 3 to
correct the schematic.

b. Run INSERT_DELAYS to insert real-time
delays into the QSIM database.

c. Run QSIM. If Y’s functionality or timing is incor-
rect, return to step 3 to correct the schematic.

10.Repeat steps 3-9 for each system sub-block on
the chip.

B. Combine All of Chip’s System Sub-Blocks

11.Use CAPTURE to combine the sub-blocks for all
system logic on the chip.

12.Run FLATTEN to generate a QSIM database.
13.Run NETLIST to create an EDIF netlist. Also cre-

ate a TEGAS/TDL netlist if the chip is a scan
design.

14.Run ERC and, if the chip is a scan design, run
MUSTANG; then run DECAL and
INSERT_DELAYS followed by QSIM real-time
simulation.

17

AN1500 MOTOROLA

If violations occur in any of these tools, make schematic
corrections for all erroneous sub-blocks. Re-verify each cor-
rected sub-block individually to the extent desired in section
II, part A, then return to step 11.

VI.Combine JTAG Circuitry with Chip’s System Logic
15.Use CAPTURE to capture a schematic of the

core JTAG logic (including the TAP Controller
etc.).

Verify All JTAG Circuitry by Itself (Optional)
16.In CAPTURE, combine the core JTAG logic with

the JTAG I/O from step 1.
17.Run FLATTEN to generate a QSIM database.
18.Do unit-delay QSIM simulation, if desired. If step

18 is done, repeat steps 16-18 until functionality is
correct.

19.Run NETLIST to create an EDIF netlist. Also cre-
ate a TEGAS/TDL netlist if the chip is a scan
design.

20.Run ERC and, if the chip is a scan design, run
the MUSTANG design rule checker; then run
DECAL and INSERT_DELAYS followed by QSIM
real-time simulation. If violations occur in any of
these tools, return to step 16 to correct the sche-
matic.

Verify Combined System and JTAG Circuitry
21.Use CAPTURE to combine the core JTAG logic,

JTAG I/O, and system logic.
22.Create required netlists for the entire chip:

a. Run FLATTEN to generate a QSIM database.
b. Run NETLIST to create the following:

i) an EDIF netlist (used by ERC and DECAL)
ii) a TEGAS/TDL netlist (used by MUSTANG) if

the chip is a scan design.
iii) an “Actual.RC” file (used by DECAL) for

each firm macro, such as the FMC_TAPC
23.Run ERC to verify the entire chip conforms to

electrical design rules.
24.If the chip is a scan design, run the MUSTANG

design rule checker to verify the entire chip con-
forms to scan design rules.

25.Verify entire chip via real-time simulation:
a. Run DECAL to calculate real-time delays.
b. Run INSERT_DELAYS to insert real-time

delays into the QSIM database.
c. Run QSIM.

If errors occur in any of steps 23-25, return to step 15 to fix
the core JTAG logic, or return to step 3 to fix any erroneous
system sub-blocks. Re-verify each corrected sub-block indi-
vidually to the extent desired in section II, part A, then contin-
ue at step 11, 15 or 21 as desired.

26.If the chip is a scan design, run MUSTANG to
generate scan test patterns.

27.Run TESTPAS to combine the functional and
scan test patterns from steps 25 and 26, respec-
tively.

6.2 Schematic Capture/Verilog Design Flow
Veritime timing analysis is recommended as a complement

to real-time simulations (those using DECAL delays instead
of unit-delays).

I. Behavioral-Level Design
1. As part of the behavioral verification of the entire

system, create and verify a Verilog HDL behav-
ioral description for all system logic on the H4C
chip.

II. Determine Chip Pin-Out and Capture JTAG I/O
2. Use ASIC_GED to capture a schematic of the

JTAG I/O, following the “Guidelines for Finding an
ERC-Compatible Chip Pin-Out” in Section 5.2.

3. Verify JTAG I/O conform to electrical design rules:
a. Run NETLIST to generate an EDIF netlist

(used by ERC).
b. Run ERC for peripheral rule checks. Repeat

steps 2 and 3 until ERC passes.
III.Design Chip’s System (Non-JTAG) Logic

A. Convert Behavioral Description to an RTL (Reg-
ister-Transfer Level) Description

4. For one chip sub-block “X,” convert the behavioral
description to an RTL description. If X is to be
converted into gates by logic synthesis as
opposed to schematic capture, then the RTL
description must use only those Verilog con-
structs supported by Synopsys.

5. Simulate X’s RTL description, by itself. Modify and
re-simulate X’s RTL description until its functional-
ity matches X’s behavioral description.

6. Repeat step 1’s simulation of the chip behavioral
description, but use the RTL description for X in
place of X’s behavioral description. Modify X’s
RTL description as necessary until chip function-
ality matches that of the all-behavioral chip
description in step 1. Repeat steps 4-6 for each of
the chip’s sub-blocks.

7. Simulate all system logic on the chip at the RTL
level. Modify the sub-blocks’ RTL descriptions as
necessary until chip functionality matches that of
the all-behavioral chip description in step 1.

B. Convert Sub-Block RTL Descriptions to Gate-
Level Netlists

8. Use ASIC_GED to capture a schematic for one
system sub-block “X”.

9. Run NETLIST to create the required netlists for X:
a. an EDIF netlist (used by ERC and DECAL) and

a Verilog netlist
b. a TEGAS/TDL netlist (used by MUSTANG) if

the chip is a scan design.
10.(Optional) Do unit-delay simulation of X’s gate-

level netlist by itself, using the same vectors used
to verify X’s RTL description in step 5. If X’s func-
tionality is incorrect return to step 8 to correct the

18

MOTOROLA AN1500

schematic, or correct X’s RTL description and
return to step 5, 6 or 7 to verify the correction.

11.(Optional) Repeat step 7’s simulation of the chip
RTL description, but use the gate-level netlist for
sub-block X in place of X’s RTL description. Han-
dle bugs as prescribed in step 10.

12.Run ERC to verify X conforms to electrical design
rules. If violations occur return to step 8 to correct
the schematic.

13.If the chip is a scan design, run the MUSTANG
design rule checker to verify X conforms to scan
design rules. (Also generate test patterns if Y’s
fault coverage is desired.) If violations occur
return to step 8 to correct the schematic.

