
MOTOROLA
SEMICONDUCTOR APPLICATION NOTE

Order this document
by AN1262/D

© Motorola, Inc., 1995 AN1262/D

AN1262

Simple Real-Time Kernels
for M68HC05 Microcontrollers

By Joanne Field
CSIC Applications
Motorola Ltd.
East Kilbride, Scotland

INTRODUCTION

This application note demonstrates the operation of two different types of simple real-time kernels for the
M68HC05 MCUs, namely, a priority-based kernel and a time-based kernel. Assembly source code is
provided for each.

WHY USE A REAL-TIME KERNEL?

A kernel is similar to a simple operating system in that it offers very fast software development and gives
flexibility that allows new modules to be added without interfering with those already in place. A real-time
kernel is easy to debug and encourages the user to develop software in an organized fashion. Two simple
real-time kernels are presented in this application note: a priority-based kernel and a time-based kernel.

The priority-based kernel provides a means of executing a number of user-defined tasks, where the order
of execution of each task is determined by the priority level assigned by the user. This kernel is used for
tasks that vary in their execution times or where interrupts may be common or lengthy.

The time-based kernel executes user-defined tasks at specific, regular time intervals. These tasks are
written so that they run immediately and do not require code to determine the timing of their execution.
Rather, the user determines the rate of execution. This kernel is ideal for many predicted duration routines
with few or short duration interrupts.

Both these examples aim to demonstrate the ease with which software modules can be integrated into a
kernel and executed to support different applications.

MOTOROLA AN1262/D
2

PRIORITY-BASED KERNEL

Specific features of the priority-based kernel are:

1. This implementation supports three priority levels, although more levels are possible. These will
be referred to as Priority 1, 2, and 3, with Priority 1 having the highest ranking.

2. Each priority level is capable of controlling the execution of eight tasks via a task request register.

3. Task addresses are stored, by the user, in a task table located at the end of the program.

4. One bit in each of the priorities' task request registers corresponds to one task in the task table.

5. Within each of the priority levels, bit 0 of the task request register is assigned the highest priority
and bit 7 is assigned the lowest priority.

6. A task can change priorities by being entered into more than one position in the task table, which
means setting a different bit in one of the request registers.

7. When work is to “start” on a priority level, a copy of the task request register is made. The copy is
referred to as the “shadow register.” The kernel operates on this copy. The original is then cleared,
thus enabling it to be updated with new tasks that require execution.

8. Note that "start" means that the previous operation, carried out by the kernel, will have caused the
shadow register to be declared empty, so that all the tasks in that priority at that time will have
been completed and their corresponding bits cleared.

9. The Priority 1 shadow register is always updated/checked first.

10. The Priority 2 shadow register is updated/checked only after all the Priority 1 tasks set to execute
at that time have been completed, so that the Priority 1 shadow register is empty. Only one
Priority 2 task is executed at a time, before starting again on the Priority 1 task request register.

11. The Priority 3 shadow register is updated/checked only after all the Priority 1 tasks and Priority 2
tasks set to execute at that time have been completed, so that the Priority 1 and 2 shadow
registers are empty. Only one Priority 3 task is executed at a time, before starting again on the
Priority 1 task request register followed by Priority 2.

12. A task that is running can order another task to run by setting the appropriate bit in one of the task
request registers.

13. The kernel is capable of supporting interrupts, such as EXT, SCI, TIMER, etc.

14. The kernel supports local and global variables, but the user must manage these carefully,
especially when information is being passed between procedures.

NOTE

A task that is running can stop another task which is scheduled to run by clearing the
appropriate bit in the correct task request register. However, this may not be advisable and
is not supported in this implementation.

AN1262/D MOTOROLA
3

SOFTWARE OPERATION

For a task to run, it must be assigned a position in the task table. Each position in the table corresponds to
a bit in one of the task request registers. The user's program sets the bit. Execution time has no constraints
and any number of tasks may be scheduled to run at any one time.

Here is a basic description of how the software operates. Refer to the flowchart shown in Figure 3.

1. When a priority level is to be operated on, a copy is made of the corresponding task request
register. This copy is called the shadow register. The original is then cleared so that it can be
updated when new tasks require execution.

2. The kernel checks for bits set in the shadow registers. Any set bits which require execution
correspond to particular tasks in the task table.

3. Priority 1 is checked first, starting from bit 0.

4. After all these tasks have been checked and executed, one Priority 2 task is executed.

5. If there are no Priority 2 tasks at this time, a Priority 3 task is executed. If there are no Priority 3
tasks at this time, the kernel updates and then checks the Priority 1 shadow register.

6. Every time a task has been executed, the bit in the shadow register, which corresponds to the
task, is cleared.

7. When any one of the shadow registers is declared totally empty, it is updated again by copying the
corresponding original task request register. In this way, any new tasks that require execution will
be scheduled for execution.

8. After either a Priority 2 task or a Priority 3 task has been executed, the kernel checks the updated
Priority 1 shadow register. If there are any Priority 1 tasks to be executed, all of them will be
executed before any further Priority 2 or Priority 3 tasks are executed.

9. The whole process is then repeated.

MOTOROLA AN1262/D
4

An example of the software operation and steps carried out are shown in Figure 1.

1. Copy the Priority 1 task request register to a shadow register and clear the original. Inspect the
Priority 1 shadow register, starting from bit 0 — execute task A, then task C, then task G.

2. Copy the Priority 2 task request register to a shadow register and clear the original.

3. Inspect the Priority 2 shadow register — execute task L.

4. Inspect the updated Priority 1 shadow register — no tasks to execute. Inspect the Priority 2
shadow register — no tasks to execute.

5. Copy the Priority 3 task request register to a shadow register and clear the original. Inspect the
Priority 3 shadow register — execute task U.

6. Inspect the updated Priority 1 shadow register — no tasks to execute.

7. Inspect the updated Priority 2 shadow register — no tasks to execute.

8. Inspect the Priority 3 shadow register — execute task X.

9. Inspect the updated Priority 1 task request register.

Figure 1. Software Operation Example

Figure 2 shows a change of selected tasks in Priority 1. This involves updating the corresponding bits in
the task request register each time a task requires execution.

TASK A
TASK B
TASK C
TASK D
TASK E
TASK F
TASK G
TASK H

TASK I
TASK J
TASK K
TASK L
TASK M
TASK N
TASK O
TASK P

TASK Q
TASK R
TASK S
TASK T
TASK U
TASK V
TASK W
TASK X

TASK TABLE

TASK REQUEST REGISTER 1

TASK REQUEST REGISTER 2

TASK REQUEST REGISTER 3

PRIORITY 1

PRIORITY 2

PRIORITY 3

INCREASING PRIORITY

0 1 0 0 0 1 0 1

0 0 0 0 0 0 01

1 0 0 1 0 0 0 0

INCREASING
PRIORITY
LEVEL

AN1262/D MOTOROLA
5

Figure 2. Updating Task Request Registers Example

The priority-based kernel performs these operations:

1. Copy the Priority 1 task request register to a shadow register and clear the original. Inspect the
Priority 1 shadow register, starting from bit 0 — execute task A, then task C, then task G.

2. Copy the Priority 2 task request register to a shadow register and clear the original. Inspect the
Priority 2 shadow register — execute task L.

3. Inspect the updated Priority 1 task request register (updated 1st time). For example, copy the
Priority 1 task request register to a shadow register and clear the original. Inspect the Priority 1
shadow register — execute task E, then task F.

4. Inspect the Priority 2 shadow register again — execute task N.

5. Inspect the updated Priority 1 task request register (updated 2nd time). For example, copy the
Priority 1 task request register to a shadow register and clear the original. Inspect the Priority 1
shadow register — execute task H.

6. Inspect the updated Priority 2 task request register (Priority 2 updated). For example, copy the
Priority 2 task request register to a shadow register and clear the original. Inspect the Priority 2
shadow register — no tasks to execute.

7. Copy the Priority 3 task request register to a shadow register. Inspect the Priority 3 shadow
register — execute task U.

8. Inspect the updated Priority 1 task request register (updated 3rd time). For example, copy the
Priority 1 task request register to a shadow register and clear the original. Inspect the Priority 1
shadow register — no tasks left to execute.

9. Inspect the updated Priority 2 task request register — no tasks left to execute.

10. Inspect the Priority 3 shadow register again — execute task X.

11. Inspect the updated Priority 1 task request register.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

TASK A
TASK B
TASK C
TASK D
TASK E
TASK F
TASK G
TASK H

TASK I
TASK J
TASK K
TASK L
TASK M
TASK N
TASK O
TASK P

TASK Q
TASK R
TASK S
TASK T
TASK U
TASK V
TASK W
TASK X

TASK TABLE

TASK REQUEST REGISTER 1

TASK REQUEST REGISTER 2

TASK REQUEST REGISTER 3

PRIORITY 1

PRIORITY 2

PRIORITY 3

INCREASING PRIORITY

0 1 0 0 0 1 0 1

0 0 1 0 0 0 01

1 0 0 1 0 0 0 0

INCREASING
PRIORITY
LEVEL

PRIORITY 1
UPDATED
1ST TIME

PRIORITY 1
UPDATED
2ND TIME

PRIORITY 1
UPDATED
3RD TIME

0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

PRIORITY 2
UPDATED

0 0 0 0 0 0 0 0

MOTOROLA AN1262/D
6

IMPLEMENTATION

Flowchart 1(Figure 3) explains how the software is designed to operate.

