MOTOROLA
SEMICONDUCTOR APPLICATION NOTE

Order this document
by AN1315/D

AN1315

An Evaluation System Interfacing
the MPX2000 Series Pressure Sensors

to a Microprocessor

Prepared by: Bill Lucas
Discrete Applications Engineering

INTRODUCTION

Outputs from compensated and calibrated semiconductor
pressure sensors such as the MPX2000 series devices are
easily amplified and interfaced to a microprocessor. Design
considerations and the description of an evaluation board
using a simple analog interface connected to a
microprocessor is presented here.

PURPOSE

The evaluation system shown in Figure 1 shows the ease
of operating and interfacing the MOTOROLA MPX2000 series
pressure sensors to a quad operational amplifier, which
amplifies the sensor’s output to an acceptable level for an
analog—to—digital converter. The output of the op amp is
connected to the A/D converter of the microprocessor and that
analog value is then converted to engineering units and
displayed on a liquid crystal display (LCD). This system may

be used to evaluate any of the MPX2000 series pressure
sensors for your specific application.

DESCRIPTION

The DEVB158 evaluation system is constructed on a small
printed circuit board. Designed to be powered from a 12 Vdc
power supply, the system will display the pressure applied to
the MPX2000 series sensor in pounds per square inch (PSI)
on the liquid crystal display. Table 1 shows the pressure
sensors that may be used with the system and the pressure
range associated with that particular sensor as well as the
jumper configuration required to support that sensor. These
jumpers are installed at assembly time to correspond with the
supplied sensor. Should the user chose to evaluate a different
sensor other than that supplied with the board, the jumpers
must be changed to correspond to Table 1 for the new sensor.
The displayed pressure is scaled to the full scale (PSI) range
of the installed pressure sensor. No potentiometers are used
in the system to adjust its span and offset. This function is
performed by software.

E

g =
.

==

SR RAs

A LR

Figure 1. DEVB158 2000 Series LCD Pressure Gauge EVB

[0 Motorola, Inc. 1995

@ MOTOROLA

AN1315

The signal conditioned sensor’'s zero pressure offset

Table 1. :) : o
voltage with no pressure applied to the sensor is empirically
Input Pressure Jumpers computed each time power is applied to the system and stored
Sensor Type PSI 18 13 2 J1 in RAM. Thg sensitivity of the MPX2000 series_ pressure
sensors is quite repeatable from unit to unit. There is a facility
MPX2010 0-15 IN -] INCLINfIN for a small adjustment of the slope constant built into the
MPX2050 0-7.5 OUT | IN | IN |OUT program. Itis accomplished via jumpers J4 thru J7, and will be
MPX2100 0-15.0 OUT | IN | OUT [IN explained in the OPERATION section.
MPX2200 0-30 OuUT [IN | OUT | OUT Figure 2 shows the printed circuit silkscreen and Figures 3A
MPX2700 0-100 OUT JOUT | IN | IN and 3B show the schematic for the system.
LCD1
us
RP1
J1 =
J2 [|
J3
i RI1)
] J5 u2 — N
sl | F W,
Ny " [1cs 2
H I H ™
P1 c1 c8 R c7 =
+12 &2 2
— w
GND o ” I:l — — 2
o] | — o
C3 EI e o E
- - 3
U3 | 7 =
o uL %
Uc i b]] m
= d" %l 5 |2l 2
cs 1 [| | | o)
(R] <
e}
a9
I
J8 o
XDCR1 =
DEVB158
/
2.9"
Figure 2. Printed Circuit Silkscreen
2 Motorola Sensor Device Data

The analog section of the system can be broken down into

two subsections. These sections are the power supply and the

amplification section. The power supply section consists of a

diode, used to protect the system from input voltage reversal,
and two fixed voltage regulators. The 5 volt regulator (U3) is

used to power the microprocessor and display. The 8 volt
regulator (U4) is used to power the pressure sensor, voltage

references and a voltage offset source.

AN1315

The microprocessor section (U5) requires minimal support
hardware to function. The MC34064P-5 (U2) provides an
under voltage sense function and is used to reset the
microprocessor at system power—up. The 4.0 MHz crystal
(Y1) provides the external portion of the oscillator function for
clocking the microprocessor and providing a stable base for
timing functions.

Table 2. Parts List

Designators Quant. Description Rating Manufacturer Part Number
C3,C4,C6 3 0.1 pF Ceramic Cap. 50 Vdc Sprague 1C10575U104M050B
C1,C2,C5 3 1 pF Ceramic Cap. 50 Vdc MuRATA ERIE RPE123Z5U105M050V
C7,C8 2 22 pF Ceramic Cap. 100 Vdc Mepco/Centralab CN15A220K
J1-J3,J8 30R4 #22 or #24 AWG Tined Copper As Required
J4-J7 1 Dual Row Straight 4 Pos. AMP 87227-2

Arranged On 0.1" Grid
LCD1 1 Liquid Crystal Display IEE LCD5657
P1 1 Power Connector Phoenix Contact MKDS 1/2-3.81
R1 1 6.98K Ohm resistor 1%
R2 1 121 Ohm Resistor 1%
R3 1 200 Ohm Resistor 1%
R4, R11 2 4.7K Ohm Resistor
R7 1 340 Ohm Resistor 1%
R5, R6 2 2.0K Ohm Resistor 1%
R8 1 23.7 Ohm Resistor 1%
R9 1 976 Ohm Resistor 1%
R10 1 1K Ohm Resistor 1%
R12 1 3.32K Ohm Resistor 1%
R13 1 4.53K Ohm Resistor 1%
R14 1 402 Ohm Resistor 1%
R15 1 10 Meg Ohm Resistor
RP1 1 47K Ohm x 7 SIP Resistor 2% CTS 770 Series
TP1 1 Test Point Red Components Corp. TP-104-01-02
Ul 1 Quad Operational Amplifier Motorola MC33274P
u2 1 Under Voltage Detector Motorola MC34064P-5
u3 1 5 Volt Fixed Voltage Regulator Motorola MC78L0O5ACP
u4 1 8 Volt Fixed Voltage Regulator Motorola MC78L0O8ACP
us 1 Microprocessor Motorola MC68HC705B5FN or
Motorola XC68HC705B5FN
XDCR 1 Pressure Sensor Motorola MPX2xxxDP
Y1 1 Crystal (Low Profile) 4.0 MHz CTS ATS040SLV
No Designator 1 52 Pin PLCC Socket for U5 AMP 821-575-1
No Designator 4 Jumpers For J4 thru J7 Molex 15-29-1025
No Designator 1 Bare Printed Circuit Board
No Designator 4 Self Sticking Feet Fastex 5033-01-00-5001

Note: All resistors are 1/4 W resistors with a tolerance of 5% unless otherwise noted.
All capacitors are 100 volt, ceramic capacitors with a tolerance of 10% unless otherwise noted.

Motorola Sensor Device Data

AN1315
OPERATIONAL CHARACTERISTICS

The following operational characteristics are included as a
guide to operation.

Characteristic Symbol Min Max Unit
Power Supply Voltage +12 10.75 16 Volts
Operating Current Icc 75 mA
Full Scale Pressure Pts

MPX2010 15 PSI
MPX2050 7.5 PSI
MPX2100 15 PSI
MPX2200 30 PSI
MPX2700 100 PSI

J8 IS INSTALLED FOR

PIN-BY-PIN DESCRIPTION

+12:

Input power is supplied at the +12 terminal. The minimum
operating voltage is 10.75 Vdc and the maximum operating
voltage is 16 Vdc.

GND:
The ground terminal is the power supply return for the system.

TP1:

Test point 1 is connected to the final op amp stage. It is the
voltage that is applied to the microprocessor’s A/D converter.

There are two ports on the pressure sensor located at the
bottom center of the printed circuit board. The pressure port
is on the top left and the vacuum port is on the bottom right of
the sensor.