14.Verify X via real-time simulation and timing analy-
sis:
a. Run DECAL to calculate real-time delays. If

edge-rate violations occur, return to step 8 to
correct the schematic.

b. Repeat step 10, using DECAL delays instead
of unit delays.

c. Repeat step 11, using DECAL delays instead
of unit delays.

15.Repeat steps 8-14 for each system sub-block on
the chip.

C. Combine Netlists for All of Chip’s System Sub-
Blocks

16.Use ASIC_GED to combine the sub-blocks for all
system logic on the chip.

17.Run NETLIST to create Verilog and EDIF netlists.
Also create a TEGAS/TDL netlist if the chip is a
scan design.

18.Run ERC and, if the chip is a scan design, run
MUSTANG. Run DECAL; then simulate the gate-
level netlist for the chip’s system logic using the
same vectors which were used in step 7 to verify
the RTL description of the chip’s system logic. If
violations occur in any of these tools, do one of
the following for each erroneous sub-block:

i) return to step 8 to correct the sub-block’s
schematic, or

ii) correct the sub-block’s RTL description and
return to step 5, 6 or 7 to verify the correc-
tion.

iii) Re-verify each corrected sub-block individu-
ally to the extent desired in section III, part
B, then return to step 16.

IV.Combine JTAG Circuitry with Chip’s System Logic
19.Use ASIC_GED to capture a schematic of the

core JTAG logic (including the TAP Controller
etc.).

Verify All JTAG Circuitry by Itself (Optional)
20.In ASIC_GED, combine the core JTAG logic with

the JTAG I/O from step 2.
21.Run NETLIST to create EDIF and Verilog netlists.

Also create a TEGAS/TDL netlist if the chip is a
scan design.

22.Run ERC and, if the chip is a scan design, run
the MUSTANG design rule checker; then run
DECAL followed by Verilog real-time simulation. If
violations occur in any of these tools, return to
step 20 to correct the schematic.

Verify Combined System and JTAG Circuitry
23.Use ASIC_GED to combine the core JTAG logic,

JTAG I/O, and system logic.
24.Run NETLIST for the entire chip to create the fol-

lowing:
a. an EDIF netlist (used by ERC and DECAL) and

a Verilog netlist
b. an “Actual.RC” file (used by DECAL) for each

firm macro, such as the FMC_TAPC
c. a TEGAS/TDL netlist (used by MUSTANG) if

the chip is a scan design.
25.Run ERC to verify entire chip conforms to electri-

cal design rules.
26.If the chip is a scan design, run the MUSTANG

design rule checker to verify entire chip conforms
to scan design rules.

27.Verify entire chip via real-time simulation and tim-
ing analysis:
a. Run DECAL to calculate real-time delays.
b. Simulate the gate-level netlist for the entire

chip using the same vectors which were used
in step 7 to verify the RTL description of the
chip’s system logic. Then exercise the JTAG
logic in a separate simulation. If errors occur in
any of steps 25-27, return to step 19 to correct
the core JTAG logic, or do one of the following
for each erroneous sub-block:
i) return to step 8 to correct the sub-block’s

schematic, or
ii) correct the sub-block’s RTL description and

return to step 5, 6 or 7 to verify the correc-
tion. Re-verify each corrected sub-block
individually to the extent desired in section
III, part B, then continue at step 16, 19 or 23
as desired.

28.If the chip is a scan design, run MUSTANG to
generate scan test patterns.

29.Run TESTPAS to combine the functional and
scan test patterns from steps 27 and 28, respec-
tively.

19

AN1500 MOTOROLA

6.3 Synopsys/Verilog Design Flow
Tieoff’s and buses require special handling when a Verilog

netlist created by the OACS “NETLIST” tool is to be used in
Synopsys (e. g. in steps16, 23 or 25 below). In an OACS
netlist, the two statements which define VDD and VSS tieoff’s
are not recognized by Synopsys and must be modified as de-
scribed in a preliminary application note entitled “High-Level
Design Methodology for OACS 2.0.” Also, in an OACS netlist
buses are separated into individual bits, which need to be re-
combined into buses to properly connect to other Verilog HDL
modules within Synopsys. An example of this is shown in the
“High-Level Design” Application Note.

The “Synopsys delays” mentioned below are the macrocell
prop delays calculated by Synopsys during the process of
synthesizing a sub-block. These delays must be written out to
a “Verilog.timing” file in order to be used during simulation of
a synthesized sub-block. Synopsys delays are accurate to
within approximately 5% of DECAL delays.

Veritime timing analysis is recommended as a complement
to real-time simulations (those using either DECAL or Synop-
sys delays instead of unit-delays).

I. Behavioral-Level Design
1. As part of the behavioral verification of the entire

system, create and verify a Verilog HDL behav-
ioral description for all system logic on the H4C
chip.

II. Determine Chip Pin-Out and Create JT AG I/O Netlist
2. Create both a Verilog netlist and a “Motorola

EDIF” netlist for the JTAG I/O only (no core mod-
ule instantiation).

3. Verify JTAG I/O conform to electrical design rules:
a. Run ERC for peripheral rule checks. If viola-

tions occur (other than those due to the
absence of a core module instantiation) return
to step 2 to correct the JTAG I/O netlists.

III.Design Chip’s System (Non-JTAG) Logic
A. Convert Behavioral Description to RTL (Register-

Transfer Level) Description

4. For one chip sub-block “X,” convert the behavioral
description to an RTL description. If X is to be
converted into gates by logic synthesis as
opposed to schematic capture, then the RTL
description must use only those Verilog con-
structs supported by Synopsys.

5. Simulate X’s RTL description, by itself. Modify and
re-simulate X’s RTL description until its functional-
ity matches X’s behavioral description.

6. Repeat step 1’s simulation of the chip behavioral
description, but use the RTL description for sub-
block X in place of X’s behavioral description.
Modify X’s RTL description as necessary until
chip functionality matches that of the all-behav-
ioral chip description in step 1. Repeat steps 4-6
for each of the chip’s sub-blocks.

7. Simulate all system logic on the chip at the RTL
level. Modify the sub-blocks’ RTL descriptions as
necessary until chip functionality matches that of
the all-behavioral chip description in step 1.

B. Synthesize Sub-Block RTL Descriptions into
Gate-Level Netlists

Synopsys/Verilog Debug Loop
8. For one sub-block “X,” synthesize the RTL

description into a gate-level Verilog netlist using
Synopsys.

