MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

AN1252

MIP Guidelines and Design Issues

INTRODUCTION

The purpose of this application note is to discuss informa-
tion about Echelon’s Microprocessor Interface Program
(MIP) not available in other application notes. It is not the
intention of this document to explain what the MIP is, but
rather to remove the mystery from considerations of its po-
tential uses and to offer advice regarding its implementation.
Users are sometimes confused into thinking that the MIP
must be used when tying a host (another processor) to the
NEURON CHIP. In many and possibly most cases, the parallel
I/0 model will suffice in place of the MIP.

This document will contrast the MIP with an application

plating using the MIP. An application level MIP uses the par-
allel I/0 model built into the firmware of the NEURON CHIP, and
the designer must in essence write his or her own protocol to
pass information to/from the host. The MIP/P50, MIP/P20,
and parallel I/O model use the same hardware interface. The
MIP/DPS requires a dual ported RAM.

This application note will provide a series of steps and
checks necessary for the MIP to work on an MC68HC11 mi-
croprocessor. This information will prove useful for designers
using other hosts as well.

Hardware interface between an MC68HC11 and NEURON
CHip will be shown, as well as example code using the paral-

level MIP, then provide details for helping a designer contem- lel I/O model.
REFERENCES
Table 1. MIP Reference Documentation
Source Title
Motorola Parallel I/O Interface to the NEuRON CHIP (AN1208)
Motorola MC143150 / MC143120 NeuroN CHip Distributed Communications and Control Processors
Echelon LoNBuUILDER Microprocessor Interface Program (MIP) User's Guide
Echelon LoNWOoRKS Host Application Programmer’s Guide
Echelon LonWoRks Network Interface Developer’'s Guide
Echelon Serial LONTALK Adapter (SLTA/2) User’s Guide

It is highly recommended that you review the application

note entitled Parallel I/0 Interface to the NEURON CHIP

(AN1208). This application note describes the parallel 1/0
object of the NEuroN CHip, including specifics on the hand-

shaking and token passing process used to establish syn-
chronization and prevent bus contention. This will be a good
starting point before undertaking the MIP.

Table 2. Online Services

On-Line Services

Internet Address

Motorola’s Design—-NET http://motserv.indirect.com

415-856-7538

Echelon’s LonLink telnet lonlink.echelon.com
ftp lonworks.echelon.com

world wide page:

(address: 198.93.128.100)
(address: 198.93.128.1)

http://www.lonworks.echelon.com

Use telnet to participate in discussions and ftp to download
files and engineering bulletins. Engineering bulletins can be
downloaded from the bulletin board. These bulletins are
viewed using Common Ground viewer software, which can
also be downloaded. The World Wide Web Home page will
support both telnet and ftp connections.

The MC68HCI11 files are located on Design—Net in the
miphcll.zip file. The MC68HC3xx files are located on

Design—Net and LonLink in the mip3xx.zip file.
mip3xx.zip files include support for the MC68HC332, the
MC68HC340, and the MC68HC360. In this document,
MC68HC3xx is in reference to the MC68HC332,
MC68HC340, and the MC68HC360 processors.

Echelon offers a two day class entitled MIP and SLTA Ad-
vanced Training.

AN1252
AL-424

MOTOROLA L oNWorks TECHNOLOGY

AVAILABLE MIP PRODUCTS

As shown in Table 3, five types of MIPs are available from
Echelon. Refer to the 1995 Echelon LonWoRks Products
Databook for details on these products. The MIP/P20, P50,
and DPS are software products. All three of these MIP
products are licensed on a royalty basis from Echelon. There
are no royalty fees on the first 100 copies. The MIP/P20 and
P50 are packaged together. The MIP/DPS is packaged

separately.

The LTS-10 and Serial LoNTALK Adapter (SLTA) are sold
in a single in—line module (SIM) package and external box,
respectively. The LTS-10 SLTA core module is housed in a
compact SIM and is used to build an SLTA. An SLTA is typi-
cally connected to a personal computer (PC). The LTS-10
and SLTA communicate to the host through a EIA-232 inter-
face. This document references the three software MIP prod-
ucts, specifically the MIP/P20 and P50.

Table 3. MIP Products

MIP Products Description
MIP/P50 MIP firmware for the 3150
MIP/P20 MIP firmware for the 3120
MIP/DPS MIP firmware for the 3150 using Dual Port with Semaphores (i.e. Dual Ported RAM)
LTS-10 SLTA on a SIM
SLTA Typically connected to a PC

Most of the PC interface boards made today use the MIP/
P50. These include boards from the following companies:

» Echelon
» Gesytec
* Metra

e Ziatech

Echelon’s SLTA contains a special MIP which communi-
cates serially to a PC. The LonBuiLDER Developer’'s Work-
bench interface board also contains a special version of the
MIP firmware. A processor (such as an MC68HC11 or an
MC68HC332) can be tied to the NEURON CHIP running the
MIP firmware, instead of a PC.