45V
THE MPX2010 ONLY ey
+5V
UZ? 47K 2 RU
MC33274 1N914 +IN
10 4.7K D2 ouT
8 - .
9 PDO MC34064P-5 CPU_RESET
R4 2-A2 GND 2-B4
L o I
+5V
7x 47K
— o' L (e
2-A2
SENSOR TYPE L 0% PD2
SELECT 2-A3
78L05 J3
ouT iL _L D +5V o0 O G PD3
— 2-A3
GROUND [1HF 0.1
c2 c3 — 1
1 L 0% (] Pp4
u4 = = = 2-A3
78L08 o > 5
ut Pl * L 07 {]Ps
+12 IN 1uF 0.1 3.32k < R12 2-A3
GROUND H . . SLOPE ADJ. —
P1 1N4002 J_ C5 C4 VRH
— — = 2-D4 J6
GROUND - - = 00 G PD6
> | 453K < R13 2-A3
— VRL
- 2-D4 L %0 (] Po7
4022 R14 - 2-A3

Figure 3a. Schematic

Motorola Sensor Device Data

AN1315

Ot vorT = 23T
HYA TdA 13534 NdO NG+
9
= 70
0z 8 _ % _ 0§ _m _ € _ 144 112 ot ST 81 6T
YN HYA A oaL gy v/ ZdvoL TdvoL SSA aan 9ddA L13534 LOul
T 1ad
SH
Jdze 9ad
1250 5ad
91
vad
A WoT
Y S o S95020H890W cad
ZHN 00 I
zad
2050
4dze o 1ad
T 0 0ad
V1H0d a140d O140d
e v 5 9 4 ¢ 5 9 LT z 0 v 9 LT 0
8z |9z _m _W _!a 0g _mN e e [se v fee fee [ee [ze e o s [w er w lsr 67
0788 ‘€€ 72
SNid - fp |1z oz et [st |1 ez |zz |91 |se |vz |st vi et ez |9z |zt fos ez |t ot
o o o
N1d —_— R . — . —
g
L T L T L T
1Ao7

€31

T
0ad

31
1ad

€37
1ad

€37
1dd

Figure 3b. Schematic

Motorola Sensor Device Data

AN1315
OPERATION

Connect the system to a 12 Vdc regulated power supply.
(Note the polarity marked on the power terminal P1.)
Depending on the particular pressure sensor being used with
the system, wire jumpers J1 through J3 and J8 must be
installed at board assembly time. If at some later time it is
desirable to change the type of sensor that is installed on the
board, jumpers J1 through J3 and J8, must be reconfigured for
the system to function properly (see Table 1). If an invalid J1
through J3 jumper combination (i.e., not listed in Table 1) is
used the LCD will display “SE” to indicate that condition.
These jumpers are read by the software and are used to
determine which sensor is installed on the board. Wire jumper
J8 is installed only when an MPX2010DP pressure sensor is
used on the system. The purpose of wire jumper J8 will be
explained later in the text. Jumpers J4 through J7 are read by
the software to allow the user to adjust the slope constant used
for the engineering units calculation (see Table 3). The
pressure and vacuum ports on the sensor must be left open
to atmosphere anytime the board is powered—up. This is
because the zero pressure offset voltage is computed at
power—up.

When you apply power to the system, the LCD will display
CAL for approximately 5 seconds. After that time, pressure or
vacuum may be applied to the sensor. The system will then
start displaying the applied pressure in PSI.

Table 3.

J7 J6 J5 J4 Action

IN IN IN IN | Normal Slope
IN IN IN | OUT | Decrease the Slope Approximately 7%
IN IN |OUT | IN | Decrease the Slope Approximately 6%
IN IN |OUT |OUT | Decrease the Slope Approximately 5%
IN |OUT | IN IN | Decrease the Slope Approximately 4%
IN |OUT | IN |OUT | Decrease the Slope Approximately 3%
IN |OUT |OUT | IN | Decrease the Slope Approximately 2%
IN |OUT |OUT |OUT | Decrease the Slope Approximately 1%
OUT | IN IN IN | Increase the Slope Approximately 1%
OUT | IN IN | OUT | Increase the Slope Approximately 2%
OUT | IN |OUT | IN |Increase the Slope Approximately 3%
OUT | IN |OUT |OUT | Increase the Slope Approximately 4%
OUT |OUT | IN IN | Increase the Slope Approximately 5%
OUT |OUT [IN |OUT | Increase the Slope Approximately 6%
OUT |OUT |OUT | IN | Increase the Slope Approximately 7%
OUT |OUT |OUT |OUT | Normal Slope

To improve the accuracy of the system, you can change the
constant used by the program that determines the span of the
sensor and amplifier. You will need an accurate test gauge
(using PSI as the reference) to measure the pressure applied
to the sensor. Anytime after the display has completed the
zero calculation, (after CAL is no longer displayed) apply the
sensor’s full scale pressure (see Table 1), to the sensor. Make
sure that jumpers J4 through J7 are in the “normal”
configuration (see Table 3). Referring to Table 3, you can
better “calibrate” the system by changing the configuration of
J4 through J7. To “calibrate” the system, compare the display
reading against that of the test gauge (with J4 through J7 inthe

“normal slope” configuration). Change the configuration of J4
through J7 according to Table 3 to obtain the best results. The
calibration jumpers may be changed while the system is
powered up as they are read by the software before each
display update.

DESIGN CONSIDERATIONS

To build a system that will show how to interface an
MPX2000 series pressure sensor to a microprocessor, there
are two main challenges. The firstis to take a small differential
signal produced by the sensor and produce a ground
referenced signal of sufficient amplitude to drive a
microprocessor’'s A/D input. The second challenge is to
understand the microprocessor’s operation and to write
software that makes the system function.

From a hardware point of view, the microprocessor portion
of the system is straight forward. The microprocessor needs
power, a clock source (crystal Y1, two capacitors and a
resistor), and a reset signal to make it function. As for the A/D
converter, external references are required to make it function.
In this case, the power source for the sensor is divided to
produce the voltage references for the A/D converter.
Accurate results will be achieved since the output from the
sensor and the A/D references are ratiometric to its power
supply voltage.

The liquid crystal display is driven by Ports A, B and C of the
microprocessor. There are enough I/O lines on these ports to
provide drive for three full digits, the backplane and two
decimal points. Software routines provide the AC waveform
necessary to drive the display.

The analog portion of the system consists of the pressure
sensor, a quad operational amplifier and the voltage
references for the microprocessor’s A/D converter and signal
conditioning circuitry. Figure 4 shows an interface circuit that
will provide a single ended signal with sufficient amplitude to
drive the microprocessor's A/D input. It uses a quad
operational amplifier and several resistors to amplify and level
shift the sensor’s output. Itis necessary to level shift the output
from the final amplifier into the A/D. Using single power
supplied op amps, the VcE saturation of the output from an op
amp cannot be guaranteed to pull down to zero volts. The
analog design shown here will provide a signal to the A/D
converter with a span of approximately 4 volts when zero to
full-scale pressure is applied to the sensor. The final
amplifier’s output is level shifted to approximately 0.7 volts.
This will provide a signal that will swing between
approximately 0.7 volts and 4.7 volts. The offset of 0.7 volts in
this implementation does not have to be trimmed to an exact
point. The software will sample the voltage applied to the A/D
converter atinitial power up time and call that value “zero”. The
important thing to remember is that the span of the signal will
be approximately 4 volts when zero to full scale pressure is
applied to the sensor. The 4 volt swing in signal may vary
slightly from sensor to sensor and can also vary due to resistor
tolerances in the analog circuitry. Jumpers J4 through J7 may
be placed in various configurations to compensate for these
variations (see Table 3).

Motorola Sensor Device Data

AN1315

J8 IS INSTALLED FOR
THE MPX2010 ONLY

+5V
MC33274 1N914
10 8 47K D2
9 w PDO
R4

RS
——0 TP1

Figure 4. Analog Interface

Referring to Figure 4, most of the amplification of the voltage
from the pressure sensor is provided by U1lA which is
configured as a differential amplifier. U1B serves as a unity
gain buffer in order to keep any current that flows through R2
(and R3) from being fed back into the sensor’s negative
output. With zero pressure applied to the sensor, the
differential voltage from pin 2 to pin 4 of the sensor is zero or
very close to zero volts. The common mode, or the voltage
measured between pins 2 or 4 to ground, is equal to
approximately one half of the voltage applied to the sensor, or
4 volts. The zero pressure output voltage at pin 7 of U1A will
then be 4 volts because pin 1 of U1B is also at 4 volts, creating
a zero bias between pins 5 and 6 of U1A. The four volt zero
pressure output will then be level shifted to the desired zero
pressure offset voltage (approximately 0.7 volts) by U1C and
uUiD.