9. Simulate X’s gate-level netlist by itself, using the
same vectors used to verify X’s RTL description in
step 5. Use Synopsys delays. If X’s functionality
or timing is incorrect:
a. return to step 8 to modify the synthesis con-

straints and re-run Synopsys, or
b. correct X’s RTL description and return to step

5, 6 or 7 to verify the correction.
10.Repeat step 7’s simulation of the chip RTL

description, but use the gate-level netlist for sub-
block X in place of X’s RTL description. Use Syn-
opsys delays for X. Handle bugs as prescribed in
step 9.

OACS Verification
11.Create the required netlists for X:

a. Run Synopsys to generate a flat EDIF netlist.
b. Run EDIFMERGE to generate a “Motorola

EDIF” netlist (used by ERC and DECAL).
c. Run NETLIST to create a Verilog netlist from

the “Motorola EDIF” netlist. Also generate a
TEGAS/TDL netlist for MUSTANG if the chip is
a scan design.

12.Run ERC to verify X conforms to electrical design
rules. If violations occur, correct X’s RTL descrip-
tion and return to step 5, 6 or 7 to verify the cor-
rection.

13.If the chip is a scan design, run the MUSTANG
design rule checker to verify X conforms to scan
design rules. (Also generate test patterns if X’s
fault coverage is desired.) If violations occur, cor-
rect X’s RTL description and return to step 5, 6 or
7 to verify the correction.

14.Verify X via real-time simulation and timing analy-
sis:
a. Run DECAL to calculate real-time delays. Han-

dle edge-rate violations as prescribed in step 9.
b. Repeat step 9, using DECAL delays instead of

Synopsys delays.
c. Repeat step 10, using DECAL delays instead

of Synopsys delays.
15.Repeat steps 8-14 for each synthesized sub-

block until each one has a correct gate-level Ver-
ilog netlist.

20

MOTOROLA AN1500

C. Design “Not-To-Be-Synthesized”/Schematic
Capture Sub-Blocks

OACS Verification
8a. Use ASIC_GED to capture a schematic for one

system sub-block “Y”.
9a. Run NETLIST to create the following netlists for

Y:
a. an EDIF netlist (used by ERC and DECAL) and

a Verilog netlist
b. a TEGAS/TDL netlist (used by MUSTANG) if

the chip is a scan design
10a. (Optional) Do unit-delay simulation of Y’s gate-

level netlist by itself, using the same vectors used
to verify Y’s RTL description in step 5. If Y’s func-
tionality is incorrect:
a. return to step 8a to correct the schematic, or
b. correct Y’s RTL description and return to step

5, 6 or 7 to verify the correction.
11a. (Optional) Repeat step 7’s simulation of the chip

RTL description, but use the gate-level netlist for
sub-block Y in place of Y’s RTL description. Han-
dle bugs as prescribed in step 10a.

12a. Run ERC to verify Y conforms to electrical
design rules. If violations occur return to step 8a
to correct the schematic.

13a. If the chip is a scan design, run the MUSTANG
design rule checker to verify Y conforms to scan
design rules. (Also generate test patterns if Y’s
fault coverage is desired.) If violations occur
return to step 8a to correct the schematic.

14a. Verify Y via real-time simulation and timing
analysis:
a. Run DECAL to calculate real-time delays. If

edge-rate violations occur, return to step 8a to
correct the schematic.

b. Repeat step 10a, using DECAL delays instead
of unit delays.

c. Repeat step 11a, using DECAL delays instead
of unit delays.

15a. Repeat steps 8a-14a for each sub-block to be
entered via schematic capture until each one has
a correct gate-level Verilog netlist.

D. Combine All of Chip’s System Sub-Blocks
Synopsys/Verilog Debug Loop

16.Read into Synopsys the gate-level Verilog netlists
for all system sub-blocks on the chip. Run Synop-
sys with logic optimization turned off (i. e., no
“compile”) to write out one Verilog netlist and one
EDIF netlist which contain all system logic on the
chip.

17.Simulate the gate-level netlist for all system logic,
using Synopsys delays. Use the same vectors
which were used in step 7 to verify the RTL

description of the chip’s system logic. If violations
occur, do one of the following for each erroneous
sub-block:
a. return to step 8a to correct the sub-block’s

schematic, or
b. correct the sub-block’s RTL description and

return to step 5, 6 or 7 to verify the correction.
Re-verify each corrected sub-block individually to the ex-

tent desired in section III, part B or C, then return to step 16.

OACS Verification
18.Run EDIFMERGE to create a “Motorola EDIF”

netlist, then run NETLIST to create a TEGAS/TDL
netlist for MUSTANG (if the chip is a scan design)
and a Verilog netlist.

19.Run ERC. Handle violations as prescribed in step
17.

20.If the chip is a scan design, run MUSTANG. Han-
dle violations as prescribed in step 17.

21.Run DECAL and then repeat step 17, using
DECAL delays instead of Synopsys delays.

IV.Combine JTAG Circuitry with Chip’s System Logic
OACS Verification

22.Create a gate-level Verilog netlist for the core
JTAG logic (including the TAP Controller etc.) by
one of two methods:
a. capture a schematic and run NETLIST.
b. write a Verilog netlist manually.

Verify All JTAG Circuitry by Itself (Optional)
23.Merge the core JTAG logic and the JTAG I/O into

one Verilog netlist using Synopsys. (The Verilog
netlists for any “soft” macros used, such as the
MC_IREG or MC_IREG4, must be read into Syn-
opsys; likewise for the Verilog netlists for any
“firm” macros used, such as the FMC_TAPC.)

24.Do a unit-delay simulation on all JTAG circuitry.
(Synopsys delays are not usable for simulation
because they only include the core<-->PAD data
path through each BSC.) If violations occur return
to step 22 to correct the schematic.

Verify Combined System and JTAG Circuitry
25.Create the required netlists for the entire chip:

a. Run Synopsys with logic optimization turned off
(i. e., no “compile”) to generate a flat EDIF
netlist (except for firm macros) from the Verilog
netlists for the system logic, core JTAG logic,
and JTAG I/O. (As in step 23 above, the Verilog
netlists for “soft” and “firm” macros must be
read into Synopsys. However, firm macros
must remain hierarchical until step ‘c’ below.
For more detail see the preliminary application
note “High-Level Design Methodology for
OACS 2.0”.)