Listing 1 shows how the assembler code is used to implement the priority-based kernel. In this case, the
MC68HC05C9 has been chosen as an example. However, the software is designed to support any
M68HC(7)05 device with minimal changes to memory organization.

To integrate code into the kernel, the user must enter the address of the routine into the task table. Each
16-bit entry in the table points to a task. This implementation has 26 entries, but there can be as many as
the user requires. When a task is to be executed, a corresponding entry in the task table is used as the
destination address of a subroutine call. This means that each task must finish with an RTS command.

Unused entries in the task table must point to an RTS command for safety reasons.

The procedure WRITERAM, in Listing 1, controls which task is executed. The task table starts at an
arbitrary value of $400 in the MC68HC05C9 user ROM.

The user controls the program flow using flags. These flags, internal to the task, control which subtask is
carried out each time the task is executed.

Task D of Listing 1 shows an example of how code is integrated into the kernel.

The listing also includes an SCI interrupt service routine to demonstrate how the scheduler handles
interrupts. This routine is an example of communication between the MCU’s SCI and a dumb terminal. The
MCU receives an ASCII character, which is sent by the dumb terminal through an RS232 cable. The MCU
then translates the 8-bit binary character, representing the ASCII character, into two ASCII characters.
These characters, which represent the original hexadecimal equivalent of the received character, then are
transmitted back to the terminal.

The routine also shows how other tasks are scheduled to execute.

AN1262/D MOTOROLA
7

IS
 B

IT
 0

 S
ET

?

EX
EC

U
TE

TH
E

TA
SK

IN
C

R
EM

EN
T

AD
D

R
ES

S
C

O
U

N
TE

R

SH
IF

T
SH

AD
O

W
R

EG
IS

TE
R

 O
N

E
PL

AC
E

TO
 T

H
E

R
IG

H
T

IS
 S

H
AD

O
W

EM
PT

Y
N

O
W

?

IN
C

R
EM

EN
T

SH
IF

T
C

O
U

N
TE

R
 1

IS
 T

H
IS

LE
SS

 T
H

AN
 7

?

C
LE

AR
 S

H
IF

T
C

O
U

N
TE

R

C
AL

C
U

LA
TE

 N
EX

T
AD

D
R

ES
S

IN
TA

SK
 T

AB
LE

N
O

N
O

YE
S

YE
S

N
O

N
O

YE
S

R
EA

D
 S

H
IF

T
C

O
U

N
TE

R
 2

IS
 IT

 =
 0

?
N

O
YE

S

C
O

PY
 T

H
E

PR
IO

R
IT

Y
2

TA
SK

 R
EQ

U
ES

T
R

EG
IS

TE
R

 T
O

 A
SH

AD
O

W
 R

EG
IS

TE
R

U
PD

AT
E

AD
D

R
ES

S

R
EA

D
 T

H
E

SH
AD

O
W

IS
TH

E
SH

AD
O

W
R

EG
IS

TE
R

EM
PT

Y?
B

C

C
O

PY
 T

H
E

PR
IO

R
IT

Y
1

TA
SK

 R
EQ

U
ES

T
R

EG
IS

TE
R

 T
O

 A
 S

H
AD

O
W

R
EG

IS
TE

R

A

R
EA

D
 T

H
E

SH
AD

O
W

 R
EG

IS
TE

R

IS
TH

E
SH

AD
O

W
R

EG
IS

TE
R

 E
M

PT
Y?

YE
S

TH
E

AD
D

R
ES

S
C

O
U

N
TE

R
TE

LL
S

TH
E

SC
H

ED
U

LE
R

W
H

ER
E

TO
 F

IN
D

 T
H

E
TA

SK
AD

D
R

ES
S

IN
 T

H
E

TA
SK

H
AV

E
AL

L
TH

E
TA

SK
S

BE
EN

 D
O

N
E?

TH
E

SH
IF

T
C

O
U

N
TE

R
 T

EL
LS

TH
E

SC
H

ED
U

LE
R

 H
O

W
 M

AN
Y

BI
TS

 IN
 T

H
E

R
EG

IS
TE

R
 H

AV
E

BE
EN

 C
H

EC
KE

D

7
IS

 T
H

E
M

AX
IM

U
M

N
U

M
BE

R
 O

F
SH

IF
TS

 F
O

R
 A

N
8-

BI
T

R
EG

IS
TE

R
EX

EC
U

TE
 O

N
E

PR
IO

R
IT

Y
2

TA
SK

EX
AM

IN
E

PR
IO

R
IT

Y
3

TA
SK

R
EQ

U
ES

T
R

EG
IS

TE
R

PU
T

AD
D

R
ES

S
PO

IN
TE

R
AT

 P
R

IO
R

IT
Y

2
SE

C
TI

O
N

IN
 T

AS
K

TA
BL

E

F
ig

ur
e

3.
F

lo
w

ch
ar

t 1
 (

S
he

et
 1

 o
f 2

)

TA
BL

E

C
O

U
N

TE
R

R
EG

IS
TE

R

MOTOROLA AN1262/D
8

IS
 B

IT
 0

 S
ET

?

G
O

 E
XE

C
U

TE
TH

E
TA

SK

IN
C

R
EM

EN
T

AD
D

R
ES

S

SH
IF

T
SH

AD
O

W
R

EG
IS

TE
R

 O
N

E
PL

AC
E

TO
 T

H
E

IS
 S

H
AD

O
W

EM
PT

Y
N

O
W

?

IN
C

R
EM

EN
T

SH
IF

T
C

O
U

N
TE

R
 1

IS
 T

H
IS

LE
SS

 T
H

AN
 7

?
C

LE
AR

 S
H

IF
T

C
O

U
N

TE
R

N
O

YE
S

YE
S

N
O

N
O

YE
S

R
EA

D
 S

H
IF

T
C

O
U

N
TE

R
 3

IS
 IT

 =
 0

?
N

O
YE

S

C
O

PY
 T

H
E

PR
IO

R
IT

Y
3

TA
SK

 R
EQ

U
ES

T
R

EG
IS

TE
R

 T
O

 A
SH

AD
O

W
 R

EG
IS

TE
R

U
PD

AT
E

AD
D

R
ES

S
C

O
U

N
TE

R

R
EA

D
 T

H
E

SH
AD

O
W

IS
TH

E
SH

AD
O

W
R

EG
IS

TE
R

EM
PT

Y?

TH
E

AD
D

R
ES

S
C

O
U

N
TE

R
TE

LL
S

TH
E

SC
H

ED
U

LE
R

 W
H

ER
E

IN
 T

H
E

TA
SK

 T
AB

LE
 T

O
 F

IN
D

TH
E

AD
D

R
ES

S
O

F
TH

E
TA

SK
.

H
AV

E
AL

L
TH

E
TA

SK
S

BE
EN

 D
O

N
E?

TH
E

SH
IF

T
C

O
U

N
TE

R
 T

EL
LS

 T
H

E
SC

H
ED

U
LE

R
 H

O
W

 M
AN

Y
BI

TS
IN

 T
H

E
R

EG
IS

TE
R

 H
AV

E
BE

EN
C

H
EC

KE
D

7
IS

 T
H

E
M

AX
IM

U
M

N
U

M
BE

R
 O

F
SH

IF
TS

 F
O

R
 A

N
8-

BI
T

R
EG

IS
TE

R

PU
T

AD
D

R
ES

S
PO

IN
TE

R
AT

 P
R

IO
R

IT
Y

3
SE

C
TI

O
N

IN
 T

AS
K

TA
BL

E

SH
IF

T
SH

AD
O

W
R

EG
IS

TE
R

 O
N

E
PL

AC
E

TO
 T

H
E

IN
C

R
EM

EN
T

SH
IF

T
C

O
U

N
TE

R
 1

U
PD

AT
E

AD
D

R
ES

S
C

O
U

N
TE

R
 T

O
 T

H
E

AD
D

R
ES

S
O

F
TH

E
N

EX
T

TA
SK

SE
T

TH
E

AD
D

R
ES

S
C

O
U

N
TE

R
 B

AC
K

TO
FI

R
ST

 A
D

D
R

ES
S

IN
PR

IO
R

IT
Y

1

A

SC
H

ED
U

LE
R

 L
O

O
KI

N
G

FO
R

 1
 IN

 T
AS

K
IN

PR
IO

R
IT

Y
2

O
R

 3
.

C
B

E
X

A
M

IN
E

 P
R

IO
R

IT
Y

 3
 T

A
S

K
 R

E
Q

U
E

S
T

 R
E

G
IS

T
E

R
E

X
E

C
U

T
E

 O
N

E
 P

R
IO

R
IT

Y
 2

 O
R

 O
N

E
 P

R
IO

R
IT

Y
 3

 T
A

S
K

R
IG

H
T

C
O

U
N

TE
R

R
IG

H
T

R
EG

IS
TE

R

F
ig

ur
e

3.
 F

lo
w

ch
ar

t 1
 (

S
he

et
 2

 o
f 2

)

AN1262/D MOTOROLA
9

TIME-BASED KERNEL

Specific features of the time-based kernel are:

1. This kernel uses the MCU system clock and different counters to allocate time slots for each task
to be executed.

2. The timing of execution of these tasks is controlled by the generation of timer interrupts inside the
MCU. These interrupts are generated in different ways, depending on the timer that is used.