To further explain the operation of the level shifting circuitry,
refer again to Figure 4. Assuming zero pressure is applied to
the sensor and the common mode voltage from the sensor is
4 volts, the voltage applied to pin 12 of U1D will be 4 volts,
implying pin 13 will be at 4 volts. The gain of amplifier U1D will
be (R10/(R8+R9)) +1 or a gain of 2. R7 will inject a Vpffset (0.7
volts) into amplifier U1D, thus causing the output at U1D pin
14tobe 7.3 =(4 volts @ U1D pin 12 x 2)—0.7 volts. The gain
of ULC is also set at 2 ((R5/R6)+1). With 4 volts applied to pin
10 of ULC, its output at UL1C pin 8 will be 0.7 = ((4 volts @ U1C
pin 10 x 2) — 7.3 volts). For this scheme to work properly,
amplifiers ULC and U1D must have a gain of 2 and the output
of U1D must be shifted down by the Vgffset provided by R7. In
this system, the 0.7 volts Vpffset Was arbitrarily picked and
could have been any voltage greater than the Vggt of the op
amp being used. The system software will take in account any

variations of Vffset s itassumes no pressure is applied to the
sensor at system power up.

The gain of the analog circuit is approximately 117. With the
values shown in Figure 4, the gain of 117 will provide a span
of approximately 4 volts on U1C pin 8 when the pressure
sensor and the 8 volt fixed voltage regulator are at their
maximum output voltage tolerance. All of the sensors listed in
Table 1 with the exception of the MPX2010DP output
approximately 33 mV when full scale pressure is applied.
When the MPX2010DP sensor is used, its full scale sensor
differential outputis approximately 20 mV. J8 must be installed
to increase the gain of the analog circuit to still provide the 4
volts span out of U1C pin 8 with a 20 mV differential from the
sensor.

Diode D2 is used to protect the microprocessor’s A/D input
if the output from U1C exceeds 5.6 volts. R4 is used to provide
current limiting into D4 under failure or overvoltage conditions.

SOFTWARE

The source code, compiled listing, and S—record output for
the software used in this system are available on the Motorola
Freeware Bulletin Board Service in the MCU directory under
the filename DEVB158.ARC. To access the bulletin board,
you must have a telephone line, a 300, 1200 or 2400 baud
modem and a personal computer. The modem must be
compatible with the Bell 212A standard. Call (512) 891-3733
to access the Bulletin Board Service.

Figure 5 is a flowchart for the program that controls the
system. The software for the system consists of a number of
modules. Their functions provide the capability for system
calibration as well as displaying the pressure input to the
MPX2000 series pressure sensor.

Motorola Sensor Device Data

AN1315

TIMER
INTERRUPT

SERVICE TIMER REGISTERS
SETUP COUNTER FOR NEXT INTERRUPT
SERVICE LIQUID CRYSTAL DISPLAY

RETURN

START

INITIALIZE DISPLAY 1/O PORTS
INITIALIZE TIMER REGISTERS
DETERMINE SENSOR TYPE
ENABLE INTERRUPTS

'

COMPUTE SLOPE CONSTANT |<—

ACCUMULATE 100 A/D CONVERSIONS
COMPUTE INPUT PRESSURE
CONVERT TO DECIMAL/SEGMENT DATA
PLACE IN RESULT OUTPUT BUFFER

Figure 5. DEVB-158 Software Flowchart

The “C” compiler used in this project was provided by BYTE
CRAFT LTD. (519) 888-6911. A compiler listing of the
program is included at the end of this document. The following
is a brief explanation of the routines:

delay() Used to provide a software loop delay.

read_a2d() Performs 100 reads on the A/D converter on
multiplexer channel 0 and returns the accumulation.

fixcompare() ~ Services the internal timer for 15 ms. timer
compare interrupts.

TIMERCMP() Alternates the data and backplane inputs to
the liquid crystal display.

initio() Sets up the microprocessor’s 1/O ports, timer and
enables processor interrupts.

adzero() This routine is called at powerup time. It delays
to let the power supply and the transducer stabilize. It then
calls “read_atod()” and saves the returned value as the
sensors output voltage with zero pressure applied.

cvt_bin_dec(unsigned long arg) This routine converts
the unsigned binary argument passed in “arg” to a five

digit decimal number in an array called “digit.” It then uses
the decimal results for each digit as an index into a table
that converts the decimal number into a segment pattern
for the display. This is then output to the display.

display_psi() This routine is called from “main()” never to
return. The A/D converter routine is called, the pressure
is calculated based on the type sensor detected and the
pressure applied to the sensor is displayed. The loop
then repeats.

sensor_type() This routine determines the type of sensor
from reading J1 to J3, setting the full scale pressure for
that particular sensor in a variable for use by display_psi().

sensor_slope() This routine determines the slope
constant to be used by display_psi() for engineering units
output.

main() This is the main routine called from reset. It calls
“initio()” to setup the system’s I/O. “display_psi()” is called
to compute and display the pressure applied to the
Sensor.

Motorola Sensor Device Data

6805 'C' COMPILER V3.48 16-Oct-1991 PAGE 1

0800 1700
0050 0096

1FFE
1FFC
1FFA
1FF8
1FF6
1FF4
1FF2

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
0oocC
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
ooicC
001D
001E
001F

#pragma option fO;
/*

THE FOLLOWING 'C’ SOURCE CODE IS WRITTEN FOR THE DEVB158 EVALUATION
BOARD. IT WAS COMPILED WITH A COMPILER COURTESY OF:

BYTE CRAFT LTD
421 KING ST.
WATERLOO, ONTARIO
CANADA N2J 4E4
(519)888-6911

SOME SOURCE CODE CHANGES MAY BE NECESSARY FOR COMPILATION WITH OTHER
COMPILERS.

BILL LUCAS 2/5/92

MOTOROLA, SPS

Revision history

rev. 1.0 initial release 3/19/92

rev. 1.1 added additional decimal digit to the MPX2010 sensor. Originally
resolved the output to .1 PSI. Modified cvt_bin_dec to output PSI resolved
to .01 PSI. WLL 9/25/92

*
/
#pragma memory ROMPROG [5888] @ 0x0800 ;
#pragma memory RAMPAGEO [150] @ 0x0050 ;

/* Vector assignments */
#pragma vector __ RESET @ Ox1ffe ;
#pragma vector __SWI @ Ox1ffc ;
#pragma vector IRQ @ Ox1ffa;
#pragma vector TIMERCAP @ O0x1ff8 ;
#pragma vector TIMERCMP @ Ox1ff6 ;
#pragma vector TIMEROV @ 0x1ff4 ;
#pragma vector SCI @ 0x1ff2 ;

#pragma has STOP ;
#pragma has WAIT ;
#pragma has MUL ;

I* Register assignments for the 68HC705B5 microcontroller — */

#pragma portrw porta @ 0x00; /* */

#pragma portrw portb @ 0x01; /* */

#pragma portrw portc @ 0x02; /* */

#pragma portrw portd @ 0x03; /*in —~ ,SS ,SCK ,MOSI ,MISO,TxD,RxD */
#pragma portrw ddra @ 0x04; /* Data direction, Port A */
#pragma portrw ddrb @ 0x05; /* Data direction, Port B */

#pragma portrw ddrc @ 0x06; /* Data direction, Port C (all output) */
#pragma portrw eeclk @ 0x07; /* eeprom/eclk cntl */

#pragma portrw addata @ 0x08; /* a/d data register */

#pragma portrw adstat @ 0x09; /* a/d stat/control */

#pragma portrw plma @ 0x0a; /* pulse length modulation a */

#pragma portrw plmb @ Ox0b; /* pulse length modulation b */

#pragma portrw misc @ OxOc; /* miscellaneous register */

#pragma portrw scibaud @ 0x0d; /* sci baud rate register */

#pragma portrw scicntll @ 0xOe; /* sci control 1 */

#pragma portrw scicntl2 @ 0xO0f; /* sci control 2 */

#pragma portrw scistat @ 0x10; /* sci status reg */

#pragma portrw scidata @ 0x11; /* SCI Data */

#pragma portrw tcr @ 0x12; /*ICIE,OCIE,TOIE,0;0,0,IEGE,OLVL */
#pragma portrw tsr @ 0x13; /* ICF,0CF,TOF,0; 0,0,0,0 */