21

AN1500 MOTOROLA

b. Run EDIFMERGE to generate an “edif.net”
netlist. Rename it as “edif.hnet” since it con-
tains hierarchical firm macros which have not
yet been flattened.

c. Run NETLIST, with the “edif.hnet” as input, to
create:
i) “complete” or “flat” EDIF and Verilog netlists

which include each firm macro’s internal cir-
cuitry

ii) an “Actual.RC” file (used be DECAL) for
each firm macro, such as the FMC_TAPC

iii) a TEGAS/TDL netlist for MUSTANG, if the
chip is a scan design.

26.Run ERC to verify entire chip conforms to electri-
cal design rules.

27.If the chip is a scan design, run the MUSTANG
design rule checker to verify entire chip conforms
to scan design rules.

28.Verify entire chip via real-time simulation and tim-
ing analysis:
a. Run DECAL to calculate real-time delays (uses

“complete” EDIF netlist).
b. Simulate the gate-level netlist for the entire

chip using the same vectors which were used
in step 7 to verify the RTL description of the
chip’s system logic. Then exercise the JTAG
logic in a separate simulation.

If errors occur in any of steps 26-28, return to step 22 to
correct the core JTAG logic, or do one of the following for
each erroneous sub-block:

i) return to step 8a to correct the sub-block’s
schematic, or

ii) correct the sub-block’s RTL description and
return to step 5, 6 or 7 to verify the correc-
tion.

Re-verify each corrected sub-block individually to the ex-
tent desired in section III, part B or C, then continue at step
16, 22 or 25 as desired.

29.If the chip is a scan design, run MUSTANG to
generate scan test patterns.

30.Run TESTPAS to combine the functional and
scan test patterns from steps 28 and 29, respec-
tively.

Appendix A: Electronic Rule Checker (ERC) Rules
for JTAG

Each rule presented in this appendix has been classified
as either a warning (W) or an error (E) based upon the sever-
ity of the violation. Warnings are used to indicate a possible
violation of JTAG specification requirements which will not
cause any failure in the design methodology or manufacture.
As such, a warning may be ignored if the condition that it flags
is truly what the designer intended to implement. On the other
hand, errors must be corrected.

Appendix A.1: General Rules for H4C
1. (E) BUFXP and INVXP macros must be placed on

power or ground sites.
2. (E) No macro may have both an IO_PIN1 and a

FIX property.
3. (E) The IO_PIN1 property must be used on all IO

macros which contain a pad port.
4. (E, W)All the ERC rules that apply to non-JTAG

input macros apply to input BSC macros and to
TCK, TMS, TDI, TRSTB macros.

5. (E, W)All the ERC rules that apply to non-JTAG
output macros apply to output BSC macros and to
TDO, TDOA macros.

6. (E, W)All the ERC rules that apply to non-JTAG
bidirectional instances apply to bidirectional BSC
instances. A bidirectional BSC instance is con-
structed from a bidirectional output BSC macro
and a bidirectional input BSC macro.

7. (E, W)All the ERC rules that apply to non-JTAG
bidirectional output macros apply to bidirectional
output BSC macros.

8. (E, W)All the ERC rules that apply to non-JTAG
bidirectional input macros apply to bidirectional
input BSC macros.

9. (E, W)All the ERC rules that apply to non-JTAG
oscillator macros apply to oscillator BSC macros.

10.(E) For peripheral JTAG macros, an I/O site can
be shared only in the following ways.
a. Any normal drive input BSC macro, excluding

ICNJA, and any normal drive non-JTAG input
macro can share its I/O site with a parallel/
slave buffer used in JTAG or non-JTAG high-
drive output and high-drive bidirectional mac-
ros.

b. A TDBUF macro can share its I/O site with a
parallel/slave buffer used in JTAG or non-JTAG
high-drive output and high-drive bidirectional
macros, but a TDBUFP cannot. (TDBUF(P) is
built with the input buffer portion of an I/O site.)

c. A bidirectional BSC instance is constructed
from a bidirectional output BSC macro and a
bidirectional input BSC macro. An IO_PIN1
property is associated with a bidirectional out-
put BSC macro. Neither an IO_PIN1 nor a FIX
property is associated with a bidirectional input

22

MOTOROLA AN1500

BSC macro. A bidirectional input BSC macro
shares a site with the bidirectional output BSC
macro to which it gets connected. Note that the
ENSCANJ cannot share an I/O site, even
though it does not use the input or output buffer
portion of the I/O site. In addition, neither the
ISO(P) macro nor any of the special buffers for
CKDR, SHDR, UDDR, IMC and OMC can
share an I/O site.

11.(E) When placing I/O macros and JTAG buffers in
the periphery, the user must leave room for hi-
drive parallel/slave buffers. (Paralleled buffers
cannot be placed on power sites.) There also
must be enough empty I/O sites for
EDIF2TANGATE to place all BUFX and INVX
macros used in the design.

12.(E) Only peripheral macros can be located in the
periphery of a chip. Peripheral macros must be
located in the periphery of a chip.

Appendix A.2: Test Access Port Connections
The rules in this section ensure that the Test Access Port

is implemented correctly.
1. (W)There must be one and only one macro from

the set {TCK, TCKT, TCKS, TCKH, TCKHT,
TCKHS} in the design.

2. (E) There must be one and only one macro from
the set {TMS, TMST, TMSS} in the design.

3. (E) There must be one and only one macro from
the set {TDI, TDIT, TDIS} in the design.

4. (E) There must be one and only one TDO or
TDOA macro in the design.

5. (E) There must not be more than one macro from
the set {TRSTB, TRSTBT, TRSTBS, ICNJA} in
the design.

6. (E) The PAD inputs of {TCK, TCKT, TCKS, TCKH,
TCKHT, TCKHS, TMS, TMST, TMSS, TDI, TDIT,
TDIS} macros must be connected to high speed
scan pads. The PAD outputs of TDO and TDOA
macros must be connected to high speed scan
pads.

7. (E) There must be a pullup resistor connected to
the IC ports of {TMS, TMST, TMSS, TDI, TDIT,
TDIS, TRSTB, TRSTBT, TRSTBS, ICNJA} mac-
ros.

Appendix A.3: JTAG Conformance
The rules in this section ensure that the design conforms

to the internal requirements of the JTAG specification. Since
most of these are not required in order to have a fully function-
al device they are warnings.