3. Two kinds of timers are supported in this implementation: the programmable timer and the core
timer. The timer used depends on which MCU is being used in the application. Some HC05s have
only one of the two timers. The MC68HC05L4, used in this example, has both timers, so the timer
required to control the kernel has to be selected by the user before assembling the program.

4. Both timers have a continually incrementing counter which acts as a clock for the kernel. The
programmable timer has a free-running counter and the core timer has a timer counter register.

5. When a timer interrupt occurs, a flag is generated by the timer. The programmable timer
generates an output compare flag and the core timer generates a core timer overflow flag. A
service routine, pointed to by the interrupt vector, is then executed. The flags are tested within the
interrupt routine to verify the interrupt source, since the interrupt vector is shared.

6. User-generated interrupt service routines should be kept as short as possible to ensure that
maximum time is allowed for each task to execute. Strict testing must be made for the worst case
timing of each.

7. A time slice counter determines the minimum time between tasks by counting the timer interrupts.

8. The time slice counter is available as a timer for tasks to use, for example, for delay or debounce
routines.

9. A task counter determines exactly which task is to be executed. Each time the time slice counter
decides that a task is to be performed, the task counter increments. The kernel then tests which
bit in the task counter is clear, and, depending on which bit is clear, a corresponding task is
executed.

10. The number of tasks has no limit. The user can have the number required since this is only
dependent on the number of bits in the task counter.

11. Tasks that take longer than one time slot to execute can be split into subtasks. For example, this is
useful in an EEPROM programming routine where a time delay is required between the
procedures. This routine could be divided into:

— byte erase
— byte program
— program verify

12. Flags, internal to the task, are used to control which subtask is to be carried out each time the
task is executed.

13. The kernel supports local and global variables, but the user must manage these carefully,
especially when information is being passed between procedures.

MOTOROLA AN1262/D
10

SOFTWARE OPERATION

Timer Interrupt Generation

In the case of the programmable timer, the output compare interrupt is generated when the free-running
counter counts up to equal a pre-determined value of the output compare. This pre-determined value is
called the output compare period and is declared at the start of the program, so that the value in the output
compare can be updated easily. Setting the output compare period in this way allows for easy adaptation to
suit the timing of the application.

When using the core timer, the interrupt is generated each time the core timer counter register rolls over
from $FF to $00. Thus, the core timer overflow interrupt is generated every 512 microseconds (when using
a 4-MHz clock). Unlike the programmable timer, its value cannot be changed.

Task Execution

A time slice period is set at a pre-defined value at the start of the program, again to allow easy adaptation
of the routine. The time slice counter will increment each time an interrupt is generated until it reaches the
value of the time slice period. When this occurs, the task counter is incremented and, therefore, a task is
executed. At this point, the time slice counter is reset, ready to count the next time slice period.

Each of the tasks should take, or be split into subtasks that take, less than one time slice period to execute.
The kernel provides a task flag for different task rates, so that tasks should be running at binary power
multiples of the time slice period. The fastest task runs at a period of twice the time slice period, the next
fastest runs at a period of four times the time slice period, the next task eight times the time slice period
and so on. These tasks are referred to as tasks A, B, C, etc. Thus, task H will run at a period of 256 times
the time slice period.

Each bit of the task counter corresponds to a task. Each time the task counter is incremented, the task
counter byte is tested for the presence of a zero, starting with the least significant bit. When a zero bit is
found, the routine aborts the check and the corresponding task is executed. Note that no task is executed
when the task counter is all ones ($FF if one byte). This signifies that a background task or idle loop will be
the only activity run for this task period.

There can be as many tasks as there are number of bits in the task counter, and this counter can be as
many bytes as the application requires.

It is possible to have several small tasks, rather then one big task, executing inside one time slot. When
entering the time slot, the kernel detects which task to execute by inspecting flags controlled by the user
routines.

It is also possible to only use some of the time slots available. The unused slots could allow more time for
background tasks.

AN1262/D MOTOROLA
11

H
AS

 A

H
AS

 C
O

R
E

IN
IT

IA
LI

ZE
 T

IM
ER

R
EG

IS
TE

R
S

AN
D

 C
LE

AR
TI

M
E

SL
IC

E
C

O
U

N
TE

R

SE
T

C
O

R
E

TI
M

ER
O

VE
R

FL
O

W
 E

N
AB

LE
 A

N
D

C
LE

AR
 IN

TE
R

RU
PT

 M
AS

K

W
AI

T
FO

R
 C

O
R

E
TI

M
ER

IN
TE

R
RU

PT

TI
M

ER
 IN

TE
R

RU
PT

O
C

C
U

R
R

ED
?

C

G
O

 T
O

 C
O

R
E

TI
M

ER
IN

TE
R

RU
PT

 S
ER

VI
C

E
RO

U
TI

N
EYE

S

N
O

C
O

R
E

 T
IM

E
R

YE
S

N
O

ST
AR

T

TI
M

ER
 B

EE
N

SE
LE

C
TE

D
?

H
AS

 A

PR
O

G
R

AM
M

AB
LE

TI
M

ER
 IS

SE
LE

C
TE

D

IN
IT

IA
LI

SE
 T

IM
ER

R
EG

IS
TE

R
S

AN
D

TI
M

E
SL

IC
E

C
O

U
N

TE
R

SE
T

O
U

TP
U

T
C

O
M

PA
R

E,
IN

TE
R

RU
PT

 E
N

AB
LE

, A
N

D

TI
M

ER
 IN

TE
R

RU
PT

O
C

C
U

R
R

ED
?

D

G
O

 T
O

 P
RO

G
R

AM
M

AB
LE

IN
TE

R
RU

PT
 S

ER
VI

C
E

RO
U

TI
N

EYE
S

N
O

C
LE

AR
 IN

TE
R

RU
PT

 M
AS

K

P
R

O
G

R
A

M
M

A
B

LE
 T

IM
E

R

A
B

F
ig

ur
e

4.
F

lo
w

ch
ar

t 2
 (S

he
et

 1
 o

f 3
)

MOTOROLA AN1262/D
12

H
AS

 A

IN
IT

IA
LI

SE
 T

IM
ER

R
EG

IS
TE

R
S

AN
D

C
LE

AR
 T

IM
E

SE
T

C
O

R
E

TI
M

ER
O

VE
R

FL
O

W
 E

N
AB

LE
AN

D
 C

LE
AR

W
AI

T
FO

R
 C

O
R

E
TI

M
ER

 IN
TE

R
RU

PT

TI
M

ER
 IN

TE
R

RU
PT

O
C

C
U

R
R

ED
?

C

G
O

 T
O

 C
O

R
E

TI
M

ER
IN

TE
R

RU
PT

 S
ER

VI
C

E
RO

U
TI

N
E

YE
S

N
O

G
O

 T
O

 C
O

R
E

TI
M

ER
IN

TE
R

RU
PT

 S
ER

VI
C

E
RO

U
TI

N
E

G
O

 T
O

 C
O

R
E

TI
M

ER
IN

TE
R

RU
PT

 S
ER

VI
C

E
RO

U
TI

N
E

E

IN
C

R
EM

EN
T

TI
M

E
SL

IC
E

IS
 O

U
TP

U
T

C
O

M
PA

R
E

FL
AG

SE
T?D

C
LE

AR
 T

IM
E

SL
IC

E
C

O
U

N
TE

R

IN
C

R
EM

EN
T

PR
O

G
R

AM
M

AB
LE

SE
T

FL
AG

 T
O

IN
D

IC
AT

E
A

TA
SK

U
PD

AT
E

O
U

TP
U

T
C

O
M

PA
R

E
R

EG
IS

TE
R

C
LE

AR
 O

U
TP

U
T

C
O

M
PA

R
E

FL
AG

R
ET

U
R

N
 F

RO
M

IN
TE

R
RU

PT

F

IS
 T

IM
E

SL
IC

E
C

O
U

N
TE

R
<

TI
M

E
SL

IC
E

PE
R

IO
D

?

TA
SK

 C
O

U
N

TE
R

TO
 B

E
D

O
N

E

W
IT

H
 N

EW
 V

AL
U

E

N
O

YE
S

YE
S

N
O

P
R

O
G

R
A

M
M

A
B

LE
 T

IM
E

R
IN

T
E

R
R

U
P

T
 S

E
R

V
IC

E
 R

O
U

T
IN

E

F
ig

ur
e

4.
 F

lo
w

ch
ar

t 2
 (

S
he

et
 2

 o
f 3

)

C
O

U
N

TE
R

IN
TE

R
RU

PT
 M

AS
K

SL
IC

E
C

O
U

N
TE

R

C
O

R
E

 T
IM

E
R

 IN
T

E
R

R
U

P
T

S
E

R
V

IC
E

 R
O

U
T

IN
E

AN1262/D MOTOROLA
13

F

EX
EC

U
TE

C
O

R
R

EC
T

TA
SK

C
LE

AR
 F

LA
G

 T
O

IN
D

IC
AT

E
TA

SK

B

H
AS

 F
LA

G
BE

EN
 S

ET
 T

O
IN

D
IC

AT
E

A
TA

SK
 IS

TO
 B

E
D

O
N

E?