The PC or processor connected to the NEURON CHIP is
called the host processor. The MIP/P20 and MIP/P50 passes
information to the host using the eleven 1/O lines. The MIP/
DPS uses the address lines, and the SLTA uses a Universal
Asynchronous Receiver Transmitter (UART).

The MIP transfers parts of OSI layers 5 through 7 to the
host. These layers mainly handle network variables and
some network management of the NEuRoN CHIP. When using

the MIP, the NEuRON CHIP can be placed in either host selec-
tion or network interface selection. Typically, host selection is
used. Host selection transfers the OSI layers as mentioned
above to the host, increasing the number of network vari-
ables supported from 62 to 4096. NOTE: The SLTA uses
host selection. In addition, all network interfaces used with
the Application Programming Interface (APIl) must use host
selection.

It is possible to run the MIP and have the NEURON CHIP do
the addressing but most of the benefits of the MIP are lost,
such as increasing the number of network variables. Run-
ning MIP turns the NEURON CHIP into a communication pro-
cessor.

The MIP is a function call invoked in the reset “when”
clause which never returns. Therefore, no other application
can be used after the MIP function is called.

ADVANTAGES AND DISADVANTAGES OF
USING THE MIP

Table 4 shows some of the advantages of the MIP and the
application level MIP. Table 5 shows the disadvantages.

Table 4. Advantages of the MIP and Application Level MIP

MIP

Application Level MIP

Higher performance: 1-5:1 in throughput
(packets/second)

More network variables (4096 versus 62)

No royalty fees

May run other applications. Not dedicated to
MIP application.

Easier to implement

Code changes are done on the host, not the
NEURON CHIP

MOTOROLA L onWorks TECHNOLOGY AN1252

AL-425

Following are four reasons to use the MIP:

1. Toincrease the number of network variables from 62 to
4096.

2. To increase throughput up to five times.

3. Todecrease maintenance. It will eliminate the necessity
of burning an (EP)ROM or flash for the NEURON CHIP ev-
ery time the application changes.

4. To use resources on the host.

One of the biggest advantages of using the MIP may be
lower maintenance costs. Application code on the NEURON
CHip is typically not updated. Therefore, most of the code
changes are done on the host. This reduces maintenance
costs significantly by having to change code only on the host
and not on the NEURON CHIP. If the code is never going to be
changed, this may not be an advantage.

Echelon’s MIP is provided in object code format. The ap-
plication MIP may be a better choice for a simple gateway, as
for example, into a foreign protocol.

Table 5. Disadvantages of the MIP and Application Level MIP

MIP

Application Level MIP

Costs in MIP and royalty fees

No other applications can run

If using the MC143120, difficult to fit in other
applications

Maintenance costs in upgrading the NEURON
CHIP with new code

Uses more memory (typically RAM) to buffer up
data

More difficult to implement

The two main disadvantages of using the MIP are the cost,
and the difficulty in implementation. The MIP host application
is C language (C) intensive and complex. If host selection is
turned on with the MIP, OSlI layers 5 — 7 are transferred to the
host and must be handled by the host. The long learning
curve may increase development times.

Drivers are available for the PC, MC68HC3xx, and
MCG68HC11. The latter two come from the PC driver. All the
DOS dependent code was taken out and then ported to
these processors. The MC68HC3xx is documented through
areadme file available with the MIP driver on Motorola’s De-
sign—Net or Echelon’s LonLink. The MC68HC11 started with
the MC68HC3xx files and then the lower level routines were
changed. When developing MIP code for the MC68HC11,
make use this application note, the MC68HC3xx documen-
tation, and the MC68HC11 files on Design—Net. It should be
noted that all of these files miphcu.zip, mip3xx.zip have NOT
been fully tested and the routines to handle error conditions
are left up to the user.

The DOS version has several more features than the cur-
rent microprocessor versions such as being able to handle
several error conditions by timing out. If needed, this will
have to be added for the microprocessor’s version. The 1/0
and various resources inside the host are set up for the spe-
cific application. It is not assumed that the user will use the
application program and driver without modification. The ap-
plication program and the driver are only the starting points.
Except for handling time outs, the driver is set up so that it
can be used with little modification.

The MIP driver code may require several thousand bytes
to implement on the host, and the application code to use the
driver may require even more. With all this in mind, the bene-
fits as listed above must now be taken into consideration.
Many customers have found that after proper implementa-
tion of the MIP, the time taken to learn the MIP is time well
spent, and that the code is easily modified.