1. (W)The number of BPREG macros in the design
must be greater than zero.

2. (E) There must not be more than one BPREG
macro in the design.

3. (E) There must not be more than one IDREG
macro in the design.

4. (E) If the device I. D. code is specified in the
design information then there must be one IDREG
macro in the design.

5. (E) If there is one IDREG macro in the design
then the value set on the D31 to D0 pins must
match the I. D. code specified in the design infor-
mation. D31 is the most significant bit. If a bit is
1(0), the corresponding D-port must be connected
to VDD (VSS).

6. (W)If any 3-state BSC’s are used in the design
then there must be one or more instances of a
macro from the set {ENSCANI, ENSCANP,
ENSCANJ}.

Appendix A.4: JTAG I/O Scan Ring
The rules in this section ensure that the connection and

placement of JTAG I/O macros in the periphery conform to
the H4C array implementation of JTAG.

1. (E) No BSC JTAG macros may be placed
between a macro from {TDI, TDIT, TDIS} and a
macro from {TDO, TDOA} in the direction clock-
wise of a macro from {TDI, TDIT, TDIS}.

2. (E) Instances of peripheral JTAG buffer macros
must have valid FIX property values that locate
them in the periphery of the design.

3. (E) All ‘xxxP’ JTAG macros must be placed on
power and ground IO sites.

4. (E) No ‘non-xxxP’ JTAG macro can be placed on
a power or ground site.

5. (E) The fanout of the TDIP port of a macro from
{TDI, TDIT, TDIS} must be one. The TDIP port of
a macro from {TDI, TDIT, TDIS} must be con-
nected to the TDI port of a peripheral BSC or the
TDI port of a macro from {TDO, TDOA, TDBUF,
TDBUFP}.

6. (E) The fanout of the TDO port of every peripheral
BSC or TDBUF/P macro must be one. The TDO
port of such a macro must be connected to the
TDI port of another peripheral BSC or the TDI port
of a macro from {TDBUF, TDBUFP, TDO, TDOA}.

7. (E) The fan-in of the TDI port of every peripheral
BSC and TDBUF/P macro must be one. The TDI
port of such a macro must be connected to the
TDO port of another peripheral BSC, TDBUF/P, or
the TDIP port of a macro from {TDI, TDIT, TDIS}.

8. (E) The fanin of the TDI port of the TDO/TDOA
macro must be one, and must be connected to
the TDO port of a peripheral BSC, TDBUF/P, or
the TDIP port of a macro from {TDI, TDIT, TDIS}.

9. (E) Starting from the {TDI, TDIT, TDIS} macro, the
order of the peripheral BSC’s obtained by tracing
fanouts of their TDO ports must be the same as
the order obtained by traversing I/O sites in the
counter-clockwise direction from the {TDI, TDIT,
TDIS}.

10.(W)If there are any unused I/O sites then there
should be zero ENSCANI macros.

23

AN1500 MOTOROLA

11.(E) The number of I/O sites between a peripheral
BSC and the fanout instance of its TDO port must
be <= 7 (not including the I/O sites of the driver
and the receiver).

Appendix A.5: Hi-Drive Outputs
1. (E) There must be no HIDRIVE property on any

BSC output or bidirectional macro, or on the TDO/
TDOA macro.

Appendix A.6: JTAG Clock & Control Signal
Distribution

The rules in Sections A.6.1, A.6.2 and A.6.3 are split into
two cases. Case I should be used for large and/or high speed
arrays. Case II can be used for small and/or low speed arrays.
The case type can be specified in the “design_info” file. A giv-
en design must follow either Case I or Case II rules for all six
signals, namely CKDR, SHDR, UDDR, IMC and OMC. Case
types cannot be mixed on the same chip. Also, an “E” or “W”
in parenthesis classifies each rule as either an error or a
warning.

The following rule applies to all six of these signals:
1. (E) All JTAG buffers must reside within 25 I/O

sites of the nearest INPVSS or BOTHVSS macro,
and within 25 I/O sites of the nearest INPVDD or
BOTHVDD macro.

Appendix A.6.1: CKDR Distribution
The rules in this section verify proper distribution of the

CKDR signal in the periphery. Case I uses a central CK-
DRMID/P macro driving a CKDRCC1/P and a CKDRCC2/P
macro as shown in Figure 3-1. Case II only requires a single
CKDR macro as shown in Figure 3-5.

CASE I - Large and/or High Speed Arrays (see Figure 3-1)
1. (E) There must be one and only one occurrence

of each of the following macros: CKDRCC1/P,
CKDRCC2/P, CKDRMID/P, and TDOA. There
must be no occurrences of the CKDR/P macro.

2. (E) The CKDRMID/P must be driven by a core
macro.

3. (E) CKDRMID/P can only drive CKDRCC1/P and
CKDRCC2/P.

4. (E) CKDRCC1/P and CKDRCC2/P can only be
driven by a CKDRMID/P.

5. (E) CKDRCC1/P and CKDRCC2/P cannot drive
same net.

6. (E) CKDRCC1/P and CKDRCC2/P can only drive
the CKDR port of peripheral BSC's. Conversely,
the CKDR port of peripheral BSC's can only be
driven by either CKDRCC1/P or CKDRCC2/P.

7. (E) CKDRCC1/P must drive only the CKDRNET1
net.

8. (E) CKDRCC2/P must drive only the CKDRNET2
net.

9. (E) The CKDRMID/P must reside in an I/O site
between TDI and CKDRCC1/P, or between
CKDRCC2/P and TDOA, or between TDOA and
TDI.

10.(E) There must not be any common IO sites
among IO sites covered by physical CKDRNET1
and physical CKDRNET2.

11.(E) CKDRCC1/P must reside at an IO/power/
ground site covered by physical CKDRNET1.
CKDRCC2/P must reside at an IO/power/ground
site covered by physical CKDRNET2.

In Figure 3-1, branches (a) and (b) comprise CKDRNET1
and branches (c) and (d) comprise CKDRNET2.

12.(E) |MID2CC1 - MID2CC2|/[(MID2CC1 + MID2CC2)/2]
<15%, where MID2CC1 = # I/O sites between CKDRMID/P
and CKDRCC1/P. MID2CC2 = # I/O sites between
CKDRMID/P and CKDRCC2/P.