H
AS

 B
EE

N
 D

O
N

E

TH
E

TA
SK

 T
O

 B
E

EX
EC

U
TE

D
D

EP
EN

D
S

O
N

 T
H

E
PO

SI
TI

O
N

O
F

TH
E

ZE
RO

 IN
 T

H
E

PR
O

G
R

AM
M

AB
LE

 T
IM

ER
TA

SK
 C

O
U

N
TE

R
 B

YT
E

N
O

YE
S

E

EX
EC

U
TE

C
O

R
R

EC
T

TA
SK

C
LE

AR
 F

LA
G

 T
O

IN
D

IC
AT

E
TA

SK

A

H
AS

 F
LA

G
BE

EN
 S

ET
 T

O
IN

D
IC

AT
E

A
TA

SK
 IS

TO
 B

E
D

O
N

E?

H
AS

 B
EE

N
 D

O
N

E

TH
E

TA
SK

 T
O

 B
E

EX
EC

U
TE

D
D

EP
EN

D
S

O
N

 T
H

E
PO

SI
TI

O
N

O
F

TH
E

ZE
RO

 IN
 T

H
E

C
O

R
E

TI
M

ER
 T

AS
K

C
O

U
N

TE
R

 B
YT

E

N
O

YE
S

C
O

R
E

 T
IM

E
R

P
R

O
G

R
A

M
M

A
B

LE
 T

IM
E

R

F
ig

ur
e

4.
 F

lo
w

ch
ar

t 2
 (

S
he

et
 3

 o
f 3

)

MOTOROLA AN1262/D
14

Example 1 assumes the programmable timer is being used and a 5 ms time slice period is required, the
most frequent task executing every 10 ms. The 5 ms time slice period is obtained by multiplying the
internal system clock (2 µs) by an output compare period set at 250, multiplied by a time slice period set at
10. This gives an interrupt every 500 µs and a task executed every 5 ms (500 µs x 10).

The sequence of the task execution using the programmable timer in this way is shown in Figure 5.

The execution repetition period of each task = 5 x 2n, where n = position number of the letter in the
alphabet, for example, task B's execution repetition period = 5 x 2(2) = 20 ms.

Figure 5. Example 1 — Sequence of Task Execution for Programmable Timer

TASK F

TASK E

TASK D

TASK C

TASK B

TASK A 10 ms

20 ms

40 ms

80 ms

160 ms

320 ms

EXECUTION
REPETITION

PERIOD

01011111

01001111

00010111

01001011

00001101

00000010

TASK COUNTER
REGISTER CONTENTS

The task to be executed is
dependent on the bit position of
the 0, starting inspection from the
LSB of the task counter byte.

BIT POSITION

OF ZERO

5

4

3

2

1

0

0 ms 100 ms 150 ms 200 ms 250 ms 300 ms

0 ms 5 ms 10 ms

500 µs PER TIMER INTERRUPT

EXAMPLE SEQUENCE:

ABACABADABACABAE

50 ms

AN1262/D MOTOROLA
15

Example 2 assumes the core timer is being used and that a 5.1 ms time slice period is required, the most
frequent task executing every 10.2 ms. The 5.1 ms time slice period is obtained by multiplying the internal
system clock (2 µs), multiplied by 255, which is the number the core timer counter register counts up to
before rolling over to $00, multiplied by a time slice period of 10. This gives an interrupt every 510 µs and a
task executed every 5.1 ms (510 µs x 10).

The sequence of task execution using the core timer in this way is shown in Figure 6.

The execution repetition period of each task = 5.1 x 2n, where n = position number of the letter in the
alphabet, for example, task B's execution repetition period = 5.1 x 2(2) = 20.4 ms.

Figure 6. Example 2 — Sequence of Task Execution for Core Timer

TASK F

TASK E

TASK D

TASK C

TASK B

TASK A 10.2 ms

20.4 ms

40.8 ms

81.6 ms

163.2 ms

326.4 ms

EXECUTION
REPETITION

PERIOD

01011111

01001111

00010111

01001011

00001101

00000010

TASK COUNTER
REGISTER CONTENTS

The task to be executed is
dependent on the bit position of
the 0, starting inspection from the
LSB of the task counter byte.

BIT POSITION

OF ZERO

5

4

3

2

1

0

0 ms 51 ms 102 ms 153 ms 204 ms 255 ms 306 ms

0 ms 5.1 ms 10.2 ms

510 µs PER TIMER INTERRUPT

EXAMPLE SEQUENCE:

ABACABADABACABAE

MOTOROLA AN1262/D
16

IMPLEMENTATION

Flowchart 2 (Figure 4) explains how the software is designed to operate.

Listing 2 shows the assembly code used to implement the time-based kernel. The 68HC05L4 was chosen
to demonstrate the use of both timers in the software.

Code is integrated into this kernel in modules. Each of these modules is entered like a subroutine and so
must finish with the RTS command.

Note that the slots not filled with user tasks also must have an RTS.

This implementation has only eight time slots; however, this can be extended by making the task counter
larger.

Listing 2 shows simple tasks in order to demonstrate where the user's tasks are placed. Each task toggles
a different port pin on port B of the device.

A good example of the time-based kernel in operation is in the application note titled Telephone Handset
with DTMF using the MC68HC05F4, Motorola document number AN488/D. In this example, the kernel has
been used, along with flags on entry to each routine, to control the program flow.

Also note that, when developing software to integrate into the kernel, worst case timing analysis is required
to ensure correct operation.

SUMMARY

In summary, the priority-based kernel offers a very simple way to execute software modules in an
application, where the number of tasks may vary depending on the conditions resulting from a particular
operation. Tasks are selected to execute merely by setting a bit in one of the task request registers,
provided the user's software modules are positioned correctly in the task table.

The time-based kernel provides a means of executing a number of tasks at specific, regular time intervals.
The execution of the task, once the kernel has entered the time slot automatically, is dependent on flags
being set to control the software. This could be useful in an application where time of day events require
recording.

Both kernels encourage group development and module reuse, which together have proven to offer a
much more efficient way of developing software.

AN1262/D MOTOROLA
17

* COPYRIGHT (c) MOTOROLA 1994 *
* LISTING 1 *
* ********* *
* FILE NAME: PRIORITY.ASM *
* *
* PURPOSE: The purpose of this software is to provide a means of executing *
* a number of user defined tasks, where the order of execution of *
* each task is determind by the level of priority that the task is *
* assigned by the user. *
* *
* TARGET DEVICE: 68HC(7)05 *
* *
* MEMORY USAGE(bytes) RAM: 22 BYTES ROM: 640 BYTES *
* *
* ASSEMBLER: IASM05 VERSION: 3.02 *
* *
* DESCRIPTION: This Priority Scheduler uses 3 task request register *
* (for 3 different priority levels) to organise the user *
* defined tasks into different priorities. Each bit *
* in each of the 3 task request registers corresponds *
* to one task in a Task Table, located at the end of the *
* program. The user is simply required to enter a task into *
* the appropriate position in the task table and set the *
* corresponding bit in the correct task request register. *
* The prefix PS refers to PRIORITY SCHEDULER. *
* *
* AUTHOR: Joanne Santangeli LOCATION: EKB LAST EDIT DATE: 9/DEC/94 *
* *
* UPDATE HISTORY *
* REV AUTHOR DATE DESCRIPTION OF CHANGE *
* --- ------ --------- --------------------- *
* 1.O JS 9/12/94 INITIAL RELEASE *
* *
===
* Motorola reserves the right to make changes without further notice to any *
* product herein to improve reliability, function, or design. Motorola does *
* not assume any liability arising out of the application or use of any *
* product, circuit, or software described herein; neither does it convey *
* any license under its patent rights nor the rights of others. Motorola *
* products are not designed, intended, or authorized for use as components *
* in systems intended for surgical implant into the body, or other *
* applications intended to support life, or for any other application in *
* which the failure of the Motorola product could create a situation where *
* personal injury or death may occur. Should Buyer purchase or use Motorola *
* products for any such intended or unauthorized application, Buyer shall *
* indemnify and hold Motorola and its officers, employees, subsidiaries, *
* affiliates, and distributors harmless against all claims costs, damages, *
* and expenses, and reasonable attorney fees arising out of, directly or *
* indirectly, any claim of personal injury or death associated with such *
* unintended or unauthorized use, even if such claim alleges that Motorola *
* was negligent regarding the design or manufacture of the part. Motorola *
* and the Motorola logo* are registered trademarks of Motorola Ltd. *

MOTOROLA AN1262/D
18

* MEMORY AND PORT DECLARATIONS *

ROM EQU $180 ;User ROM are for the 705C9
RAM EQU $50 ;RAM are for 705C9
VECTOR EQU $3FF4 ;Start of vector addresses
TABLE EQU $400 ;Start address of task table

PORTA EQU $00 ;Port A declaration
DDRA EQU $04 ;Port A Data Direction declaration
PORTB EQU $01 ;Port B declaration
DDRB EQU $05 ;Port B Data Direction Register

BRATE EQU $0D ;Baud rate register
SCCR1 EQU $0E ;SCI control register 1
SCCR2 EQU $0F ;SCI control register 2
SCDAT EQU $11 ;SCI data register
SCSR EQU $10 ;SCI status register

* PRIORITY SCHEDULER CONSTANTS *

LSB EQU 0 ;Bit 0 of task request registers
DO_TASK EQU 1 ;Flag to say do Priority 1 task
TRY_PR3 EQU 2 ;Flag to say check Priority 3
GO_PR1 EQU 3 ;Flag to say go back to Priority 1

* EXAMPLE TASK CONSTANT *

FINAL EQU 4 ;To indicate last time round Task D

 ORG RAM

* PRIORITY SCHEDULER VARIABLES *

JUMPLONG RMB 8 ;Space to write a procedure in RAM
PR_LEVEL RMB 1 ;Holds the priority level number
TASKREQ RMB 3 ;Task request register
SHADOWTASK RMB 3 ;Copy of the task request register
ADD_POINTER RMB 1 ;Points to address in task table
SHIFTCNT RMB 3 ;Number of shifts done on
TASKTEMP RMB 1 ;Copy of SHADOWTASK for BRSET comm
SYSFLAG RMB 1 ;Location for system holding flags
SETTASKS RMB 1 ;In SCI routine to set tasks to run

AN1262/D MOTOROLA
19

* EXAMPLE TASK VARIABLES *

DELAY_VAR RMB 1 ;Variable used in example routine
TIME_ON RMB 1 ;Variable used in example routine
NUM_ON_LEDS RMB 1 ;Controls seq of LEDS in example
APP_FLAG_REG RMB 1 ;Varaible used in example routine
TEMP RMB 1 ;Used in SCI interrupt service routine
TEMPLO RMB 1 ;Used in SCI interrupt service routine
TEMPHI RMB 1 ;Used in SCI interrupt service routine

 ORG ROM

* MAIN PROGRAM *

SCHED05 JSR INITIAL ;Initialise Port A & RAM
 CLI ;Clear Interrupt Mask
SCHED99 JMP PSCHED ;Priority scheduler

* PROCEDURES *

* *

* NAME: INITIAL *
* *
* PURPOSE: To initialise ports and clear all RAM locations used in the *
* program. *
* *
* SUBROUTINES USED: CLEAR *
* *
* DESCRIPTION: Procedure sets all Port A pins as outputs *
* *

INITIAL CLR PORTA ;Clear Port A
 LDA #$FF ;Set all pins as outputs
 STA DDRA ;
 JSR CLEAR ;Go to clear RAM locations
 RTS

CLEAR CLRX ;
CLEAR05 CLR RAM,X ;Clear RAM location
 INCX ;Go to next location
 CPX #$20 ;Cleared all the locations ?
 BLO CLEAR05 ;If not go clear next location
 RTS ;Otherwise, exit

MOTOROLA AN1262/D
20

* NAME: PSCHED *
* *
* PURPOSE: This procedure is the control routine for the priority *
* scheduler. It controls which priority level task request *
* register is inspected at what time. *
* *
* ENTRY CONDITIONS: The prioritys' task request registers will have *
* been filled with flags corresponding to tasks in *
* the task table that the user wishes to execute, or *
* indeed if a task has set another task to execute, a *
* flag will be set in the task request register. *
* All the RAM locations and port A will have been *
* initialised. *
* *
* EXIT CONDITIONS: This procedure is never exited. *
* *
* SUBROUTINES USED: PRIOR_1, PRIOR_2, PRIOR_3OR3, PRIOR_3, WRITERAM, *
* COPY, CHECKBIT0, SHIFTREG, INCSHIFT, CLRSHIFT, *
* INC_LEVEL, UPDATE. *
* *
* EXTERNAL VARIABLES USED: JUMPLONG, PR_LEVEL, TASKREQ, SHADOWTASK, *
* ADD_POINTER, SHIFTCNT, TASKTEMP, SYSFLAG, *
* NUM_ON_LEDS, TIME_ON, NUM_FLASH, DELAY_VAR. *
* *
* DESCRIPTION: 1. When a priority level is to be operated on, a copy will *
* be made of the corresponding task request register. The *
* original will then be cleared so that it can be updated *
* when new tasks require execution. *

* 2. Priority 1 will be checked first, starting form bit 0 *

* 3. After all these tasks have been checked and executed, *
* one Priority 2 task will be executed. *

* 4. If there are no Priority2 tasks at this time, a Priority *
* 3 task will be executed. *

* 5. Every time a task has been executed, the bit in the *
* copied task request register, which corresponds to the *
* task, shall be cleared. *

* 6. When any one of the copied task request registers is *
* declared totally empty, it shall be updated again by *
* copying the original corresponding task request register *
* In this way, any new tasks that require execution may be *
* given a time slot in which to execute. *

* 7. After either a Priority 2 task or Priority 3 task has *
* been executed, the scheduler will then go back and check *
* the updated Priority 1 task request register. If there *
* are any Priority 1 tasks to be executed, they will all *
* be executed before any further Priority 2 or Priority 3 *
* tasks. *

* 8. The whole process will then be repeated. *

AN1262/D MOTOROLA
21

PSCHED JSR PRIOR_1 ;Examine & Execute Priority 1 tasks
PSCHED05 JSR PRIOR_2 ;Examine Priority 2 task reqest reg
PSCHED10 JSR PRIOR_2OR3 ;Executes one Priority 2 or 3 task
 BRSET TRY_PR3,SYSFLAG,PSCHED15 ;Go to examine Priority 3
 BRA PSCHED ;Go back to Priority 1
PSCHED15 JSR PRIOR_3 ;Examine Priority 3
PSCHED99 BRA PSCHED10 ;Go & execute a Priority 2 or 3 task

* *
* NAME: PRIOR_1 *
* *
* PURPOSE: To examine the Priority 1 task request register and execute *
* all the Priority 1 tasks set to execute at that time. *
* *
* EXIT CONDITIONS: All Priority 1 task set to execute at that time *
* have been completed. *
* *

PRIOR_1 CLRX ;
 STX PR_LEVEL ;Set priority level to 1
 JSR COPY ;Copy task req reg to a temp loc
 LDA SHADOWTASK,X ;Read this temporary location
 BEQ PRIOR1_99 ;If its empty, go try Priority 2
PRIOR1_05 JSR CHECKBIT0 ;Otherwise,go check bit 0
 BRSET DO_TASK,SYSFLAG,PRIOR1_10;If bit 0 set,go do a task
 BRA PRIOR1_15 ;Otherwise shift right
PRIOR1_10 JSR WRITERAM ;Go write subroutine in RAM
 JSR JUMPLONG ;Go execute the correct task
 INC ADD_POINTER ;Update address pointer
 BCLR DO_TASK,SYSFLAG ;Clear flag to say done the task
PRIOR1_15 JSR SHIFTREG ;Shift tempoary register to right
 LDA SHADOWTASK,X ;Read the temporary register
 BEQ PRIOR1_99 ;If reg now empty,go to Priority 2
 JSR INCSHIFT ;Otherwise, increment shift counter
 LDA SHIFTCNT,X ;Read value in shift counter
 CMP #$07 ;Completed max number of shifts ?
 BHI PRIOR1_99 ;If so, go try Priority 2
 BRA PRIOR1_05 ;If not, try next bit in Priority 1
PRIOR1_99 RTS

MOTOROLA AN1262/D
22

* *
* NAME: PRIOR_2 *
* *
* PURPOSE: To examine the Priority 2 task request register *
* *
* ENTRY CONDITIONS: All priority 1 tasks have been executed. *
* *
* EXIT CONDITIONS: A flag is set to say either, go execute one Priority *
* task, or go examine the Priority 3 task request *
* register. *
* *

PRIOR_2 JSR CLRSHIFT ;Clear previous shift counter
 JSR INC_LEVEL ;Increment priority level
 LDA SHIFTCNT,X ;Read present shift counter
 BNE PRIOR2_05 ;If it <> 0,update address pointer
 JSR COPY ;Copy task req reg to a temp loc
PRIOR2_05 JSR UPDATE ;Update address pointer
 ADD #$10 ;Set address pointer to start of
 STA ADD_POINTER ;correct section in the task table
 LDX PR_LEVEL ;
 LDA SHADOWTASK,X ;Read the temporary location
 BEQ PRIOR2_10 ;If its empty, set flag TRY_PR3
 BRA PRIOR2_99 ;Otherwise, exit
PRIOR2_10 BSET TRY_PR3,SYSFLAG ;Set flag to say try Priority 3
PRIOR2_99 RTS

AN1262/D MOTOROLA
23

* *
* NAME: PRIOR_2OR3 *
* *
* PURPOSE: To execute either one Priority 2 or Priority 3 task. *
* *
* ENTRY CONDITIONS: Flag set to say execute either a Priority 2 or *
* Priority 3 task. *
* *
* EXIT CONDITIONS: Either a Priority 2 task or a Priority 3 task has *
* been executed. *
* *

PRIOR_2OR3 BRSET TRY_PR3,SYSFLAG,PRIOR23_99;If TRY_PR3 set, exit
 BRSET GO_PR1,SYSFLAG,PRIOR23_20;If GO_PR1 set go PRIOR23
PRIOR23_05 JSR CHECKBIT0 ;Otherwise try bit 0 in reg
 BRSET DO_TASK,SYSFLAG,PRIOR23_10;If bit 0 set, go do task
 JSR SHIFTREG ;Otherwise, shift reg to the right
 JSR INCSHIFT ;Increment shift counter
 BRA PRIOR23_05 ;Go check next bit
PRIOR23_10 JSR WRITERAM ;Go to write procedure in RAM
 JSR JUMPLONG ;Go to execute the task
 BCLR DO_TASK,SYSFLAG ;Clear flag to say done task
 JSR SHIFTREG ;Shift reg to the right
 LDA SHADOWTASK,X ;Read the temporary location
 BEQ PRIOR23_15 ;If now empty, go to PRIOR23_10
 JSR INCSHIFT ;Otherwise,increment shift counter
 LDA SHIFTCNT,X ;Read value of shift counter
 CMP #$07 ;Done max number of shifts ?
 BLS PRIOR23_20 ;If not, go to PRIOR23_15
PRIOR23_15 JSR CLRSHIFT ;Go clear shift counter
PRIOR23_20 CLRA ;Set address pointer back to
 STA ADD_POINTER ;start of Priority 1 addresses
 BCLR GO_PR1,SYSFLAG ;Clear flag, go back to Priority 1
PRIOR23_99 RTS

MOTOROLA AN1262/D
24

* *
* NAME: PRIOR_3 *
* *
* PURPOSE: To examine the Priority 3 task request register *
* *
* *
* ENTRY CONDITIONS: All the Priority 1 and Priority 2 tasks set to *
* execute at that time have been completed. *
* *
* EXIT CONDITIONS: A flag is set to say either go execute a Priority 3 *
* or go back to check Priority 1 task request register *
* *

PRIOR_3 JSR INC_LEVEL ;Increment priority level
 LDA SHIFTCNT,X ;Read shift counter
 BNE PRIOR3_05 ;If empty,go update address pointer
 JSR COPY ;Copy task req reg to a temp loc
PRIOR3_05 JSR UPDATE ;Update address pointer
 ADD #$20 ;Set pointer to correct section
 STA ADD_POINTER ;in the task table
 BCLR TRY_PR3,SYSFLAG ;Clear flag
 LDX PR_LEVEL ;Read the temporary task
 LDA SHADOWTASK,X ;request register
 BEQ PRIOR3_10 ;If empty set flag,go to Priority 1
 BRA PRIOR3_99 ;Othwise,go try bit 0
PRIOR3_10 BSET GO_PR1,SYSFLAG ;
PRIOR3_99 RTS

AN1262/D MOTOROLA
25

* *
* NAME: WRITERAM *
* *
* PURPOSE: To write a subroutine in RAM so that the scheduler can *
* access a 16-bit address, which is the address of the task in *
* the task table. *
* *
* ENTRY CONDITIONS: A flag has been set to say a task is to be executed *
* *
* EXIT CONDITIONS: The task corresponding to the bit set in the copy *
* of the task request register has been executed. *
* *
* DESCRIPTION: The opcode for "JSR" is copied to memory. Then the *
* high byte and low byte are copied to different *
* memory locations. Then the opcode for "RTS" is *
* copied to memory. We then carry out the subroutine *
* at the address in the task table. *
* *

WRITERAM LDX ADD_POINTER ;Read the address in task table
 LDA #$CD ;Read the opcode for "JSR"
 STA JUMPLONG ;Copy it to location in memory
 LDA TASKTABLE,X ;Read the high byte of address
 STA JUMPLONG+1 ;Copy this to next loc in JUMPLONG
 INCX ;Increment address
 STX ADD_POINTER ;
 LDA TASKTABLE,X ;Read the low byte of the address
 STA JUMPLONG+2 ;Copy this to next loc in JUMPLONG
 LDA #$81 ;Read in the opcode for "RTS"
 STA JUMPLONG+3 ;Copy this at next loc in JUMPLONG
WRITERAM99 RTS

* *
* NAME: COPY *
* *
* PURPOSE: Makes a copy of the original task request register. *
* *

COPY LDX PR_LEVEL ;Read the task request register
 LDA TASKREQ,X ;
 STA SHADOWTASK,X ;Copy it to a temporary location
 CLR TASKREQ,X ;Clear original
 RTS

MOTOROLA AN1262/D
26

* *
* NAME: CHECKBIT0 *
* *
* PURPOSE: Checks the first bit in the task request register to see if *
* it is set. If so, a flag is set to say a task is to be *
* executed. If not the address pointer in the task table is *
* updated to point to the next task in the task table. *
* *

CHECKBIT0 LDX PR_LEVEL ;Copy temporary location
 LDA SHADOWTASK,X ;to another temporary location so
 STA TASKTEMP ;can do a BRSET command
 BRSET LSB,TASKTEMP,CHECK05;Bit 0 set,go execute a task
 INC ADD_POINTER ;Otherwise update address pointer
 INC ADD_POINTER ;to point to next task in task table
 BRA CHECK99 ;
CHECK05 BSET DO_TASK,SYSFLAG ;Set flag to say do a task
CHECK99 RTS

* *
* NAME: SHIFTREG *
* *
* PURPOSE: This subroutine shifts the copied task request register one *
* place to the right, so that it can search for a bit set in *
* position zero. *
* *

SHIFTREG LDX PR_LEVEL ;Perform logical shift right on
 LDA SHADOWTASK,X ;temporary location
 LSRA ;
 STA SHADOWTASK,X ;
 RTS

* *
* NAME: INCSHIFT *
* *
* PURPOSE: This routine increments the shift counter of the priority *
* level being operated on. A maximum of 7 shifts is *
* allowed in an 8-bit register, so this controls how many *
* more bits in the register to check for a set bit. *
* *

INCSHIFT LDX PR_LEVEL ;
 LDA SHIFTCNT,X ;Read shift counter
 INCA ;Increment shift counter
 STA SHIFTCNT,X ;
 RTS

AN1262/D MOTOROLA
27

* *
* NAME: CLRSHIFT *
* *
* PURPOSE: To clear the present priority's shift counter before *
* starting work on another. *
* *

CLRSHIFT LDX PR_LEVEL ;Clear previous priority shift
 LDA SHIFTCNT,X ;counter
 CLRA ;
 STA SHIFTCNT,X ;
 RTS

* *
* NAME: INC_LEVEL *
* *
* PURPOSE: Increments the priority level when finished working on the *
* present one. *
* *

INC_LEVEL LDX PR_LEVEL ;Increment prority level
 INCX ;
 STX PR_LEVEL ;
 RTS

* *
* NAME: UPDATE *
* *
* PURPOSE: Sets the address pointer to the start of the section in *
* the task table which holds the addresses for the tasks *
* in that priority. *
* *

UPDATE LDX PR_LEVEL ;
 LDA SHIFTCNT,X ;Update address pointer to point
 LDX #$02 ;to start of correct section
 MUL ;in the task table
 RTS

MOTOROLA AN1262/D
28

* TASK TABLE *

 ORG TABLE

TASKTABLE FDB TASKA
 FDB DUMMY ;Unused entries point to dummy tasks
 FDB DUMMY
 FDB TASKD
 FDB DUMMY
 FDB DUMMY
 FDB TASKG
 FDB DUMMY

 FDB DUMMY
 FDB DUMMY
 FDB DUMMY
 FDB TASKL
 FDB DUMMY
 FDB DUMMY
 FDB DUMMY
 FDB DUMMY

FDB DUMMY
 FDB DUMMY
 FDB DUMMY
 FDB DUMMY
 FDB TASKU
 FDB DUMMY
 FDB DUMMY
 FDB TASKX

* * TASKS FOLLOW * *

DUMMY RTS ;Dummy task

TASKA LDA #$01 ;Example module
 STA PORTB
 RTS

TASKD LDA #$10 ;Load in decimal 16
TASKD_05 STA NUM_ON_LEDS ;Store this value in memory
TASKD_10 LDA NUM_ON_LEDS ;Read this value
 BNE TASKD_12 ;If not empty, go to decrement
 BSET FINAL,APP_FLAG_REG;Set flag to exit after o/p a zero
 BRA TASKD_15 ;Go to copy vaue back to memory
TASKD_12 DECA ;Decrement number shown on LEDs

AN1262/D MOTOROLA
29

TASKD_15 STA NUM_ON_LEDS ;Copy value back to memory
 LSLA ;Shift left
 LSLA ; "
 LSLA ; "
 LSLA ; "
 STA PORTA ;Send value to Port A
 LDA #$25 ;Load in HEX 25
 STA TIME_ON ;Store this value in memory
TASKD_20 JSR DELAY ;Go to DELAY subroutine
 DEC TIME_ON ;Decrement the value in TIME_ON
 LDA TIME_ON ;Read the value
 BNE TASKD_20 ;If <> 0, go back to delay again
 BRSET FINAL,APP_FLAG_REG,TASKD_99;If flag set, exit
 BRA TASKD_10 ;Otherwise, go to output next number
TASKD_99 BCLR FINAL,APP_FLAG_REG;Clear flag before leaving routine
 RTS ;Exit

DELAY LDA #$FF ;Simple delay routine
OUTLP DECA ;Keep looping round OUTLP until
 BNE OUTLP ;accumulator is zero
 INC DELAY_VAR ;Increment counter
 LDA DELAY_VAR ;Read counter value
 CMP #$CC ;Does it equal HEX CC
 BLS DELAY ;If not go back and start agin
DELAY99 RTS ;Otherwise, exit

TASKG LDA #$04 ;Example module
 STA PORTB
 RTS

TASKL LDA #$08 ;Example module
 STA PORTB
 RTS

TASKU LDA #$10 ;Example module
 STA PORTB
 RTS

TASKX LDA #$20 ;Example module
 STA PORTB
 RTS

* SCI INTERRUPT SERVICE ROUTINE *

DATA JSR GETDATA ;Checks for received data
 STA TEMP ;Store received ASCII data in temp
 AND #$0F ;Convert LSB of ASCII char to HEX
 ORA #$30 ;$3(LSB) = "LSB"
 CMP #$39 ;3A-3F need to change to 41-46

MOTOROLA AN1262/D
30

 BLS ARN1 ;Branch if 30-39 OK
 ADD #7 ;Add offset
ARN1 STA TEMPLO ;Store LSB of HEX in TEMPLO
 LDA TEMP ;Read the original ASCII data
 LSRA ;Shift right 4 bits
 LSRA ;
 LSRA ;
 LSRA ;
 ORA #$30 ;ASCII for N is $3N
 CMP #$39 ;3A-3F need to change to 41-46
 BLS ARN2 ;Branch if 30-39
 ADD #7 ;Add offset
ARN2 STA TEMPHI ;MS nibble of HEX to TEMPHI
 LDA #$0D ;Load HEX value for "<LF>"
 BSR SENDATA ;Line feed
 LDA #$24 ;Load HEX value "$"
 BSR SENDATA ;Print dollar sign
 LDA TEMPHI ;Get high half of HEX value
 BSR SENDATA ;Print
 LDA TEMPLO ;Get low half of HEX value
 BSR SENDATA ;Print

 CLRX ;These seven lines demonstrate
 CLR SETTASKS ;how flags are set in the Priority 1
 BSET 0,SETTASKS ;(X=0) task request regiser in order
 BSET 1,SETTASKS ;to set the corresponding tasks to
 BSET 2,SETTASKS ;run. SETTASKS is used as a temporary
 LDA SETTASKS ;register since the operation
 STA TASKREQ,X ;BSET 0,TASKREQ,0, for instance,
 RTI ;cannot be done.

GETDATA BRCLR 5,SCSR,GETDATA ;RDRF = 1 ?
 LDA SCDAT ;OK, get data
 RTS ;

SENDATA BRCLR 7,SCSR,SENDATA ;TDRE = 1 ?
 STA SCDAT ;OK, send data
 RTS ;

SPI RTI
TIRQ RTI
IRQ RTI
SWI RTI

 ORG VECTOR

 FDB SPI ;SPI interrupt vector
 FDB DATA ;SCI interrupt vector
 FDB TIRQ ;Timer interrupt vector
 FDB IRQ ;External interrrupt vector
 FDB SWI ;Software interrupt vector
 FDB SCHED05 ;Reset interrupt vector

AN1262/D MOTOROLA
31

* Copyright (c) Motorola 1993 *
* *
* LISTING 2 *
* ********* *
* *
* File name: TIME_BASED.ASM *
* *
* Purpose: To co-ordinate the timing of exection of different *
* modules using the internal Free-Running Counter along *
* with the Output Compare or the Core Timer along with the *
* Core Timer Overflow funtion. *
* If the free-running counter is used to co-ordinate the *
* timing the tasks, which ever one it is, will be executed *
* every 4ms. *
* If the Core Timer is used, the tasks will be executed *
* every 5.12ms. *
* *
* Target device: 68HC705L4 *
* *
* Memory usage: ROM: 236 BYTES RAM: 8 BYTES *
* *
* Assembler: IASM05 - Integrated Assembler Version : 3.02 *
* *
* Description: Using the different timing registers inside the MCU *
* and setting up separate counters, the time intervals *
* between the execution of the different tasks can be *
* controlled using the Free-Running Counter along with *
* the Output Compare function or the Core Timer Counter *
* Register along with the Core Timer Overflow Flag. *
* If the programmable timer is used, an interrupt will *
* occur when the value in the Ouput Compare Register *
* equals the value of the Free-Running Counter. *
* If the Core Timer is used, an interrupt will occur *
* when the Core Timer Counter register rolls over from *
* $FF to $00. *
* In this program it is at every 10 interrupts that a *
* task is executed. *
* *
* *
* SUBROUTINES *
* ----------- *
* *
* Author: Joanne Santangeli Location:EKB Created : 17 Jun 93 *
* Last modified : 26 Aug 93 *
* *
* Update history *
* Rev Author Date Description of change *
* --- ------ ---- ---------------------- *
* 0.1 JS 26/9/93 INITIAL RELEASE *
* *

MOTOROLA AN1262/D
32

* Motorola reseves the right to make changes without further notice *
* to any product herein to improve reliability, function, or design. *
* Motorola does not assume any liability arising out of the *
* application or use of any product , circuit, or software described *
* herein; neither does it convey any license under its patent rights *
* nor the right of others. Motorola products are not designed, *
* intended or authorised for use as components in systems intended *
* for surgical implant into the body, or other applications intended *
* to support life, or for any other application in which failure *
* of the Motorola product could create a situation where personal *
* injury or death may occur. Should Buyer purchase or use Motorola *
* products for any such intended or unauthorised application, Buyer *
* shall indemnify and hold Motorola and its officers, employees *
* subsidiaries, affiliates, and distributors harmless against all *
* claims, costs, damages, expenses and reasonable attorney fees *
* arising out of, directly or indirectly, any claim of personal *
* injury or death associated with such unint ended or unauthorised *
* use, even if such claim alleges that Motorola was negligent *
* regarding the design or manufacture of the part. Motorola and the *
* Motorola logo* are registered trademarks of Motorola Ltd. *

* PORT DECLARATIONS *

PORTB EQU $01 ;Direct address - Port C
DDRB EQU $05 ;Data direction register - Port C

* MEMORY *

ROM EQU $2100 ;User ROM area in the MC68HC05L4
RAM EQU $0050 ;RAM area in the MC68HC05L4
VECTOR EQU $3FF6 ;Start of vector address

* CORE TIMER DECLARARTIONS *

TS_CTCSR EQU $08 ;Core Timer Control & Status Register
 ;CTOF,RTIF,CTOFE,RTIE,-,-,RT1,RT0
TV_CTCR EQU $09 ;Core Timer Counter Register

* PROGRAMMABLE TIMER DECLARATIONS *

TV_TCHA EQU $10 ;Timer A Counter Register (High)
TV_TCLA EQU $11 ;Timer A Counter Register (Low)
TV_ACHA EQU $12 ;Timer A Alt Counter Register (high)
TV_ACLA EQU $13 ;Timer A Alt Counter Register (low)
TV_TCRA EQU $0A ;Timer A Control Register

AN1262/D MOTOROLA
33

TV_TSRA EQU $0B ;Timer A Status Register
TV_ICHA EQU $0C ;Input Capture A Register (High)
TV_ICLA EQU $0D ;Input Capture A Register (Low)
TV_OCHA EQU $0E ;Output Compare A Register (High)
TV_OCLA EQU $0F ;Output Compare A Register (Low)

* THE FOLLOWING ARE USED TO DETERMINE THE TASK TIMING *

TW_OCPER EQU $C8 ;Output Compare Period set to 200
TW_TSPER EQU $0A ;Time Slice Period set to 10

* VARIABLE DECLARATIONS *

 ORG RAM

TV_TSCP RMB 1 ;Programmable Timer Slice Counter
TV_TSCC RMB 1 ;Core Timer Time Slice Counter
TV_TSKCP RMB 1 ;Programmable Timer Task Counter
TV_TSKCC RMB 1 ;Core Timer Task Counter
TV_TSKC RMB 1 ;Task Counter used to find task
TV_OPT RMB 1 ;Option whether Core or Programmable
 ;Timer is used
TV_DTASK RMB 1 ;To check if a task is to be carried
 ;out at that interrupt
TV_STORE RMB 1 ;Bit 1 of this variable is clear or
 ;set depending on if a timer
 ;interrupt has occured or not when
 ;using the Programmable Timer

 ORG ROM ;Absolute address label for this
 ;section of ROM (MC68HC705L4)

* MAIN PROGRAM *

T_SCHD05 BSET 0,TV_OPT ;Set a flag to determine which timer
 LDA #$FF ;Set PB7-PB0 as outputs
 STA DDRB ;
 CLR PORTB ;Clear Port B
 CLR TV_TSKCC ;Clear Core Timer Task Counter
 CLR TV_TSKCP ;Clear Programmable Timer Task Counter

T_SCHD10 BRSET 0,TV_OPT,T_SCHD99;Branch to choose the
 JMP T_CORE05 ;Core Timer or the
T_SCHD99 JMP T_PROG05 ;Programmable Timer

MOTOROLA AN1262/D
34

* SUBROUTINES *

* *
* Name: T_PROG05 *
* *
* Subroutine: Performs co-ordination of task execution using the *
* Output Compare function of the Programmable Timer. *
* *
* Stack space used(bytes): 2 *
* *
* Subroutines used: T_PRIN05,T_TASK05 *
* *
* External variables used: TW_OCPER,TW_TSPER,TV_TSKCP,TV_OPT *
* *
* Description: This subroutine initially sets the first Output *
* Compare. It then waits for a timer interrupt to which *
* it sevices with an interrupt sevice routine. The *
* Output Compare is then updated and the Ouput Compare *
* flag is cleared. The routine then jumps to a *
* subroutine to find the particular task and *
* carries it out. *
* *

T_PROG05 LDA TV_TSRA ;Clear Timer Status Register
 LDA TV_OCLA ;Compare flag cleared
 LDA TV_TCLA ;Timer overflow cleared
 LDA TV_ICLA ;Input capture flag cleared
 CLR TV_OCHA ;Clear Output Compare (High)
 CLR TV_OCLA ;Clear Output Compare (Low)
 CLR TV_TSCP ;Clear Time Slice Counter
 LDA #$40 ;Load ACCA with 01000000
 STA TV_TCRA ;Set Output Compare Interrupt enable
PROG10 CLI ;Clear Interrupt Mask Bit
PROG15 BRSET 0,TV_DTASK,PROG20;If bit is set,go to task routine
 BRA PROG15 ;If not set,wait for next interrupt
PROG20 JSR T_TASK05 ;Jump to task routine
 BCLR 0,TV_DTASK ;Clear task bit
PROG99 BRA PROG10 ;Go wait for next interrupt

AN1262/D MOTOROLA
35

* *
* Name:T_CORE05 *
* *
* Subroutine: Performs co-ordination of task execution using the *
* Core Timer Counter Register along with the Core Timer *
* overflow flag. *
* *
* Stack space used(bytes): 4 *
* *
* Subroutines used: T_CRIN05,T_TASK05 *
* *
* External varaibles used: TW_TSPER,T_TSKCC *
* *
* Description: This subroutine initially sets the Core Timer Overflow *
* Enable. It then waits for an interrupt (ie. when Core *
* Timer Counter Register rolls over frrom $FF to $00) *
* After returning from servicing the interrupt, it *
* checks to see if the Task Counter has been written to *
* If so, another subroutine is called to find which task *
* is to be executed and then this particular task is *
* carried out. The routine then waits for the next *
* interrupt. *
* *

T_CORE05 CLR TV_TSCC ;Clear Core Time Slice Counter
 CLRA ;Clear ACCA
 STA TS_CTCSR ;Verify Overflow Flag is clear
 LDA #$23 ;Load ACCA with 00100011
 STA TS_CTCSR ;Set Core Timer Overflow Enable,
 ;RT1 & RT0
CORE10 WAIT ;Wait for Interrupt
 BRSET 0,TV_DTASK,CORE20;If task bit set,go to task routine
 BRA CORE10 ;If not,go wait for next interrupt
CORE20 JSR T_TASK05 ;Jump to task routine
 BCLR 0,TV_DTASK ;Clear task bit
 BRA CORE10 ;Go to wait for next interrupt

MOTOROLA AN1262/D
36

* INTERRUPT SERVICE ROUTINES *

* *
* Name: T_PRIN05 *
* *
* Subroutine: Checks if a task is to be carried out at this *
* interrupt and updates the Output Compare register. *
* *
* Stack space used(bytes): 4 *
* *
* Subroutines used: none *
* *
* External variables used: TW_TSPER,,TV_TSKCP,TW_OCPER *
* *
* Description: This interrupt sevice routine finds out if a task *
* by incrementing a Time Slice Counter. Each time the *
* interrupt sevice routine is called the counter is *
* incremented. Only when this counter equals ten, is *
* a task carried out. *
* After deciding whether a task is to be carried out, *
* the Output Compare Register is updated, ready to *
* for another interrupt and the Output Compare Flag *
* is cleared. *
* *

T_PRIN05 BRCLR 6,TV_TSRA,PRIN99;Checks for Output Compare Flag
 INC TV_TSCP ;Inrement Time Slice Counter
 LDA TV_TSCP ;Read the Time Slice Counter
 CMP #TW_TSPER ;Compare contents of ACCA with 10
 BLO PRIN10 ;If < 10, branch back to T_SCHED10
 CLR TV_TSCP ;If = 10, clear Time Slice Counter
 INC TV_TSKCP ;Increment Task Counter
 BSET 0,TV_DTASK ;Set task bit
PRIN10 LDA TV_OCLA ;Read high byte of Output Compare
 ADD #TW_OCPER ;Load #200 into ACCA
 STA TV_OCLA ;Store in Output Compare (Low)
 LDA TV_OCHA ;Read Output Compare (High)
 ADC #$00 ;Add the contents of the Carry bit
 STA TV_OCHA ;Store at Output Compare (High)
 LDA TV_OCLA ;Read Output Compare (low)
 STA TV_OCLA ;Write back to Output Compare (low)
PRIN99 RTI ;Return from Timer Interrupt

AN1262/D MOTOROLA
37

* *
* Name:T_CRIN05 *
* *
* Subroutine: This routine finds if a tassk is to be carried out at *
* this interrupt. It also clears the Core Timer Overflow *
* flag. *
* *
* Stack space used (bytes) : 4 *
* *
* Subroutines used: none *
* *
* External varaibles used: TW_TSPER,TV_TSKCC *
* *
* Description: Initially finds if Time Slice Counter equals *
* Time Slice Period. If so, the Slice counter is cleared *
* and the Task Counter is incremented. The Core Timer *
* Overflow Flag is then reset. *
* *

T_CRIN05 INC TV_TSCC ;Increment Core Time Slice Counter
 LDA TV_TSCC ;Read Time Slice Counter
 CMP #TW_TSPER ;Compare this to Time Slice Period
 BLO CRIN10 ;If < 10,go to update status register
 CLR TV_TSCC ;If = 10, clear Time Slice Counter
 INC TV_TSKCC ;Increment Core Task Counter
 BSET 0,TV_DTASK ;Set task bit
CRIN10 LDA #$23 ;Load ACCA with 00100011
 STA TS_CTCSR ;Clear Overflow Flag
 RTI ;Return from Interrupt

* *
* Name: T_TASK05 *
* *
* Subroutine: Routine to find out which task is to be done and *
* carries it out accordingly. *
* *
* Stack space used(bytes): 4 *
* *
* Subroutines used: none *
* *
* External varaibles used: TV_TSKCC,TV_TSKCP *
* *
* Description: Depending on which bit contains a zero in the Task *
* Counter determines which task is to be carried out. *
* The task to be executed detected and carried out. *
* Each example task shown here each writes a logic *
* high to a different pin at Port B to demonstrate how *
* the tasks are scheduled. *

MOTOROLA AN1262/D
38

* TASK TABLE *

T_TASK05 LDA TV_TSKCC ;Read Core Timer Task Counter
 BNE TASK15 ;Check if Core Timer or
TASK10 LDA TV_TSKCP ;Programmable has been used
TASK15 STA TV_TSKC ;Stores task in memory
 BRCLR 0,TV_TSKC,TASK20 ;If bit 0 clear,go to Task A
 BRCLR 1,TV_TSKC,TASK25 ;If bit 1 clear,go to Task B
 BRCLR 2,TV_TSKC,TASK30 ;If bit 2 clear,go to Task C
 BRCLR 3,TV_TSKC,TASK35 ;If bit 3 clear,go to Task D
 BRCLR 4,TV_TSKC,TASK40 ;If bit 4 clear,go to Task E
 BRCLR 5,TV_TSKC,TASK45 ;If bit 5 clear,go to Task F
 BRCLR 6,TV_TSKC,TASK50 ;If bit 6 clear,go to Task G
 BRCLR 7,TV_TSKC,TASK55 ;If bit 7 clear,go to Task H
 CLRA ;Clear Port B if Task
 STA PORTB ;Counter at #$FF
 RTS ;Return from routine
TASK20 JSR T_20 ;Jump to first module
 RTS ;
TASK25 JSR T_25 ;Jump to second module
 RTS ;
TASK30 JSR T_30 ;Jump to third module
 RTS ;
TASK35 JSR T_35 ;Jump to fourth module
 RTS ;
TASK40 JSR T_40 ;Jump to fifth module
 RTS ;
TASK45 JSR T_45 ;Jump to sixth module
 RTS ;
TASK50 JSR T_50 ;Jump to seventh module
 RTS ;
TASK55 JSR T_55 ;Jump to eighth module
 RTS ;

AN1262/D MOTOROLA
39

* TASKS FOLLOW *

T_20 LDA #$01 ;Example module
 STA PORTB
 RTS

T_25 LDA #$02 ;Example module
 STA PORTB
 RTS

T_30 LDA #$04 ;Example module
 STA PORTB
 RTS

T_35 LDA #$08 ;Example module
 STA PORTB
 RTS

T_40 LDA #$10 ;Example module
 STA PORTB
 RTS

T_45 LDA #$20 ;Example module
 STA PORTB
 RTS

T_50 LDA #$40 ;Example module
 STA PORTB
 RTS

T_55 LDA #$80 ;Example module
 STA PORTB
 RTS

IRQ RTI
SWI RTI

 ORG VECTOR

 FDB T_PRIN05 ;Programmable Interrupt Vector
 FDB T_CRIN05 ;Core Timer Interrupt Vector
 FDB IRQ ;Hardware Int
 FDB SWI ;Software Int
 FDB T_SCHD05 ;RESET Interrupt Vector

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any par ticular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating
parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244-6609
INTERNET: http://Design-NET.com
USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku,

Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road,

Tai Po, N.T., Hong Kong. 852-26629298

AN1262/D