#pragma portrw icaphil @ 0x14; /* Input Capture Reg (Hi—0x14, Lo—0x15) */
#pragma portrw icaplol @ 0x15; /* Input Capture Reg (Hi—0x14, Lo—0x15) */
#pragma portrw ocmphil @ 0x16; /* Output Compare Reg (Hi-0x16, Lo—0x17) */
#pragma portrw ocmplol @ 0x17; /* Output Compare Reg (Hi-0x16, Lo—0x17) */
#pragma portrw tcnthi @ 0x18; /* Timer Count Reg (Hi-0x18, Lo—0x19) */
#pragma portrw tcntlo - @ 0x19; /* Timer Count Reg (Hi-0x18, Lo—0x19) */
#pragma portrw aregnthi @ Ox1A; /* Alternate Count Reg (Hi-$1A, Lo-$1B) */
#pragma portrw aregntlo @ Ox1B; /* Alternate Count Reg (Hi-$1A, Lo-$1B) */
#pragma portrw icaphi2 @ 0x1c; /* Input Capture Reg (Hi—Ox1c, Lo—-0x1d) */
#pragma portrw icaplo2 @ 0x1d; /* Input Capture Reg (Hi-0x1c, Lo—0x1d) */
#pragma portrw ocmphi2 @ Oxle; /* Output Compare Reg (Hi-Ox1e, Lo—0x1f) */
#pragma portrw ocmplo2 @ 0x1f; /* Output Compare Reg (Hi-0x1e, Lo-0x1f) */

AN1315

Motorola Sensor Device Data

AN1315

1EFE 74

#pragma mor @ Oxlefe = 0x74; /* this disables the watchdog counter and does
not add pull-down resistors on ports B and C */

* put constants and variables here...they must be global */
/ /

0800 FC 30 DA 7A 36 6E E6 38 FE const char Icdtab[]={0xfc,0x30,0xda,0x7a,0x36,0x6e,0xe6,0x38,0xfe,0x3e };

0809 3E

/*lcd patterntable 0 1 2 3 4 5 6 7 8 9 ¥

080A 27 10 03 E8 00 64 00 OA const long dectable[] = { 10000, 1000, 100, 10 };

0050 0005

unsigned int digit[5]; /* buffer to hold results from cvt_bin_dec function */

0812 00 96 00 4B 00 96 00 1E 00 const long type] = { 150, 75, 150, 30, 103 };

081B 67

* MPX2010 MPX2050 MPX2100 MPX2200 MPX2700
The table above will cause the final results of the pressure to
engineering units to display the 1.5, 7.3 and 15.0 devices with a
decimal place in the tens position. The 30 and 103 psi devices will
display in integer units.

*

const long slope_const[]={ 450,418,423,427,432,436,441,445,454,459,

081C 01 C201 A201 A7 01 ABO1 463,468,472,477,481,450 },
0825 B0 01 B4 01 B9 01 BD 01 C6
082E 01 CB 01 CF 01 D4 01 D8 01

0837 DD 01 E1 01 C2

0000 registera areg; /* processor’s A register */
0055 long atodtemp; /* temp to accumulate 100 a/d readings for smoothing */
0059 long slope; /* multiplier for adc to engineering units conversion */
005B int adent; /* a/d converter loop counter */
005C long xdcr_offset; /* initial xdcr offset */
005E long sensor_model; /* installed sensor based on J1..J3 */
0060 int sensor_index; /* determine the location of the decimal pt. */
0061 0063 unsigned long i,j; /* counter for loops */
0065 unsigned intk; /* misc variable */
struct bothbytes
{ int hi;
int lo;
h
union isboth
{ long I;
struct bothbytes b;
h
0066 0002 union isboth g; /* used for timer set—up */
/ /
/* variables for add32 */
0068 0004 unsigned long SUM[2]; /* result */
006C 0004 unsigned long ADDEND[2]; /* one input */
0070 0004 unsigned long AUGEND[2]; /* second input */
[* variables for sub32 */
0074 0004 unsigned long MINUE[2]; /* minuend */
0078 0004 unsigned long SUBTRA[2]; /* subtrahend */
007C 0004 unsigned long DIFF[2]; /* difference */
[* variables for mul32 */
0080 0004 unsigned long MULTP[2]; /* multiplier */
0084 0004 unsigned long MTEMPI[2]; /* high order 4 bytes at return */
0088 0004 unsigned long MULCAN][2]; /¥ multiplicand at input, low 4 bytes at return */
10 Motorola Sensor Device Data

/* variables for div32 */

008C 0004 unsigned long DVDNDJ2]; /* Dividend */
0090 0004 unsigned long DVSOR[2]; /* Divisor */
0094 0004 unsigned long QUO[2]; /* Quotient */
0098 unsigned int CNT; /* Loop counter */

/* The code starts here */

1

void add32()
{

#asm

*.

* Add two 32-bit values.

* Inputs:

* ADDEND: ADDENDJ0..3] HIGH ORDER BYTE IS ADDEND+0
* AUGEND: AUGENDI0..3] HIGH ORDER BYTE IS AUGEND+0
* Output:

* SUM: SUMI0..3] HIGH ORDER BYTE IS SUM+0

*

*

083C B6 6F LDA ADDEND+3 low byte
083E BB 73 ADD AUGEND+3
0840 B7 6B STA SUM+3
0842 B6 6E LDA ADDEND+2 medium low byte
0844 B9 72 ADC AUGEND+2
0846 B7 6A STA SUM+2
0848 B6 6D LDA ADDEND+1 medium high byte
084A B9 71 ADC AUGEND+1
084C B7 69 STA SUM+1
084E B6 6C LDA ADDEND high byte
0850 B9 70 ADC AUGEND
0852 B7 68 STA SUM
0854 81 RTS done
*
#endasm

0855 81 RTS }

void sub32()

{

#asm

*.

* Subtract two 32-bit values.

* Input:

* Minuend: MINUEJO..3]

* Subtrahend: SUBTRAJ0..3]
* Output:

* Difference: DIFF[1..0]

*

*

0856 B6 77 LDA MINUE+3 low byte
0858 BO 7B SUB SUBTRA+3
085A B7 7F STA DIFF+3
085C B6 76 LDA MINUE+2 medium low byte
085E B2 7A SBC SUBTRA+2
0860 B7 7E STA DIFF+2
0862 B6 75 LDA MINUE+1 medium high byte
0864 B2 79 SBC SUBTRA+1
0866 B7 7D STA DIFF+1
0868 B6 74 LDA MINUE high byte
086A B2 78 SBC SUBTRA
086C B7 7C STA DIFF
086E 81 RTS done
*
#endasm

086F 81 RTS }

void mul32()

{

#asm

*

* Multiply 32—bit value by a 32—bit value
*

*

*Input:

AN1315

Motorola Sensor Device Data

11

AN1315

* Multiplier: MULTP[0..3]
* Multiplicand: MULCAN[O..3]

* Output:
* Product: MTEMPJ0..3] AND MULCANIJO..3] MTEMPI0] IS THE HIGH
* ORDER BYTE AND MULCANI3] IS THE LOW ORDER BYTE

* THIS ROUTINE DOES NOT USE THE MUL INSTRUCTION FOR THE SAKE OF USERS NOT
* USING THE HC(7)05 SERIES PROCESSORS.