13.(E) |# loads on branch (a) - # loads on branch (c)| < 15%

 [# loads on branch (a) + # loads on branch (c)]1/2

14.(E) |# loads on branch (b) - # loads on branch (d)| <15%

 [# loads on branch (b) + # loads on branch (d)]/2

15.(E) |(#loads onCKDRNET1)-(#loads onCKDRNET2)| <15%
 (# loads on CKDRNET1 + # loads on CKDRNET2)/2

16.(W) |# loads on branch (a) - # loads on branch (b)| <15%
[# loads on branch (a) + # loads on branch (b)]/2

17.(W) |# loads on branch (c) - # loads on branch (d)| <15%
[# loads on branch (c) + # loads on branch (d)]/2

CASE II - Small and/or Low Speed Arrays (see Figure 3-5)
1. (E) There must be one and only one occurrence

of the CKDR/P macro.
2. (E) There must be no occurrences of the

CKDRCC1/P, CKDRCC2/P, or CKDRMID/P mac-
ros.

3. (E) The CKDR/P must be driven by a core macro.
4. (E) The CKDR/P can only drive the CKDR port of

peripheral BSC's. Conversely, the CKDR port of
peripheral BSC's can only be driven by the
CKDR/P.

5. (E) The TDO macro must be used instead of the
TDOA macro.

Appendix A.6.2: SHDR, UDDR Distribution
The rules in this section verify proper distribution of the

SHDR and UDDR signals in the array periphery. The rules
are given for SHDR explicitly. These need to be repeated for
UDDR by substituting “UDDR” wherever “SHDR” appears.

CASE I - Large and/or High Speed Arrays (see Figure 3-3)
1. (E) There must be two and only two occurrences

of the SHDR/P macro.
2. (E) Both SHDR/P's cannot drive the same net.

24

MOTOROLA AN1500

3. (E) Each SHDR/P must be driven by a core
macro.

4. (E) There must be one and only one occurrence
of ISO/P macro.

5. (E) Each SHDR/P can only drive the SHDR port
of peripheral BSC's. Conversely, the SHDR port
of peripheral BSC's can only be driven by a
SHDR/P.

In Figure 3-3, the SHDR/P macro driving net1 is called
‘shdr-i1’ and the SHDR/P macro driving net2 is called ‘shdr-
i2’, for the purpose of explanation.

6. (E) shdr-i1 must reside in an I/O site between
TDOA and ISO/P, as IO sites are traversed
counter-clockwise from TDOA. shdr-i2 must
reside in an I/O site between TDOA and ISO/P, as
IO sites are traversed clockwise from TDOA.

7. (E) All the peripheral BSC's on IO sites between
TDOA and ISO/P, as IO sites are traversed
counter-clockwise from TDOA, must have their
SHDR ports driven by shdr-i1. All the peripheral
BSC's on IO sites between TDOA and ISO/P, as
IO sites are traversed clockwise from TDOA, must
have their SHDR ports driven by buffer shdr-i2.

In Figure 3-3, branches (a) and (b) comprise net1 and
branches (c) and (d) comprise net2.

8. (W) |# loads on branch(a) - # loads on branch(b)| <15%
[# loads on branch (a) + # loads on branch (b)]/2

9. (W) |# loads on branch(c) - # loads on branc (d)| <15%
 [# loads on branch (c) + # loads on branch (d)]/2

10.(W) |(# loads on net 1) - (# loads on net 2)| < 15%
 (# loads on net 1 + # loads on net 2)/2

CASE II - Small and/or Low Speed Arrays (see Figure 3-6)
1. (E) There must be one and only one occurrence

of the SHDR/P macro.
2. (E) The SHDR/P must be driven by a core macro.
3. (E) The SHDR/P can only drive the SHDR port of

peripheral BSC's. Conversely, the SHDR port of
peripheral BSC's can only be driven by a SHDR/
P.

4. (E) There must be no occurrences of the ISO/P
macro.

Appendix A.6.3: IMC, OMC Distribution
The rules in this section verify the distribution of the IMC

and OMC signals in the periphery. The rules are given for IMC
explicitly. These need to be repeated for OMC by substituting
OMC in place of IMC.

CASE I - Large and/or High Speed Arrays (see Figure 3-4)
1. (E) There must be two and only two occurrences

of IMCDR/P.
2. (E) Both IMCDR/P's cannot drive the same net.
3. (E) An IMCDR/P must be driven by a core macro.

4. (E) Each IMCDR/P can only drive the IMC port of
peripheral BSC's. Conversely, the IMC port of
peripheral BSC's can only be driven by an
IMCDR/P.

In Figure 3-4, the IMCDR/P driving net1 is called ‘imcdr-i1’
and the IMCDR/P driving net2 is called ‘imcdr-i2’, for the pur-
pose of explanation.

5. (E) imcdr-i1 must reside in an IO/power/ground
site between CKDRCC1/P and CKDRCC2/P, as I/
O sites are traversed clockwise from CKDRCC1/
P. imcdr-i2 must reside in an IO/power/ground site
between CKDRCC1/P and CKDRCC2/P, as I/O
sites are traversed counter-clockwise from
CKDRCC1/P.

6. (E) All the peripheral BSC's on IO sites between
CKDRCC1/P and CKDRCC2/P, as I/O sites are
traversed clockwise from CKDRCC1/P, must have
their IMC ports driven by imcdr-i1. All the periph-
eral BSC's on IO sites between CKDRCC1/P and
CKDRCC2/P, as I/O sites are traversed counter-
clockwise from CKDRCC1/P, must have their IMC
ports driven by imcdr-i2.

7. (W) |# loads on branch(a) - # loads on branch(c)| <15%
[# loads on branch (a) + # loads on branch (c)]/2

8. (W) |# loads on branch(b) - # loads on branch(d)| <15%
[# loads on branch (b) + # loads on branch (d)]/2

CASE II - Small and/or Low Speed Arrays (see Figure 3-6)
1. (E) There must be one and only one occurrence

of the IMCDR/P macro.
2. (E) The IMCDR/P must be driven by a core

macro.
3. (E) The IMCDR/P can only drive the IMC port of

peripheral BSC's. Conversely, the IMC port of
peripheral BSC's can only be driven by the
IMCDR/P.

25

AN1500 MOTOROLA

Appendix B: BSC Modeling & TAP Controller
Design for Mustang Compatibility

Appendix B.1: BSC Mustang Model
The peripheral boundary scan cells use a shadow register

structure similar to that shown in Figure B-1.