BUFFER USAGE

Echelon has optimized the buffer transfer from the NEURON
CHIP to the output buffer by eliminating the need to write to
user RAM before going to the host. Figure 1 shows the buff-
ers in a NEURoN CHIp, and Table 6 shows the buffer sequence
from network to host for both the MIP and application level
MIP. Host to network is the reverse step.

The sequence reading a packet from the network is: the
MAC processor reads in and checks for the CRC; if the CRC
is correct, the MAC processor passes the information to the
network processor which checks for the address. Next, for
MIP/DPS, data is sent through the external data lines to a
dual ported RAM. For the MIP/P50 and MIP/P20, data is sent
to the application processor then to the host. For an applica-
tion level MIP, data (network variables and explicit mes-
sages) goes into memory (typically RAM) then is passed to
the host. This means that an application level MIP has one
more step to write than the MIP/P20 and MIP/P50, and two
more steps than the MIP/DPS.

AN1252
AL-426

MOTOROLA L oNWorks TECHNOLOGY

PRIORITY

NET_BUFFER_OUT_

NEURON CHIP

NET_BUFFER_OUT

APP_

BUFFER_OUT_ | _
PRIORITY <

X
S| MAC NETWORK
£ [“| Processor PROCESSOR
=2
CHECKS | CHECK
CRC ADDRESS
1] INFO. ¢

APP_BUFFER OUT |«

/

APPL.

APPLICATION
PROCESSOR
A
APPLICATION
MEMORY

NET_BUFFER_IN

APP_BUFFER_IN

(RAM, EEPROM)

T- MIP/P20/P50

|
MIP/DPS L] buaLPorTED

RAM

HOST
LEVEL
MIP
I
I
' - T. >
I
I
I
-

Figure 1. N EURON CHIP Buffers

Table 6. MIP versus Application Level MIP Buffer Usage

Step MIP/P20 MIP/P50 MIP/DPS Application MIP
1 network buffer network buffer network buffer network buffer
2 application application dual port application
buffer buffer RAM / host buffer
3 host host user memory
4 host
It should be noted that an MC143120 NEURON CHIP with 1K BENCHMARKS

of RAM may not have enough RAM to guarantee all of the
packets on the network received. The problem is not with the
MIP, but with available buffers needed by the three proces-
sors built into the NEuroN CHIP. An application level MIP uses
more memory to buffer the data before sending to the host.

The MC143120E2DW contains 2K of RAM and will be
available in the latter half of 1995. The MC143150 has 2K of
RAM on-board. With heavy traffic, 2K of RAM may still not
be enough. The MC143150 has an external address/data
bus which can be used to interface more RAM.

Figure 2 shows the MIP versus Application Level MIP Per-
formances using unacknowledged service. Table 7 shows
the MIP Performance Benchmarks using unacknowledged
and acknowledged services. Application overhead should
bring all these numbers down. These numbers should be
used only for comparison among themselves. Specific ap-
plications will depend on many factors: speed of host, net-
work traffic, number of buffers allocated in the NEURON CHIP,
and the host, to name a few.

MOTOROLA L onWorks TECHNOLOGY

AN1252
AL-427

450

400 5 [MIPIDPS
350 \5'\ O MIPIP50
a APPLICATION-LEVEL MIP
packers %0 S ‘@\ u
PER 250
SECOND N
200 N
100 _.==.\
50 \.\
0 1 8 2 228
DATA SIZE (BYTES)

Figure 2. MIP versus Application Level, MIP Performance

Table 7. MIP Performance Benchmarks
(Using PC/386 Host at 25 MHz, Protocol Overhead of 9 bytes)

SLTA and
MIP/P20 MIP/P50 MIP/DPS LTS-10
Unackd 1-Byte Data 205 303 404 71
8-Byte Data 205 289 396 71
32-Byte Data 170 260 364 56
228-Byte Data 103 158 149 22
Ackd 1-Byte Data 76 106 106 77
8-Byte Data 74 103 103 71
32-Byte Data 68 94 94 59
228-Byte Data 47 55 55 22

SUGGESTIONS FOR DEVELOPING AN MIP SYSTEM

Following are suggested steps in developing a MIP sys-
tem. They are not necessarily in the order of performance,
especially if a prototype is being developed to test out the
feasibility of the system.

1. Determine whether the MIP is needed. A simple node
may not need the MIP, whereas a node doing complex
network management may benefit from it. Decide up
front the requirements of the node. A prototype may be
in order (with and without the MIP). Refer to the section
on Advantages and Disadvantages of Using the MIP.