0870 AE 20 LDX #32 loop counter
0872 3F 84 CLR MTEMP clean-up for result
0874 3F 85 CLR MTEMP+1 *
0876 3F 86 CLR MTEMP+2 *
0878 3F 87 CLR MTEMP+3 *
087A 36 88 ROR MULCAN low but to carry, the rest one to the right
087C 36 89 ROR MULCAN+1 *
087E 36 8A ROR MULCAN+2 *
0880 36 8B ROR MULCAN+3 *
0882 24 18 MNEXT BCC ROTATE if carry is set, do the add
0884 B6 87 LDA MTEMP+3 *
0886 BB 83 ADD MULTP+3 *
0888 B7 87 STA MTEMP+3 *
088A B6 86 LDA MTEMP+2 *
088C B9 82 ADC MULTP+2 *
088E B7 86 STA MTEMP+2 *
0890 B6 85 LDA MTEMP+1 *
0892 B9 81 ADC MULTP+1 *
0894 B7 85 STA MTEMP+1 *
0896 B6 84 LDA MTEMP *
0898 B9 80 ADC MULTP *
089A B7 84 STA MTEMP *
089C 36 84 ROTATE ROR MTEMP else: shift low bit to carry, the rest to the right
089E 36 85 ROR MTEMP+1 *
08AO0 36 86 ROR MTEMP+2 *
08A2 36 87 ROR MTEMP+3 *
08A4 36 88 ROR MULCAN *
08A6 36 89 ROR MULCAN+1 *
08A8 36 8A ROR MULCAN+2 *
08AA 36 8B ROR MULCAN+3 *
08AC 5A DEX bump the counter down
08AD 26 D3 BNE MNEXT done yet?
08AF 81 RTS done
#endasm
08B0 81 RTS }
void div32()
{
#asm

*

*

* Divide 32 bit by 32 bit unsigned integer routine

* Input:

* Dividend: DVDND [+0..+3] HIGH ORDER BYTE IS DVND+0
* Divisor: DVSOR [+0..+3] HIGH ORDER BYTE IS DVSOR+0
* Output:

* Quotient: QUO [+0..+3] HIGH ORDER BYTE IS QUO+0

08B1 3F 94 CLR QUOzero result registers
08B3 3F 95 CLR QUO+1 *
08B5 3F 96 CLR QUO+2 *
08B7 3F 97 CLR QUO+3 *
08B9 A6 01 LDA #1 initial loop count
08BB 3D 90 TST DVSOR if the high order bit is set..no need to shift DVSOR
08BD 2B OF BMI DIV153
*
08BF 4C DIV151 INCA bump the loop counter
08C0 38 93 ASL DVSOR+3 now shift the divisor until the high order bit = 1
08C2 39 92 ROL DVSOR+2
08C4 3991 ROL DVSOR+1 *
08C6 39 90 ROL DVSOR *
08C8 2B 04 BMI DIV153 done if high order bit = 1

12 Motorola Sensor Device Data

08CA Al 21
08CC 26 F1

08CE B7 98

08D0 B6 8F
08D2 B0 93
08D4 B7 8F
08D6 B6 8E
08D8 B2 92
08DA B7 8E
08DC B6 8D
08DE B2 91
08EO0 B7 8D
08E2 B6 8C
08E4 B2 90
08E6 B7 8C
08E8 24 1B

08EA B6 8F
08EC BB 93
08EE B7 8F
08F0 B6 8E
08F2 B9 92
08F4 B7 8E
08F6 B6 8D
08F8 B9 91
08FA B7 8D
08FC B6 8C
08FE B9 90
0900 B7 8C
0902 98

0903 20 01
0905 99

0906 39 97
0908 39 96
090A 39 95
090C 39 94
090E 34 90
091036 91
0912 36 92
0914 36 93
0916 3A 98
0918 26 B6
091A 81

091B 81

1FFC 09 1C
091C 80
1FFA 09 1D
091D 80
1FF8 09 1E
091E 80
1FF4 09 1F
091F 80
1FF2 09 20
0920 80

0921 B6 03
0923 A4 OE
0925 B7 65
0927 34 65
0929 B6 65
092B A1 04

CMP #33 have we shifted all possible bits in the DVSOR yet ?

BNE DIV151

*

DIV153 STA CNT

*

no

save the loop counter so we can do the divide

DIV163 LDA DVDND+3 sub 32 bit divisor from dividend
SUB DVSOR+3 *
STA DVDND+3 *
LDA DVDND+2 *
SBC DVSOR+2 *
STA DVDND+2 *
LDA DVDND+1 *
SBC DVSOR+1 *
STA DVDND+1 *

LDA DVDND
SBC DVSOR
STA DVDND
BCC DIV165

*

*
*

*

carry is clear if DVSOR was larger than DVDND

LDA DVDND+3 add the divisor back...was larger than the dividend
ADD DVSOR+3 *
STA DVDND+3 *

LDA DVDND+2

ADC DVSOR+2 *

STA DVDND+2

LDA DVDND+1 *
ADC DVSOR+1 *
STA DVDND+1 *

LDA DVDND *

ADC DVSOR *

STA DVDND *

CLC this will clear the respective bit in QUO due to
* the need to add DVSOR back to DVND
BRA DIV167
DIV165 SEC this will set the respective bit in QUO
DIV167 ROL QUO+3 set or clear the low order bit in QUO based on above

ROL QUO+2 *

ROL QUO+1 *

ROL QUO *

LSR DVSOR divide the divisor by 2

ROR DVSOR+1
ROR DVSOR+2
ROR DVSOR+3

*

*

*

DEC CNT bump the loop counter down

BNE DIV163
RTSyes

RTS }

__SWI(f}
RTI

IRQO{}
RTI

TIMERCAP({}
RTI

TIMEROV(){}
RTI

SCIOf
RTI

finished yet ?

#endasm

!

/* These interrupts are not used...give them a graceful return if for
some reason one occurs */

!

void sensor_type()

{

LDA $03 k = portd & OxOe; /* we only care about bits 1..3 */

AND #$0E

STA $65

LSR $65 k=k>>1;
LDA $65 if(k>4)
CMP #304

/* right justify the variable */

AN1315

Motorola Sensor Device Data

13

AN1315

092D 23 0C

092F 3F 02
0931 A6 6E
0933 B7 01
0935 A6 CE
0937 B7 00
0939 20 FE

093B B6 65
093D B7 60
093F 97
0940 58

BLS

CLR
LDA
STA
LDA
STA
BRA

LDA
STA

TAX
LSLX

$093B
{ /* we have a set-up error in wire jumpers J1 — J3 */
$02 portc=0; /* */
#S6E portb = 0x6e; /* S */
$01
#$CE porta = Oxce; /*E*/
$00
$0939 while(1);

$65 sensor_index = k;
$60
sensor_model = type[k];

0941 D6 08 12 LDA $0812,X

0944 B7 5E

STA

$5E

0946 D6 08 13 LDA $0813,X

0949 B7 5F
094B 81

094C B6 03
094E A4 FO
0950 B7 65
0952 34 65
0954 34 65
0956 34 65
0958 34 65
095A BE 65
095C 58

STA

RTS

LDA

AND
STA
LSR
LSR
LSR
LSR

LDX
LSLX

$5F
}

I
void sensor_slope()

$03 k=portd & 0xf0; /* we only care about bits 4..7 */
#$FO

$65

$65 k=k>>4; [*rightjustify the variable */

$65

$65

$65

$65 slope = slope_const[k];

095D D6 08 1C LDA $081C,X

0960 B7 59

STA

$59

0962 D6 08 1D LDA $081D,X
0965 B7 5A STA $5A

0967 81 RTS }
/
void delay(void) /* just hang around for a while */
0968 3F 62 CLR $62 for (i=0; i<20000; ++i);
096A3F61 CLR $61
096C B662 LDA $62
096E A0 20 SUB #%$20
0970B6 61 LDA $61
0972 A24E SBC #3$4E
09742408 BCC $097E
0976 3C 62 INC $62
097826 02 BNE $097C
097A3C61 INC $61
097C 20 EE BRA $096C
097E 81 RTS }
1
read_a2d(void)
{
/* read the a/d converter on channel 5 and accumulate the result
in atodtemp */
097F3F56 CLR $56 atodtemp=0; /* zero for accumulation */
0981 3F55 CLR $55
09833F5B CLR $5B for (adcent = 0 ; adent<100; ++adcnt) /* do 100 a/d conversions */
0985B65B LDA $5B
0987 A880 EOR #$80
0989 A1E4 CMP #$E4
098B 2421 BCC $09AE
{
098D A6 20 LDA #$20 adstat = 0x20; /* convert on channel 0 */
098F B709 STA $09
0991 OF 09 FD BRCLR 7,$09,$0991 while (!(adstat & 0x80)); /* wait for a/d to complete */
0994 B6 08 LDA $08 atodtemp = addata + atodtemp;
0996 3F 57 CLR $57
0998 B758 STA $58

14

Motorola Sensor Device Data

099A BB 56
099C B7 58
099E B6 57
09A0 B9 55
09A2 B7 57
09A4 B7 55
09A6 B6 58
09A8 B7 56

09AA 3C 5B
09AC 20 D7
09AE B6 56
09B0 B7 58
09B2 B6 55
09B4 B7 57
09B6 3F 9A
09B8 A6 64
09BA B7 9B

ADD
STA
LDA
ADC
STA
STA
LDA
STA

INC

BRA
LDA
STA
LDA
STA
CLR
LDA

STA

AN1315

$56
$58
$57
$55
$57
$55
$58
$56

$5B

$0985

$56 atodtemp = atodtemp/100;
$58

$55

$57

$9A

#$64

$9B

09BC CD OB F1 JSR $0BF1
09BF CD 0C 22 JSR $0C22

09C2BF 55 STX $55
09C4B756 STA $56
09C6 81 RTS return atodtemp;
}
/ /
void fixcompare (void) /* sets—up the timer compare for the next interrupt */
{
09C7B6 18 LDA $18 g.b.hi =tcnthi;
09C9B766 STA $66
09CBB619 LDA $19 g.b.lo = tentlo;
09CD B767 STA $67
09CF AB4C ADD #$4C q.l +=7500; /* ((4mhz xtal/2)/4) = counter period = 2us.*7500 = 15ms. */
09D1B767 STA $67
09D3B666 LDA $66
09D5 A9 1D ADC #$1D
09D7 B766 STA $66
09D9 B7 16 STA $16 ocmphil = q.b.hi;
09DBB6 13 LDA $13 areg=tsr; /* dummy read */
09DD B6 67 LDA $67 ocmplol = qg.b.lo;
09DF B7 17 STA $17
09E1 81 RTS }
/ /
void TIMERCMP (void) /* timer service module */
1FF6 09 E2 {
09E23302 COM $02 portc =~ portc; /* service the Icd by inverting the ports */
09E43301 COM $01 portb =~ portb;
09E6 3300 COM $00 porta =~ porta;
09EB ADDD BSR $09C7 fixcompare();
09EA 80 RTI }
/ !
void adzero(void) /* called by initio() to save initial xdcr’'s zero
pressure offset voltage output */
{
09EB 3F64 CLR $64 for (j=0; j<20; ++j) /* give the sensor time to "warm—-up” and the
09ED 3F 63 CLR $63
09EF B664 LDA $64
09F1 A0 14 SUB #$14
09F3B663 LDA $63
09F5A200 SBC #$00
09F7240B BCC $0A04
power supply time to settle down */
09F9 CD 09 68 JSR $0968 delay();
}
09FC 3C 64 INC $64
09FE 26 02 BNE $0A02
0A003C 63 INC $63
0A02 20 EB BRA $09EF
0A04 CD 09 7F JSR $097F xdcr_offset = read_a2d();

Motorola Sensor Device Data 15

AN1315

0AQ7 3F 5C
0A09 B7 5D
0AOB 81

0AOC A6 20
O0AOE B7 09
0A10 3F 02
0A12 3F 01
0A14 3F 00
0A16 A6 FF
0A18 B7 06
0A1A B7 05
0A1C B7 04
OA1E B6 13
0A20 3F 1E
0A22 3F 16
0A24 B6 1F
0A26 AD 9F
0A28 A6 40
0A2A B7 12
0A2C 9A

0A2D A6 CC
0A2F B7 02
0A31 A6 BE
0A33 B7 01
0A35 A6 C4
0A37 B7 00

0A39 CD 0921 JSR $0921
OA3C ADAD BSR $09EB

CLR
STA
RTS

LDA
STA
CLR
CLR
CLR
LDA
STA
STA
STA
LDA
CLR
CLR
LDA
BSR
LDA
STA
CLI

LDA
STA
LDA
STA
LDA
STA

$5C
$5D
}
/ /
void initio (void) /* setup the /0 */
{

#$20 adstat = 0x20; /* power—up the A/D */

$09

$02 porta = portb = portc = 0;

$01

$00

#SFF ddra = ddrb = ddrc = Oxff;

$06

$05

$04

$13 areg=tsr; /* dummy read */

$1E ocmphil = ocmphi2 = 0;

$16

$1F areg = ocmplo2; /* clear out output compare 2 if it happens to be set */

$09C7 fixcompare(); /* set—up for the first timer interrupt */

#$40 ter = 0x40;

$12

CLI; /* let the interrupts begin ! */
/* write CAL to the display */
#3$CC portc = Oxcc; /* C */

$02

#$BE portb = Oxbe; /* A */

$01

#3$C4 porta = Oxc4; /* L */

$00

sensor_type(); /* get the model of the sensor based on J1..J3 */
adzero(); /* auto zero */

OA3E 81 RTS }
/ /
void cvt_bin_dec(unsigned long arg)
/* First converts the argument to a five digit decimal value. The msd is in
the lowest address. Then leading zero suppress the value and write it to the
display ports.
The argument value is 0..65535 decimal. */
009D {
OA3FBF9D STX $9D
0A41B79E STA $9E
009F chari;
00A0 unsigned long |;
0A433F9F CLR $9F for (i=0;i<5; ++i)
0A45B6 9F LDA $9F
0A47 A105 CMP #$05
0A4924 07 BCC $0A52
{
0A4B 97 TAX digit[i] = 0x0; /* put blanks in all digit positions */
0A4C 6F50 CLR $50,X
}
OA4E 3C9F INC $9F
0A50 20 F3 BRA $0A45
0A52 3F9F CLR $9F for (i=0;i<4; ++i)
0A54 B6 9F LDA $9F
0A56 A1 04 CMP #$04
0A58 24 7A BCC $0AD4
0A5A 97 TAX if (arg >= dectable [i])
0A5B 58 LSLX
OA5C D6 08 0B LDA $080B,X
OASFBO9E SUB $9E
0A61B758 STA $58
0A63B69D LDA $9D
0A65A880 EOR #3$80
0A67 B757 STA $57
0AB69 D6 08 OA LDA $080A,X
0OA6C AB80 EOR #$80
OA6E B257 SBC $57

16

Motorola Sensor Device Data

0OA70 BA58 ORA $58
0A72225C BHI $0ADO

0A74BEOF LDX $9F I = dectable[i];
0A7658 LSLX

0A77 D6 08 0A LDA $080A,X

0A7TAB7A0 STA S$A0

0A7C D6 08 0B LDA $080B,X

0A7TFB7Al STA $Al
0A81B69E LDA $9E digit[i] = arg / I;
0A83B758 STA $58
0A85B69D LDA $9D
0A87B757 STA $57
0A89B6 A0 LDA $A0
0ASBB79A STA $9A
0ASDB6AL LDA $Al
0ASFB79B STA $9B

0A91 CD OB F1 JSR $0BF1
0A94 CD 0C 22 JSR $0C22

0A97 BF 57
0A99 B7 58
0A9B BE 9F
0A9D E7 50
OA9F BE 9F
0AA1 E6 50
0AA3 3F 57
OAA5 B7 58
0AA7 B6 AO
0AA9 B7 9A
OAAB B6 Al
O0AAD B7 9B

STX
STA
LDX
STA
LDX
LDA
CLR
STA
LDA
STA
LDA
STA

$57
$58
$9F
$50,X
$9F
$50,X
$57
$58
$A0
$9A
$A1
$9B

OAAF CD 0B D2 JSR $0BD2

0AB2 BF 57
0AB4 B7 58
0AB6 33 57
0ABS8 30 58
O0ABA 26 02
OABC 3C 57
OABE B6 58
0ACO BB 9E
0AC2 B7 58
0AC4 B6 57
0AC6 B9 9D
0AC8 B7 57
O0ACA B7 9D
OACC B6 58
OACE B7 9E

0ADO 3C 9F
0AD2 20 80
0AD4 B6 9E
0AD6 B7 58
0AD8 B6 9D
OADA B7 57
OADC BE 9F
OADE B6 58
0AEO E7 50

0AE2 9B

OAE3 3D 52
OAES5 26 04
OAE7 3F 02
0AE9 20 07
OAEB BE 52

OAED D6 08 00 LDA $0800,X

0AFO0 B7 02
0AF2 3D 52
0AF4 26 08
0AF6 3D 53
OAF8 26 04
OAFA 3F 01
OAFC 20 07
OAFE BE 53

0B00 D6 08 00 LDA $0800,X

STX
STA
CoM
NEG
BNE
INC
LDA
ADD
STA
LDA
ADC
STA
STA
LDA
STA

INC
BRA

LDA
STA

LDA
STA

LDX
LDA
STA

SEI

TST
BNE
CLR
BRA
LDX

STA
TST
BNE
TST
BNE
CLR
BRA

LDX

$57
$58
$57
$58
$0ABE
$57
$58
$9E
$58
$57
$9D
$57
$9D
$58
$9E

$9F
$0A54

$9E digit[i] = arg;

$58
$9D
$57
$9F
$58
$50,X

SEl;

arg = arg—(digit[i] * I);

/* now zero suppress and send the Icd pattern to the display */

$52 if (digitf2] ==0) /* leading zero suppression */

$0AEB

$02

$0AF2

$52

$02
$52

$0AFE

$53

$OAFE

$01

$0B05

$53

portc = 0;
else
portc = (Icdtab[digit[2]]); /* 100's digit */

if (digit[2] == 0 && digit[3] == 0)

portb=0;
else
portb = (lcdtab[digit[3]]); /* 10’s digit */

AN1315

Motorola Sensor Device Data

17

AN1315

0BO3B701 STA
0BO5 BE54 LDX
0B07 D6 08 00 LDA
OBOAB700 STA
0BOC B6 60 LDA
OBOE A880 EOR
0B10 A183 CMP
0B122408 BCC
0B14 BE54 LDX
0B16 D6 08 00 LDA
0B19 4C INCA
OB1AB700 STA
0B1C3D60 TST
OB1E 26 OF BNE
0B20 BE54 LDX
0B22 D6 08 00 LDA
0B25B700 STA
0B27 BE53 LDX
0B29 D6 08 00 LDA
0B2C 4C INCA
0B2D B701 STA
0B2F 9A CLI

$01

$54
$0800,X

$00

$60
#$80
#$83
$0B1C
$54
$0800,X

$00
$60
$0B2F

$54
$0800,X

$00

$53
$0800,X

$01

CLI;

0B30 CD 09 68 JSR $0968

0B33 81

RTS

}

0B34 CD 09 7F JSR $097F

porta = (lcdtab[digit[4]]); /* 1's digit */

/* place the decimal point only if the sensor is 15 psi or 7.5 psi */
if (sensor_index < 3)

porta = (Icdtab[digit[4]]+1); /* add the decimal point to the Isd */

if(sensor_index ==0) /* special case */
{
porta = (lcdtab[digit[4]]); /* get rid of the decimal at Isd */

portb = (lcdtab[digit[3]]+1); /* decimal point at middle digit */

delay();

/ /

void display_psi(void)

/*
At power—up it is assumed that the pressure or vacuum port of
the sensor is open to atmosphere. The code in initio() delays
for the sensor and power supply to stabilize. One hundred A/D
conversions are averaged. That result is called xdcr_offset.
This routine calls the A/D routine which performs one hundred
conversions, divides the result by 100 and returns the value.
If the value returned is less than or equal to the xdcr_offset,
the value of xdcr_offset is substituted. If the value returned
is greater than xdcr_offset, xdcr_offset is subtracted from the
returned value.

*/

while(1)

atodtemp = read_a2d(); /* atodtemp = raw a/d (0..255) */

0B373F55 CLR $55
0B39B756 STA $56
0B3BBO5D SUB $5D if (atodtemp <= xdcr_offset)
0B3DB758 STA $58
0B3FB65C LDA $5C
0B41 A880 EOR #$80
0B43B757 STA $57
0B45B655 LDA $55
0B47 A880 EOR #$80
0B49B257 SBC $57
0B4B BA58 ORA $58
0B4D 2208 BHI $0B57
0B4FB65C LDA $5C atodtemp = xdcr_offset;
0B51B755 STA $55
0B53B65D LDA $5D
0B55B756 STA $56
0B57B656 LDA $56 atodtemp —= xdcr_offset; /* remove the offset */
0B59BO5D SUB $5D
0B5BB756 STA $56
0B5D B655 LDA $55
0B5FB25C SBC $5C
0B61B755 STA $55
0B63 CD 09 4C JSR $094C sensor_slope(); /* establish the slope constant for this output */
0B66 B6 56 LDA $56 atodtemp *= sensor_model;
0B68 B758 STA $58
O0B6AB655 LDA $55
0B6C B757 STA $57
OB6E B6 5E LDA $5E
18 Motorola Sensor Device Data

0B70B79A STA $9A
0B72B6 5F LDA $5F
0B74B79B STA $9B
0B76 CD 0B D2 JSR $0BD2
0B79BF55 STX $55
0B7BB756 STA $56
0B7D3F89 CLR $89
OB7F3F88 CLR $88
0B813F81 CLR $81
0B833F80 CLR $80
0B85 9F TXA

0B86 B782 STA $82
0B88B656 LDA $56
OB8AB783 STA $83
0B8C B659 LDA $59
OBBE B78A STA $8A
0B90B6 5A LDA $5A
0B92B78B STA $8B
0B94 CD 08 70 JSR $0870
0B973F90 CLR $90
0B99 A6 01 LDA #$01
0B9BB791 STA $91
0B9D A6 86 LDA #$86
OB9F B792 STA $92
OBA1 A6 A0 LDA #$A0
0BA3B793 STA $93
OBA5B688 LDA $88
OBA7B78C STA $8C
0BA9B689 LDA $89
OBABB78D STA $8D
OBAD B6 8A LDA $8A
OBAF B78E STA $8E
0BB1B68B LDA $8B
0BB3B78F STA $8F
0BB5 CD 08 B1 JSR $08B1
0BB8B696 LDA $96
OBBAB755 STA $55
0BBC B697 LDA $97
OBBEB756 STA $56
OBCOBES55 LDX $55

0BC2 CD OA 3F JSR $0A3F

0BCS5 CC 0B
0BC8 81

0BC9 CD 0A

34 JMP $0B34
RTS }

0C JSR $0A0C

0OBCCCD OB 34 JSR $0B34

OBCF 20 FE
0BD1 81
0BD2 BE 58
0BD4 B6 9B
0BD6 42
0BD7 B7 A4
0BD9 BF A5
0BDB BE 57
0BDD B6 9B
OBDF 42
0BEO BB A5
0BE2 B7 A5
OBE4 BE 58
OBEG B6 9A
OBES8 42
OBE9 BB A5
OBEB B7 A5
OBED 97
OBEE B6 A4
0BFO 81
O0BF1 3F A4
OBF3 5F
O0BF4 3F A2
0BF6 3F A3
0BF8 5C
OBF9 38 58

BRA S$OBCF
RTS }
LDX $58
LDA $9B
MUL

STA $A4
STX $A5
LDX $57
LDA $9B
MUL

ADD $A5
STA $A5
LDX $58
LDA $9A
MUL

ADD $A5
STA $A5
TAX

LDA $A4
RTS

CLR $A4
CLRX

CLR $A2
CLR $A3
INCX

LSL $58

MULTP[0] = MULCANI[O] = 0;

MULTP[1] = atodtemp;

MULCANI[1] = slope;

mul32(); /* analog value * slope based on J1 through J3 */

DVSOR[0] = 1; /* now divide by 100000 */

DVSOR[1] = 0x86a0;

DVDND[0] = MULCANI(O];

DVDNDI[1] = MULCANI[1];

div32();
atodtemp = QUOI1]; /* convert to psi */

cvt_bin_dec(atodtemp); /* convert to decimal and display */

}

/
void main()
initio(); /* set—up the processor’s i/o */

display_psi();
while(1); /* should never get back to here */

AN1315

Motorola Sensor Device Data

19

AN1315

OBFB 3957 ROL $57
OBFD 39 A2 ROL $A2
OBFF 39 A3 ROL $A3
0C01B6 A2 LDA $A2
0C03B0O9B SUB $9B
0C05B7 A2 STA $A2
0C07 B6 A3 LDA $A3
0C09B29A SBC $9A
0COB B7 A3 STA $A3
0COD 240D BCC $0C1C
OCOFB69B LDA $9B
0C11BBA2 ADD $A2
0C13B7 A2 STA $A2
0C15B6 9A LDA $9A
0C17B9A3 ADC $A3
0C19B7 A3 STA $A3
0C1B 99 SEC

0C1C 59 ROLX
0C1D39A4 ROL $A4
0C1F 24 D8 BCC $0BF9
0C2181 RTS

0C22 53 COMX

0C23 9F TXA

0C24 BEA4 LDX $A4
0C26 53 COMX

0C27 81 RTS

1FFE OB C9

SYMBOL TABLE

LABEL VALUE LABEL VALUE LABEL VALUE LABEL VALUE

ADDEND 006C | AUGEND 0070 | CNT 0098 | DIFF 007C
DIV151 08BF | DIV153 08CE | DIV163 08DO0 | DIV165 0905
DIV167 0906 | DVDND 008C | DVSOR 0090 | IRQ 091D
MINUE 0074 | MNEXT 0882 | MTEMP 0084 | MULCAN 0088
MULTP 0080 | QUO 0094 | ROTATE 089C | SCI 0920
SUBTRA 0078 | SUM 0068 | TIMERCAP 091E | TIMERCMP 09E2
TIMEROV 091F | __LDIV 0BF1|__LonglX 009A|__MAIN 0BC9
__ MuL 0000 | __MUL16x16 0BD2|__RDIV 0C22 | _RESET 1FFE
__STARTUP 0000 |__STOP 0000 | __swi 091C | __WAIT 0000
__longAC 0057 | adcnt 005B | add32 083C | addata 0008

adstat

arg

0009 | adzero 09EB | aregnthi 001A | aregntlo 001B
009D | atodtemp 0055 | b 0000 | bothbytes 0002

cvt_bin_dec O0A3F | ddra 0004 | ddrb 0005 | ddrc 0006
dectable 080A | delay 0968 | digit 0050 | display_psi 0B34

div32 08B1 | eeclk 0007 | fixcompare 09C7 | hi 0000

i 0061 | icaphil 0014 | icaphi2 ~ 001C |icaplol 0015
icaplo2 001D | initio 0AOQC | isboth 0002 | j 0063

k 0065 | | 0000 | lcdtab 0800 | lo 0001

main 0BC9 | misc 000C | mul32 0870 | ocmphil 0016
ocmphi2 001E | ocmplol 0017 | ocmplo2 001F | plma 000A
plmb 000B | porta 0000 | portb 0001 | portc 0002

portd 0003 | q 0066 | read_a2d 097F | scibaud 000D

scicntll O0OE | scicntl2 OOOF | scidata 0011 | scistat 0010
sensor_index 0060 | sensor_model 005E | sensor_slope 094C | sensor_type 0921

slope
tentlo

0059 | slope_const 081C | sub32 0856 | tenthi 0018
0019 | ter 0012 | tsr 0013 | type 0812

xdcr_offset 005C |

MEMORY USAGE MAP (X’ = Used, =’ = Unused)

0800 :
0840 :
0880 :

08CO0

0900 :
0940 :
0980 :

09CO

0AOQ0 :
0A40 :
0A80 :

0ACO

:9.9,9,0.9.0,0.9.9,0.9,.9,:0.0.9,9.9.9,.0.9,0,.0.9,.0,0.9,.0,.0.9,0.0.9.09,0,0.9,.0,0.9.0,.0.9,0,.0.9,0.9.9.0.0.0,0.9.9,.0.0,9,0,0,9.0.0.¢
1 9,9,:9.9.9:9.9.0.:9.9,0.9.9.0.0.9.0.9.9.9.0.9,.9.0.9.9.0.9.0.0.9.9.9,.0.9.9.0.9.0.0.0.9.0.09.0.0.9.9.99.9.99.9.99.900.9604
:9.9,9,0.9,:0,0.9.9,0.9,.9,:0.0.9,9.9.9,.0.9,0,.0.9,.0,.0.9,0,.0.9,.0.0.9.09,0,:09,.0,0.9,.0,.0.9,.0,.0.9.0.9.9.0.0.9,.0.9.9.0.0.90.0.09.004

19,9,9,0,0.9,0,0.9,0,0.9,0.0.9.0.9,0,0.9,0,.0.9,0,0.9.0,0.9,0,.0.0.9.0.9.0,0.9.0,0.9,0,.0.9.0,.0.9.0.9.0,:0.9,0,0.9,0,0.0.0,0.0.0,0.0.¢

:9.9,9,0.9.9,0.9.9,0.9,.9,:0.0.9,.9.9.9,.0.9,0,.0.9,.0,0.9,.0,.0.9,0,.0.9.0.9,0,0.9,.0,0.9,.0,.0.9,.0,.0.9,0.9.9,.0.0.9,0.9.9,.0.0,9,0,0.0,.9.0¢
09,9,:0.9.9:9.9.0.:9.9.0.:9.9.0.:0.9.0.0.9.9,.0.9,.0.0.9.0.0.9.0.0.9.9.9,0,.9.9.0.0.9,0.09.0,.09.0.0.9.9.99.9.99.9.99.960.9604
:9.9,9,0.9:0,0.9.9,0.9,.9,.0.90.9,9.9.9,.0.9,0.0.9,.0,.0.9,9,.0.9,0.0.9.0.9,.0,.0.9.9,0.9,.0,.09,.0.0.9,.0.9.9.9.9.9,.09.9.9.09.0.09.004

19,9,9,0,0.9,0,0.9,0,0.9.0.0.9.0.9.0,0.9,0,:0.9,.0,0.9.0,0.9,0,.0.0.9.0.9.0,.0.9.0,.0.9,0,.0.9,.0,.0.9.0.9.0,:0.9.0,0.9,.0,0.9.0,0.0.0,0.0.¢

1u9.9,9,0.9,9,0.9,9,0.9,:9.0.9,.0.9.0,0.9,.0,0.9,0,.0.9,0,0.9,0,.0.9.9.9.9,0.9,0,:0.0.0,.0.9.0,0.9,.9,.0.9.9,0.9.9,.0.9,.0,.0.9,0,.0.9,.9.0.9.4
19.9,0.9.9.9.0.9.:0,9.9.9.9.9.9.9.0.0.9.0,.09,0,.0.9,.0,.0.9,0.0.9.9.9,0.9.9,0.9.9,0.090.0990.99.90.99.999.9.990090.9094
$u9,.9,9,9,.9,9,0.9,9,0,.9,:9.0.9,.0.9,0,.0.9,0,.0.9,9,.0.9,0,.0.9,0,.0.9,.9.9,.0,0.9.0,.0.0.0.0.9.0,.09.9.9.9.9.09.9.09.0.0900909004

19,9.9,0,0.9,0,0.9,0,0.9.0,.0.9.0.9.9,0.9.0,:0,0.0,0.0.0,:0.9.9.0.0.9.09,0,0.9.0,09,0,.09,0,0.9.0,.9.0,:0,0.0,0.0,.0,:0.0.0,:0,0.0,0,0¢

20

Motorola Sensor Device Data

AN1315

0B00 : XXXXXXXXXXXXXXXX XXXXXXKXXKXXXXXK XXXXXXXXXXXXXXXXK XXXKXXKXXKXXXXXX
0B40 1 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXK XXXXXXXXXXXXXXKK XXXKXXXXXKXXXXXX
0B80 : XXXXXXXXXXXXXXXX XXXXXXHXXXXHXXXXXK XHXXXXHXXXXXXXXXKXXK XXXXXXXXXXXXXKXXX
OBCO : XXXXXXXXXXXXXXXX XXXXXKXXXXXXXXXX XXXXXXXXXXXXKXXXK XXXXXKXXXXXXXXXX

0C00 : XXXXXXXXXXXXXXXX XXXXXHXXXXXXXXXXXK XXXXXXXX:
0C40:
0C80:
0CCO:

1E00 :
1E40:
1E80:
1ECO: X—

1FO00 :
1F40:
1F80:
1FCO: —XXXXXXXXXXXXXX

All other memory blocks unused.

Errors 0
Warnings 0

Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and « M. are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa—ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

o
@_*'__,-] LA ¢ AN1315/D