Figure B-1 General JTAG Shadow Register Structure.

Mustang cannot correctly model this functionality because
the shadow latch is not on a scan chain, so a more limited
Mustang-compatible model is used. The shadow latch is
modeled as a combinatorial element instead of being static.
This is done by creating a primitive with the truth table shown
in Table B-1:

The primitive operates with the constraint that either one of
the reset / set pins (RB, SB) must be active or the gate (G)
must be active with the data (D) input known. Any other com-
bination will result in an X being generated at the output.

The JTAG boundary scan cell Mustang models have been
constructed using this primitive. As a result, Mustang can de-
tect all faults within the BSC except a stuck-at-one fault on the
gate input of the latch.

Appendix B.2: TAP Controller
The TAP Controller implementation given in the IEEE

1149.1 JTAG specification is shown in Figure B-2. This TAP
Controller design is not compatible with scan design rules be-
cause:

i) it contains static elements that are not scan-
nable

ii) it contains signals which are gated by the
TCK clock

Table B-1 Truth Table for JTAG Combinatorial “jlatch”

D G RB SB Q

X X 0 1 0

X X 1 0 1

0 1 1 1 0

1 1 1 1 1

All Other States X

DFF

D

CK

Q

LATCH

D

G

Q

SB

RB

TDO

D

RB

TDI

CKDR

UDDR

SB

iii) both the rising and falling edges of TCK are
used as active edges.

In order to correct these problems the following steps were
taken:

1. Two extra inputs and one extra output have been
added to the TAP Controller. The MTST input is
active high whenever the design is to be used in
Mustang-compatible mode (such as during pro-
duction test at Motorola).Scan data enters the
TAP Controller via the TDI input and leaves via
the TDO output. The TDI and TDO mentioned
here are ports on the TAP Controller macro and
should not be confused with the TDI and TDO
pins.

2. All of the flip flops were changed to scannable
devices.

3. The inverter in the path generating TCKB was
replaced with an exclusive-or gate to ensure that
all of the static elements will be clocked on the ris-
ing edge of the TCK clock. The paths to the CKIR
and CKDR outputs are unaltered since these
already clock on the correct edge.

4. NAND gates were added to the following outputs
to put them into the specified state during Mus-
tang scan mode:
a. SL = 1: TDO used as scan output for Instruc-

tion Register scan chain.
b. ENABLE = 1: Enables TDO 3-state output.
c. RB = 1: Prevents reset of JTAG logic while

shifting scan chains.
d. SHIR = 1: Puts Instruction register into scan

mode.
e. SHDR = 1: Puts Data registers into scan mode.
f. UDDR = 1: Holds data register shadow latches

transparent.

In addition, the TMS input is AND'ed with the MTST input
to form the Mustang Scan Enable (MSE) signal. MSE is
passed to the scan enable of all flip-flops in the TAP Control-
ler. When high, MSE places these flops in scan/shift mode.

Suppose a core/system flop gets its data from an input
BSC having the shadow register structure shown in Figure B-
1. The latch within this BSC is driven by UDDR, which is de-
rived from clock TCK in Figure B-2. Since the latch in the BSC
must be modeled as a combinatorial “JLATCH,” Mustang
sees a clock derivative (UDDR) propagating through the
JLATCH to drive the data input of the system flop. This con-
dition violates scan design rules; state element data inputs
cannot be derived from a clock. The problem can be over-
come in the TAP Controller by replacing the NAND which
gates TCK to UDDR with a flip-flop which is clocked on the
falling edge of TCK. This has the additional effect of extend-
ing the update pulse from half a cycle to a complete cycle,
which satisfies the Mustang requirement that the data input to
a flop be an NRZ (non-pulsed) waveform. (UDDR still drives
the data input of the core/system flop via the combinatorial
JLATCH.)

26

MOTOROLA AN1500

Figure B-2 TAP Controller Shown in IEEE 1149.1 JTAG Specification

27

AN1500 MOTOROLA

Since the latch portion of the Instruction Register has been
changed to a flop (see Figure 4-1) this problem does not exist
on UDIR, which therefore need not be generated by a flop. In
fact, UDIR must not be generated by a flop now that it drives
a flop clock port instead of the combinatorial JLATCH. The
reason is that Mustang requires flops to have pulsed clocks.

The new functionality for UDDR is shown in the waveform
diagram of Figure B-3, which demonstrates the loading of a
data register.

Figure B-3 JTAG Control Signals Waveform Diagram

The waveform diagram shows the operation of the TAP
Controller while performing the fastest cycle of loading and
updating the data register. This shows the shortest time pos-
sible, during JTAG operation, between UDDR going inactive
and the next occurrence of a CKDR pulse. UDDR is the cur-
rent update signal while UDDR1 is the signal that is generat-
ed by the new TAP Controller design in Figure B-4. This
diagram shows that the addition of a flip-flop on the UDDR
signal causes no functional change in the operation of the
JTAG boundary scan circuitry.

Some additional circuitry has been added to the TAP Con-
troller to improve its fault coverage:

1. A large number of faults on the NAND gates on
the left are not detectable because the TMS line
which feeds into them also puts the flip flops
which observe them into scan mode. This is
resolved by adding gating to allow the TDI input to
control the NAND gates when the device is in
Mustang test mode.

2. Faults on gates feeding the CKDR, CKIR, and
UDIR outputs are undetected because they are
unobservable. (MTST overrides the TAP Control-
ler state for control of these signals during Mus-
tang test mode because Mustang requires control
of all clocks from a pin, in this case the TCK pin.)
The fault coverage is improved by monitoring all
three signals with an exclusive-or gate, which is
observed by a flop that is added to the scan
chain.

Appendix C: EDIFMERGE Attribute File Entries for
Peripheral JTAG Macros

Figure C-1 shows the JTAG portion of the Attribute file for
the circuit in Section 4.5, Figure 4-7 (if this circuit had been
entered using Verilog HDL instead of schematic capture).

In Figure C-1, comment lines are denoted by an asterisk as
the leading character. The keyword “-INSTANCE” is followed

TCK
STATE

CKDR

SHDR
UDDR

UDDR1

7 6 2 12 5 7 6 2

by a Fix entry for each non-bonded macro in the design. In
each FIX entry the macro instance name is copied from the
Synopsys EDIF netlist, and is the instance “name” with any
leading non-alphabetic characters stripped off. (The instance
“rename,” which is not used, is enclosed in quotes and follows
the instance “name” in the netlist.)