2. Design the overall architecture of the system. Decide
which processor and software will be used. This choice
will depend on factors such as speed, memory require-
ments, 1/O, and code, just to name a few. An
MC68HC3xx may be in order.

3. Pick the development tools to be used. More time was
spent working around compiler, source level debugger,
and target board problems than in debugging and writ-
ing code. If code is to be written code for anything but
asimple MIP node, a good source level debugger is rec-
ommended. This will significantly decrease debugging
time over the possibility of having to step through in as-
sembly.

A recommended sequence is to get your tools and your
software structure (vectors, interrupts, and main pro-

gram) running and debugged as quickly as possible.
Before any serious debugging is done onyour code, you
need to be able to depend on your development tools.
Remember, every software tool (compiler, linker, source
level debugger, ...) differs from others. Do not assume
your code will work flawlessly porting from one tool/host
to another.

4. Design and implement the network interface.
5. Test the hardware.

6. Design the software.

7. Test the software.

From here, as during the previous stages, good standard
practices are recommended, such as software and hardware
reviews.

DEVELOPMENT TOOLS

It is recommended that the tools be in place before MIP
development starts. The most time consuming part of work-
ing with the MIP is not with the program, but in setting up the
hardware and software to support the microprocessor used.
It is therefore recommended that your tools be fully set up
before any serious MIP applications development gets under
way. If possible, understand your hardware and software
tools before investing in them.

When porting “C” code from one compiler and/or host to
another, expect to make some compiler/host dependent
changes. These include:

AN1252
AL-428

MOTOROLA L oNWorks TECHNOLOGY

“C” portability: Most compilers today are ANSI C
compatible. But C is not fully defined. For instance, bit
fields and ordering of bits. The placement of bit 0 in a
byte is compiler dependent, not “C" dependent.
Typically, Motorola processor compilers place bits in a
byte in the opposite order from Intel processors:

bit 7 .. bit 0
bit 0 .. bit 7

Echelon’s available DOS MIP driver is written fora DOS
machine, and care must be taken when porting to a
Motorola processor. Some compilers have an option to
arrange the bit order in either direction.

Source Level Debugger (SLD): Typically the compiler
and/or source level debugger are manufactured by a
different company than the host emulator. Make sure
the SLD supports the intended host emulator. Some
SLDs use some of the resources of the host (I/O lines,
software interrupts, ...).

When developing code for the MIP, software and hardware
support for the tools is highly recommended.

Motorola
Intel

HARDWARE
Address Decode

Figure 3 shows the block diagram of the interface circuitry
between the MC68HC11 and the NeuroN CHir. Figure 4
shows the detailed schematic. The address decode block
addresses the NEURON CHIP as two memory registers: one
for the handshaking bit to see if the NEuroN is busy, and the
other to pass/receive data. The NEURON CHIP is decoded at

0x8000 — 0x87ff but only addresses 0x8000 and 0x8001 are
used. The MC68HC11 has a multiplexed address/data bus,
and the 74HC75 is used to latch AO.

MC68HC11 to Neuron CHIP Interface Reset Circuitry

Reset signals to and from the NEurRON CHiP are handled by
additional logic as shown in Figure 4. There are two sources
of reset for the MC68HC11 and the NEurRoN CHIP. One source
is internally generated by the MC68HC11 or NEURON CHIP
and the second source is externally generated by a Low Volt-
age Inhibit (LVI); for example, an MC33164 or a push—button
reset switch. The MC68HC11 may reset the NEURON CHiP but
not vice—versa.

Additionally, resets may come from the NEurRoN CHIP by
means of a network management command being received
over the LoNWoORKs network. This network management
command causes the reset pin on the NEuRoON CHIP to be-
come an output, and be pulsed low for a short period of time.
Due to the short duration of this pulse, this reset condition
must be latched (for instance, a 74HC74 D flip—flop). The
output of the D flip—flop is then used to interrupt the
MC68HC11 to notify the application program of this network
management command. Since this signal is an interrupt to
the MC68HC11, the IRQ pin must be held low until the inter-
rupt is acknowledged by the interrupt service routine. The in-
terrupt is then cleared by setting PD2 /O pin low and
restoring it back high in the interrupt service routine. Option-
ally, in case of multiple IRQ interrupts, the output of the flip—
flop may also be used as an input to another 1/O pin (such as
PD4) so that the interrupt service routine may determine the
source of the IRQ interrupt.

MC68HC11 NEURON CHIP
ADDRESS > |08 (CS)
| DECODE
74HC138/74HCT5 > 1010 (A0)
| OPEN COLLECTOR
RESET |t—> | <«—>| RESET
RESET
CIRCUITRY
MC33164
RESET LATCH
74HC74 S
)
PD2 f
IRQ
PD4 [
(OPTIONAL)

Figure 3. MC68HC11 to N EUrRON CHIP Interface Block Diagram

MOTOROLA L onWorks TECHNOLOGY

AN1252
AL-429

MC68HC11 NEURON CHIP
Al5 »| 1 74HC135
AL2 >2 (0X8800 — OXBFFF)
ALl oy (e
; =60 (0X8800— OX87FF)
X — UX
Ald »{ 4 (Y1) 14 > 10_8 (CS)
A13 > 5
74HCT5
PCO > 3
16 > 1010 (A0)
STRA > 1
8/,
PCO— PC7 | S 10.0-10_7
RIW 109
(OPTIONAL) PD4 |
IRQ
OPEN
[NCOLLECTOR
RESET |e—s | * _T_ <—>| RESET
100pF VDD
W T
4 = \
) s VDD MC33164 A
1P . Q | N ouT & .
= HCT4A —
SERVICE
PDO c o GND
RESET | 100 pF
R —
71 _T_ I SERVICE
1 1 1 1 SLAVE B MODE
VbD = = = =

Figure 4. MC68HC11 to N EURON CHIP Interface

The open collector device between the MC68HC11 reset
pin and the NEUrRON CHIP reset pin is used to prevent a
NEURON CHIP source reset from resetting the MC68HC11.
When designing the reset circuit the following factors must
be taken into consideration:

* How much current the NEURON CHIP can source.

* The saturation voltage of the LVI. This voltage will be
current dependent.

* The voltage level the NeuroN CHiP will reset.
¢ The voltage level the NEurRoN CHIP will output at reset.
* The current level at which any LEDs will turn on.

» Voltage drops across all components, including diodes
and resistors.

» Any time constants (ex: RC networks).

« Saturation voltage of the open collector device.

SOFTWARE
Debug and Initial Set—up

It is recommended that the hardware interface be de-
bugged and the tools set up before any software effort is
started. It is useful to attach a logic analyzer to the NEURON
CHiP’s eleven I/O pins in order to understand the relationship
between the NEurRON CHIP and the host. If an MIP is going to
be used, first debug the hardware interface using only the
parallel I/O model.

MC68HC11 and NeEuroN CHIP Using an Application Level
MIP

Exhibits 1 and 2 show a sample Neuron C and
MC68HC11 program, respectively, using a NEURON CHIP'S
parallel I/O model. No MIP is used. The programs continu-
ously pass data back and forth. The MC68HC11 sends eight
bytes of data (0x50 — 0x57) to the NEuRoN CHIP, which then
sends four bytes of data back (0x0 — 0x3). This is continu-
ously repeated.

Exhibit 3 shows the results of using a logic analyzer on the
NeUuRON CHIP's eleven /O lines, triggering off of the rising

AN1252
AL-430

MOTOROLA L oNWorks TECHNOLOGY

edge of CS. For the MC68HC11, Exhibits 1, 2, and 3 can be
used as a guide to expectations for software, hardware, and
debugging of an application level MIP.

MIP/P20, P50 Driver

The DOS MIP driver was originally created by Echelon to
run on a DOS machine using Echelon’s Serial LONTALK
Adapter (SLTA). It was modified for the MC68HC11 micro-
processor. Echelon wrote the host application and driver pro-
grams to demonstrate the use of a host microprocessor, in
their case a PC, using an SLTA or MIP. The SLTA uses a spe-
cial version of the MIP firmware. Instead of using a parallel
interface from the NEURON CHIP, it uses a UART to provide
serial data out. Echelon documents their host application
program in a manual sent with the SLTA or MIP products.

The MIP application is a function call invoked in the reset
when clause and when called, never returns. Therefore, no
other application can be used after the MIP function is in-
voked.

The MIP driver on the MC68HC11 is written mostly in “C”,
the rest in assembly for handling interrupts, start—up files,
and some of the I/O functions. There is a “tick” timer, typically
in the range of 30 ms to 200 ms, which allows for the
MC68HC11 application to read and write buffers to the
MC68HC11 MIP driver.

MIP DETAILS

Host software is divided into two parts: the driver and the
host application. The driver handles buffering packets and
the interface to the NEurRoN CHIP. This driver also ensures
that the sequence of calls to the MIP and function calls from
the host application are correct.

The driver will:

* Handle buffer request/response mechanism so
application will not have to track it.

» Handle difference between application layer and link
layer protocols. Our drivers will support only one
application program.

The interface between the host application and the driver
is called the Application—Layer Interface. The Application—
Layer Interface passes parameters back and forth between
the host application and the driver. For overall usage of the
MIP driver, refer to the LonBuiLber Microprocessor Applica-
tion Programmer’s Guide. There are four function calls be-
tween the host application and the driver:

open: initialize parameters. This call is used to al-
locate resources for operation of the driver
and prepare the MIP interface to transfer
data. This is typically called at the start of
the program.

close: opposite of open. Deallocates resources
used by the MIP driver. Typically not called
or called if the program ends.

read: application reads data passed from the
NEURON CHip from the driver’s buffers.

write: application writes data to be sent to the
NEURON CHIP to the driver’s buffers.

Formats of the data field being passed to or from the
NEURON CHip are outlined in the LonWorks Host Application
Programmer’s Guide. Additional information on network
management commands and addressing structure formats
are in Motorola’s DL159 LonWorks Technology Device
Data, Appendix A.

The interface between the driver and the MIP is called
Link—Layer Interface. Data is sent and received with the
sequence of events between the driver and the MIP. There
are two types of commands sent to the MIP, commands that
stay local to the NEuURON CHIP (niComm command) and those
that go out over the network (niNetmgmt command). Also a
queue priority from the NEurRoN CHIP must be requested (TQ:
transaction queue with a response to it, NTQ: non transac-
tion queue which uses unacknowledged service, TQP: with
priority, NTQP: without priority).

MODIFYING THE MIP

Network management commands not handled by the
NEuroON CHIP must be handled by the host. The user must
save data passed in some of these commands and also re-
spond to the Network Manager with the information re-
quested by other network management commands.

In order to send a message over the MIP interface, the
data must be enclosed with appropriate MIP header informa-
tion. The header information includes length of the data and
the addressing information for the message destination. The
application software to handle these network management
commands must be written.

To make this operation easier, one may use an example
provided by Echelon to handle this operation. This example
is included with the MIP product and also is available on the
LonLink bulletin board service. The example consists of a se-
ries of “C” language source code files starting with the HA.C
file. HA.C implements a very specific example for updating
and displaying network variables, sending and receiving
messages, and binding to other nodes through a DOS based
console. With some modification, some of the other functions
called by HA.C may be used.

Files NI_MSG.C and APPLMSG.Cmay be modified, com-

piled, and linked with user code. The file NI_MSG.C con-
tains user callable functions of ni_init, ni_send_
msg_wait, ni_receive_msg , andni_send_response.
As their name implies, these functions may be used to initial-
ize the network interface, send a properly formatted mes-
sage over the interface, receive a message over the
interface, and send a response over the MIP interface.

The file APPLMSG.Ccontains code to handle the network
management commands to which the host computer must
respond. These commands are query_nv_config ,
nv_fetch , update_nv_config , query_snvt , and
set_node_mode .

Used with the above mentioned files are two ¢ header files.
These are NI_MSG.H and NI_MGMT.H. These files con-
tain structure definitions and must be included in your C
source file. NOTE: The data type definitions of bits is little en-
dian bit ordering and must be reversed to big endian bit or-
dering for Motorola microcontroller designs.

MOTOROLA L oNWorks TECHNOLOGY

AN1252
AL-431

EXHIBIT 1
NEURON CHIP CODE USING PARALLEL 1/0 MODEL

JRHRkRFRAK * *kk KKK

Example program for a NEURON CHIP in parallel I/O interface with a
MC68HC11. The Neuron chip is in slave B mode and the HC11 is acting
as a master. The program enters in an infinite loop of read and write

cycles.

#define maxin 10
I0_0 parallel slave_b p_bus;

unsigned char i=0;
unsigned int len_out=4;

struct parallel_io

{
unsigned char len;
unsigned char buf[maxin];

}pio;

when (io_in_ready(p_bus))
{
pio.len = maxin;
io_in(p_bus,&pio);
io_out_request(p_bus);

}

when (io_out_ready(p_bus))
{
pio.len=len_out;
for (i=0; i<len_out; i++)
pio.buffi] = i;
io_out(p_bus,&pio);

/I counter to fill buffer
/Inumber of bytes for input and output

/[actual number of bytes in buffer
[array to store data
/I name of structure

/I maximum input length
/l read in data
I/l request to output

/I number of bytes to be output
/I fill buffer with data

// output data

AN1252
AL-432

MOTOROLA L oNWorks TECHNOLOGY

EXHIBIT 2
MC68HC11 CODE TO INTERFACE TO NEURON CHIP USING PARALLEL 1/0O MODEL

I* description: Use yes2.nc on a LB emulator.
Transmits: 00, 01
length =8
data = $50 — 57
Receives: 00, 01
length = 4
data=0,1,2,3
*/

Vi * *kkFFIKKKFK Kk kFFIRIIFFIIKIK

Example program for a MC68HC11 interfacing with a Neuron chip. The
NEURON CHIP is in parallel I/O slave B mode and the HC11 is acting
as a master. The program synchronizes the HC11 master and Neuron
chip slave and then enters an infinite loop of read and write

cycles.
/

#define HS_MASK 0x01 /* mask for ISBit of control register*/

#define CMD_RESYNC 0x5A /* initial command to synchronize neuron
chip */

#define CMD_ACKSYNC 0x07 [* synchronization acknowledge from
slave */

#define CMD_XFER 0x01 /* command to transfer data */

#define LENGTH_OUT 0x08 /* length of data transfer from master*/

#define EOM 0x00 /* end of message */

#define MAX_ 0x09 /* maximum size of data buffer */

#define DATA_REGISTER 0x8000 /* even address accesses data register*/

#define CONTROL_REGISTER 0x8001 /* odd address accesses handshake
register*/

#define MASTER 1 [* token tracking for master write */

#define SLAVE 0 /* token tracking for master read */

unsigned char token; /* tracks read and write cycles */

unsigned char *datareg, *hs; /* pointers for data and handshake
registers */

struct parallel_io [* buffer for data transfers*/

{

unsigned char len; /* length of data transferred */
unsigned char data[MAX_]; [* array to store data */
}pio;

/ * *kkkkkkkk * *kkkkk

Verify the processors are synchronized before any data is

transmitted. The master sends the command to resynchronize until the
slave acknowledges with CMD_ACKSYNC. The master owns the token after
resynchronization.

Kkkkkkkkkkk Kkkkkkkkk /

MOTOROLA L oNWorks TECHNOLOGY AN1252
AL-433

sync_loop()

{
while (*datareg != CMD_ACKSYNC) { /* loop until acknowledge
received */
hndshk();
datareg = CMD_RESYNC; / send command to resync */
hndshk();
datareg = EOM,; / send end of message */
hndshk();
}
token = MASTER,; /* master owns token after reset */
}

/ * * *kkk * * * *kkkkkkkk *

Verify the slave is ready for the next byte transaction. Read the
control register of the slave which accesses the handshake signal
(least significant bit of the control register). Mask all bits but

the handshake bit and verify if the handshake signal has gone low.

Kkkkkkkkkkkkkkkkkkk Kkkkkkkkkkkkkkkkkkk 7(/

hndshk() /* infinite loop until the handshake bit goes low */

{
while ((*hs) & HS_MASK);

I‘ * * * * * *

Identify the owner of the token to determine if a read or write is
appropriate. If the master owns the token a write cycle is

performed; if the slave owns the token a read cycle is initiated.

This process prevents bus contention, as only the owner of the token
can write to the bus.

* * * * * * * * * * * /

main_loop()
{
while(1) { [* infinite loop of read/write cycles */
if (token == MASTER) I* master owns the token */
write(); I* master writes to the slave */
else [* slave owns the token */
read(); I* master reads from the slave */
}
}
AN1252 MOTOROLA L oNWorks TECHNOLOGY

AL-434

!

*% *kkkkkkkhkkhhkkkhkk *% *% *hkkkkkkhkkhhkkkhkk *% *%

The master owns the token at the start of this function, therefore,

the master can write to the bus. The buffer is filled, the command

to send data (CMD_XFER) is transmitted, the length (number of bytes
of data) is transmitted and the data is transmitted one byte at a

time. The handshake signal is monitored for low transition before
each byte transfer. After the data is transmitted, the token is
processed.

*kkkkkkkhkkhhkhhhkhhrkhhkkkrk *kkkkkkkkkkhhkkhkkkhrrkk *% xx/

write()

{

unsigned char send_data;

make_buffer(); [* assign length and create data */
hndshk();

datareg = CMD_XFER; / command to send data */
hndshk();

datareg = pio.len; / send length of data to be

transmitted */
for (send_data=0; send_data<pio.len; send_data++) {

hndshk();

datareg = pio.data[send_data]; / send data one byte at a time */
}
pass_token(); /* process the token */

* * * * * *

Assign the data length. Fill the buffer with data before
transmitting. The data is ascii: P,Q,R,S,T,U,V,W.

* * Kkkkkk * /

make_buffer()

{

unsigned char data_out; [* counter for creating data */
pio.len = LENGTH_OUT; /* length of bytes of data */
for(data_out=0; data_out<LENGTH_OUT; data_out++)
pio.data[data_out]=(data_out+(0x50)); [* ascii output */

The slave has the token at the beginning of this function,

therefore, the master reads from the slave. If the first byte is

the command to transfer, read the length of data bytes to be
received, read each byte of data, then transfer the token the
master. If the slave has no data to send, assume the command is a
NULL and simply transfer the token to the master. Always wait for
the handshake signal to be low before each transaction.

Note: No error checking is implemented to verify the command is a
NULL.

* *kkk * * * * F*kkk * * * * /

MOTOROLA L oNWorks TECHNOLOGY

AN1252
AL-435

read()

{
unsigned char cmd; /* stores the command from the slave */
unsigned char i=0; /* counter to read in data */
hndshk();
if ((cmd = *datareg) == CMD_XFER) { /* slave has data to send */
hndshk();
pio.len = *datareg; [* read length of data to be
transferred */
while (pio.len—) { /* read in each byte of data */
hndshk();
pio.data[i]=*datareg; [* put data in a buffer */
++i;
}
}
pass_token(); [* pass token to the master */
}

/ * *kkkkkkkk * * *kkkkkkkk *

Process the token. If the master owns the token, send an end of
message to the bus and then pass the token to the slave. If the
slave owns the token, simply pass the token to the master.

*kk * *kk * /

pass_token()

{
if (token == MASTER) { /* master owns the token */
hndshk();
datareg = EOM,; / write an end of message */
token = SLAVE; [* pass the token to the slave */
}
else /* slave owns the token */
token = MASTER; /* pass the token to the master */
}
main()
{
datareg = (unsigned char*) DATA_REGISTER,; [* data pnts to the data
reg */
hs = (unsigned char*) CONTROL_REGISTER; /* hs pnts to the cntrl
reg */
sync_loop(); [* synchronize the processors */
main_loop(); /* infinite loop of read/write
cycles */
}
AN1252 MOTOROLA L oNWorks TECHNOLOGY

AL-436

EXHIBIT 3
LOGIC ANALYZER READINGS FOR MC68HC11/N EuroN CHiP USING PARALLEL 1/0O MODEL

Loc. D7 - DO CSs R/W A0 Description
-4 01 0 1 1
-3 01 0 1 1 D =1, never busy
-2 00 0 1 1 D =0, Neuron ready
-1 5A 0 0 0 Write Cmd resync (5A)
Trig 5A 0 0 0
1 1 0 1 1 D =1, NC busy
2 1 0 1 1
3 repeated
1 0 1 1
16 00 0 1 1 D + 0, NC ready
17 00 0 1 0
18 00 0 1 0 HC11 write EOM (00)
19 01 0 0 1 D =1, NC busy
20 repeated
06 0 1 1 D =0, NC ready
29 07 0 1 0 NC read cmd Acksync
30 01 0 1 0 Note: This should have been 0 (EOM)
31 00 0 1 1 D =0, NC ready
32 01 0 0 0 HC11 write Cmd_Xfer (01)
33 01 0 1 1
34 repeated
01 0 1 1
131 08 0 0 0 HC11 write length (8)
132 01 0 1 1 D =1, NC busy
133 repeated
01 0 1 1
159 00 0 1 1 D =0, NC ready
160 50 0 0 0 HC11 write data (50)
161 00 0 1 1 D =0, NC ready
162 51 0 0 0 (51)
163 00 0 1 1
164 52 0 0 0 (52)
165 00 0 1 1
166 53 0 0 0 (53)
167 00 0 1 1
168 54 0 0 0 (54)
169 01 0 1 1
170 55 0 0 0 (55)
171 00 0 1 1
172 56 0 0 0 (56)
173 00 0 1 1
174 57 0 0 0 (57)

MOTOROLA L oNWorks TECHNOLOGY

AN1252
AL-437

Loc. D7 - DO CS R/W A0 Description
175 00 0 1 1
176 00 0 1 0
177 00 0 0 0 HC11 write EOM (O)
178 01 0 1 1 D =1, NC busy
179 : : : : repeated
01 0 1 1
397 01 0 1 0 HC11 Reads CMD-XFER (01)
398 04 0 1 1 D =0, NC ready
399 04 0 1 1
400 04 0 1 0
401 04 0 1 1 HC11 Reads length (4)
402 00 0 1 0 D =0, NC ready
403 00 0 1 1 HC11 Reads Data (00)
404 00 0 1 1 D =0, NC ready
405 01 0 1 0
406 02 0 1 1 HC11 Reads data (01)
407 02 0 1 1 D =0, NC ready
408 02 0 1 0
409 02 0 1 1 HC11 Reads data (02)
410 02 0 1 0 D =0, NC ready
411 02 0 1 0
412 03 0 1 1
413 01 0 0 0 HC11 Reads data (03)
414 01 0 1 1 HC11 Write Cmd—xfer
415 01 0 1 1 D = NC busy
496 01 0 1 1 D = NC busy
AN1252 MOTOROLA L oNWorks TECHNOLOGY

AL-438