The ISOP macro requires two entries in the Attribute file. In
the entry which follows the “-NONLOGICCELL” keyword, the
instance name is arbitrarily chosen. This instance name is
then used in the second ISOP entry, which follows the “-IN-
STANCE” keyword along with the entries for the other non-
bonded macros.

Note that the TAP macros are fix-placed via the I0_PIN1
property, not the FIX property, since these are input macros
which connect to package pins.

Figure C-1 JTAG-Macro Portion of Attribute File for
H4C123 in 160 QFP(CD) or MicroCool

Non-JTAG hi-drive outputs and bidirectionals are designat-
ed by a HIDRIVE property. However each JTAG hi-drive is a
separate macro, which has a COMPLEX_HIDRIVE property
instead of a HIDRIVE property. COMPLEX_HIDRIVE proper-
ties are added to the EDIF netlist automatically by the
NETLIST program, therefore a JTAG hi-drive has no entry in
the Attribute file for either a HIDRIVE property or a
COMPLEX_HIDRIVE property.

-NONLOGICCELL
*cell type instance name
ISOP isop;

-PORT
*Signal Name property Pin #
TMS IO_PIN1 “39”;
TCK IO_PIN1 “38”;
TDOA IO_PIN1 “33”;
TDI IO_PIN1 “32”;

-INSTANCE
*instance name property I/O site #
imcdr_1 FIX “IO10”;
ckdrmid p FIX “IO11”;
omcdrp_1 FIX “IO17”;
ckdrcc1p FIX “IO115”;
shdr_1 FIX “IO116”;
uddrp_1 FIX “IO121”;
isop FIX “IO219”;
imcdr_2 FIX “IO220”;
omcdrp_2 FIX “IO225”;
ckdrcc2p FIX “IO323”;
shdr_2 FIX “IO324”;
uddrp_2 FIX “IO329”;

28

MOTOROLA AN1500

Figure B-4 Mustang-Compatible TAP Controller (FMC_TAPC).

29

AN1500 MOTOROLA

Appendix D: JTAG for H4CPlus and H4EPlus

The H4CPlus and H4EPlus JTAG implementation is iden-
tical to the H4C JTAG implementation with the exeption of
the changes described below.

1. The TDO and CKDR macros do not exist because
the “Small or Low-Speed Array” distribution
scheme (see section 3.3) has not been imple-
mented.

2. The H4C TDOA macro has been renamed
“TDOUT” in H4CPlus and H4EPlus, and the mux
and flop (see Figure 2-1) have been removed
from the TDOUT macro. This logic must now be
implemented in the array core, where the cus-
tomer can modify it if he wishes.

3. Only the “non-P” version exists for the following
macros:
• ISOR
• CKDRCC1
• CKDRCC2
• CKDRMID
• SHDR
• UDDR
• IMCDR
• OMCDR
• ENSCANJ
• TDBUF

The ISOR, CKDRCC1, CKDRCC2, ENSCANJ
and TDBUF macros can now be placed on normal
I/O sites as well as on output-power/gnd sites.
However, they cannot be placed on input-power/
gnd sites. All the rest of these macros can be
placed by themselves on normal I/O sites, output-
power/gnd sites, and input-power/gnd sites.

4. The ISOR macro now makes a physical cut in the
CKDR ring, in addition to the SHDR and UDDR
rings as in H4C. The ISOR also contains a flop
and an inverter such that the flop is clocked on
the falling edge of CKDR (see Figure 7-1). This
flop is placed in the shift path of the boundary
scan chain to prevent hold time violations due to
clock skew between the two physically separate
CKDR nets. Unlike H4C, all BSC’s no longer
share a common clock net, therefore hold time
violations between BSC’s are of concern. How-
ever, the falling-edge flop inside the ISOR macro
allows CKDRNET2 in Figure 7-1 to be skewed
from CKDRNET1 by up to half a cycle of CKDR
without causing a hold time violation. The benefit
realized is that there is no fake cut required in the
netlist for accurate simulation (see section 3.2),
therefore the need for tight balancing of the
CKDR buffers is eliminated, along with the associ-
ated ERC rules. Simulation using PREDIX RC’s
now will show if enough skew exists between

CKDRNET1 and CKDRNET2 to cause timing vio-
lations when shifting data through the boundary
scan chain.

5. The customer must use PREDIX to compute the
actual RC’s for peripheral JTAG nets, in order to
do accurate JTAG simulations. DECAL merges
the PREDIX peripheral RC’s with either DECAL-
estimated RC’s for the array core (for pre-layout
simulations) or with Gate Ensemble-generated
actual RC’s for the array core (for pre-layout simu-
lations).

6. The paralleled output buffer portion of a hi-drive,
such as an ON32, can reside on an ouptut-gnd I/
O site if that gnd is an OVSSP macro.

Figure D-1 CKDR Distribution to I/O Boundary Scan
Cells on H4CPlus and H4EPlus Arrays

30

MOTOROLA AN1500

Trademarks
H4C, H4CPlus and H4EPlus, DECAL, Mustang, and TestPAS are trademarks of Motorola, Inc.
Verilog and Gate Ensemble are trademarks of Cadence Design Systems, Inc.
Synopsys is a registered trademark of Synopsys, Inc.

ASIC REGIONAL DESIGN CENTERS - U.S.A.

California, San Jose Illinois, Chicago Massachusetts, Marlborough
(408) 749-0510 (708) 490-9500 (508) 481-8100

ASIC REGIONAL DESIGN CENTERS - International

European Headquarters, England, Aylesbury, Bucks France, Vanves
Germany, Munich (0296) 395252 (01) 40355877
(089) 92103-0

Holland, Eindhoven Hong Kong, Kwai Chung Italy, Milan
(04998) 61211 480 8333 (02) 82201

Japan, Tokyo Sweden, Stockholm
(03) 440-3311 (08) 734-8800

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarding the suitability of its
products for any particular purpose, nor dose Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, includ-
ing “Typicals” must be validated for each customer application by customer’s technical experts. Motorola dose not convey any licence under its patent rights nor of oth-
ers. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indi-
rectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912, Phoenix, Arizona 85036
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Miltion Keynes MK14 5BP, England
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong

