
MOTOROLA L ONWORKS TECHNOLOGY
AL–405
AN1251

����������� ��� �	������ �
���� 	���

INTRODUCTION

This application note describes how to download an ap-
plication program to the MC143120 NEURON CHIP over the
communications network. Typically this is not implemented
with the MC143150, because the program is in external
EPROM and only address, binding, and communication
information is stored in internal EEPROM. This application
note describes programming solely for the MC143120, which
has no external address or data lines and is always pro-
grammed over the network.

The MC143150 is used as the network manager. When a
service pin message is received, a table in the MC143150
application representing the MC143120’s application (and
configuration data) program is downloaded over the network.
IO1 is toggled whenever an acknowledgment is received
from the MC143120.

If a new data rate needs to be programmed, the program
must be modified to change the configuration at the start and
the node reset. This is because the program resets the
MC143120 and if changes are made to the configuration
data (such as the communication data rate), communication
wil l be lost. Appendix D presents a program cal led
comm1.nc which will change the communication rate to
78 kbps, 5 MHz and optionally display the service pin ID on
an Echelon Gizmo 2 or Motorola Gizmo 3 box. The changes
do not take effect until the node is reset. For further informa-
tion on configuration changes, refer to Motorola’s DL159
LONWORKS Technology Device Data, Appendix B.

BACKGROUND

The NEURON CHIP contains a media access processor, a
network processor, and an application processor. Most net-
work management commands received are processed by
the network processor and do not make it to the application
processor.

A NEURON CHIP need not have an application in it to be pro-
grammed.

All NEURON CHIP programming can be done over the net-
work. The transceiver on the programming node must be
compatible with the receiving node’s transceiver. The
MC143120 can be programmed in a socket, or after it is sol-
dered to a printed circuit board. The correct approach de-
pends on the transceiver on the printed circuit board.

The defaults of a new MC143120 are 10 MHz, 1.25 Mbps,
and differential input. It is possible to program a new

MC143120 at 78 kbps by lowering the external clock rate
from 10 MHz to 625 kHz. To program a new MC143120,
Echelon’s 3120 programmer runs at 5 MHz which scales the
network speed +625 kbps. Most programmers use the
MC143150 to program the MC143120. Lowering the clock
from 10 MHz to 5 MHz allows use of a lower cost EPROM.

A new MC143120 initially set up for 1.25 Mbps may not be
programmable if a 78 kbps transformer coupled transceiver
will be used; however, at short distances a transformer tuned
to a specific bit rate may still work at different bit rates. Alter-
native techniques include connecting another connector off
the board to program the MC143120, or programming the
device in a socket prior to soldering it down to the board.

OPTIONS FOR PROGRAMMING THE MC143120

Currently, there are five commercially available methods
for programming the MC143120:

1. LONBUILDER Developer’s Workbench

2. Echelon’s 3120 Programmer

3. System General’s Gang Programmer

4. Echelon’s Application Programmer’s Interface (API)

5. M143205EVK — a Motorola Evaluation Kit

LONBUILDER Developer’s Workbench

Using this method, a Direct Connect board made by
Motorola (M143204EVK) can be used to connect the
LONBUILDER’s differential direct connect backplane to a cus-
tom node. The use of a custom node requires the use of a
differential transceiver. At short distances, a differential net-
work connected to the Direct Connect board can communi-
cate to various differential networks, such as an EIA–485
node or a transformer node. Distances of up to 50 meters
have been tested with this approach; however, it is not rec-
ommended to mix a differential network in normal operations
unless a router or gateway is used.

Echelon’s 3120 Programmer

Model 21700: LONBUILDER NEURON 3120 Programmer.
The programmer must remain connected to a PC to pro-

gram the MC143120. Echelon’s programmer programs only
MC143120s with the following initial parameters: 10 MHz,
1.25 Mbps, and differential input.

�������
SEMICONDUCTOR TECHNICAL DATA

������

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–406

System General’s Gang Programmer

Part number: “NEURON 3120” used in a “TURPRO–832”
base.

This programmer also must be connected to a PC. It pro-
grams up to eight MC143120s. System General’s pro-
grammer carries the same limitations as Echelon’s; the
MC143120 must be set up with the following parameters:
10 MHz, 1.25 Mbps, and differential. In addition, the
MC143120 must be applicationless prior to use of the gang
programmer. Once programmed, the MC143120 cannot be
reprogrammed by the System General programmer unless
returned to an applicationless state. On an MC143120 with
firmware version 3, clearing address 0xf029 will reset it back
to the factory defaults, which are 10 MHz, 1.25 Mbps, differ-
ential input, and applicationless.

The System General uses the NXE format, whereas Eche-
lon’s 3120 programmer uses the NEI format. The NXE for-
mat is the downloadable application with no connection
information; NXE is set up only for unconfigured nodes. The
NEI format differs from the NXE in that it can be set up as
applicationless, unconfigured, or configured. The NEI format
is an internal file format used by Echelon; it is also used by
the prog3120.nc application in this program. For details,
refer to the LONBUILDER User’s Guide, Chapter 7.

Echelon’s API

With the use of a PC, a tool such as Echelon’s LON-
MANAGER, which is written using Echelon’s Application Pro-
grammer’s Interface, can be used to program MC143120s.

It is also possible to write one’s own programmer, either of
the “single” programmer or “gang” programmer description.

HOW THE APPLICATION WORKS

The steps to download configuration data and an applica-
tion are detailed in Motorola’s DL159, LONWORKS Technology
Device Data, Appendix B. This application note covers only
the actual downloading of the application. The steps are
summarized as follows:

1. Take the node off–line.

2. Set the node applicationless.

3. Download the application into the node.

4. Reset the node.

5. Recalculate the checksum.

6. Set the node to the configured state.

7. Set the node on–line.

8. Do the final reset.

This program can be modified to the user’s requirements.
A copy of the program discussed in this application note is
enclosed in the folder entitled prog3120.zip on Motorola’s
Design–NET bulletin board. Design–NET can be accessed
through Internet at http://motserv.indirect.com.

The name of the application program is prog3120.nc . It
was tested using a Motorola Test Board (M143205EVK).
This kit was convenient because it has a MC143150 and a
MC143120 socket. This kit is not necessary to run the ap-
plication program; the only requirement is that an MC143150
be connected through a network to the MC143120. The ap-
plication program is to large for a MC143120.

A note on the Test Board: in order to stop the MC143120
from resetting the MC143150 when a network management
reset command is sent, a minor modification was performed
on the Test Board. The modification consisted of cutting the
reset trace between the MC143120 and MC143150 on the
bottom side of the test board, then placing a diode along the
trace cut with the anode on the MC143120 side. Any signal
diode such as the 1N4148 will work. The diode prevents the
MC143120 reset pulse from reaching the MC143150.

Downloading an MC143120 Application

To use the prog3120.nc program:

1. Compile (and debug if changes were made) to
prog3120.nc program using the LONBUILDER Devel-
oper’s Workbench. NOTE: This is an MC143150 node.

2. Export the MC143120 application with the following
settings:

NEI
Motorola S–Record fmt.
Configure file.

NOTE: This is for a MC143120 node and part of this
table will be placed in the prog3120.nc application.

3. Re–format the NEI and paste it into the MC143150 data
table under codedata . This is the most complicated
part of this procedure.

A program entitled alon.exe will reformat the NEI file
so that the table can be pasted directly into the ‘code-
data.’ This program is available from the LONWORKS

folder on the Design–Net bulletin board.

Motorola assumes no liability arising out of use of this
program or any other product or software described in
this document. The software described in this document
is provided on an “as is” basis and without warranty.

4. Re–compile the MC143150 node and export the file with
the following configuration: NRI and Configured.

MC143120 Firmware Versions/Exporting NEI Files

This procedure and application were tested by exporting
from LONBUILDER 2.2 software for a Version 3 MC143120.
Revisions of the LONBUILDER software may change the way
NEI files are written to, making alon.exe out–of–date. For
exporting purposes, different versions of the MC143120 are
not compatible with each other. As of the date of this publi-
cation, most MC143120s in the field are Version 3 with
Version 4 being the latest release. New versions of the
MC143120 will be released as changes to the firmware be-
come necessary for derivative products or enhancements.
During the first quarter of 1995, Motorola began production
of MC143120s incorporating Version 4 firmware. The firm-
ware in the MC143120 is masked inside the device as ROM,
and changes will occur infrequently.

The user may verify which version of the NEURON CHIP he
or she is working with by noting the LONBUILDER hardware
properties in the field “NEURON CHIP firmware.” If the field
reads “0” or is empty, it means the application uses the latest
LONBUILDER software. LONBUILDER Version 2.2 software de-
faults to MC143120 Version 3. LONBUILDER Version 3.0 soft-
ware defaults to MC143120 Version 4. The reason different
firmware versions will not be compatible is because the pro-
gram makes calls into the firmware, and the firmware
changes with revisions. For similar reasons, a program

MOTOROLA L ONWORKS TECHNOLOGY
AL–407
AN1251

exported for an MC143120 will not be downloadable to an
MC143150 and vice–versa.

The contents of the NEI file for the MC143120 will depend
on how the program was exported: i.e., applicationless, un-
configured, or configured. Applicationless and unconfigured
versions will contain no address information. Unconfigured
and configured versions will contain an application.

MAXIMUM DATA BYTES

As shown in Appendix B of DL159/D, LONWORKS Technol-
ogy Device Data, no more than 38 data bytes (for a worst
case of 10 MHz input clock rate), should be written at one
time. The 38 byte limit gives the NEURON CHIP enough time to
prevent a watchdog time–out from programming too many
EEPROM bytes and re–calculating the application and con-
figuration checksums. The 38 byte limitation may be in-
creased by calculating the checksums in a separate network
management operation. 38 bytes is too large for the default
input network buffer size of 42 bytes.

16 bytes can be safely written on a new MC143120. This
size may be increased depending on the receiving node’s
clock rate (to prevent watchdog time–out if both checksums
are re–calculated), and on the size of the receiving node’s
buffers.

Acknowledged service is used for downloading application
data, and unacknowledged service for everything else.
prog3120.nc is written so that the service type does not
add to the amount of time required for the node to send the
commands. prog3120.nc uses a timer called load_image
to know when to send the next command. This approach is
used because of the time required for the receiving node to
program the EEPROM, which may take significantly more
time than eliciting a response from the receiving node.

The maximum number of data bytes a packet can send to
the MC143120 is limited by the EEPROM write time of the
MC143120 as well as by the buffer sizes. When sending a
write memory command and optional recalculate checksum
command to an MC143120, make certain that there is
enough time to program all the bytes in the MC143120 be-
fore the watchdog time–out occurs.

Worst case timing requires 20 ms to write an EEPROM
byte, 10 ms if it is already erased. The translation program,
alon.exe , converts the NEI file to an output file with no
more than 10 data bytes in a packet. 10 data bytes x 10 ms =
100 ms. The time required to load the next command after a
network management memory write command is 150 ms.
This time differential allows 50 ms tolerance in the event that
a message has to be resent, thus adding to the transmission
and processing times at the transmitting and receiving
nodes. For all other network management commands the
timer is set to 100 ms. The only exception to this rule is for
the last command, a final reset in which no timer is used, and
after which no more traffic is generated from the network
management node.

MC143120 PACKET SIZE GUIDELINES

Use the following guidelines to determine the maximum
number of data bytes a packet can send to a new
MC143120.

1. Listed below is the default for the input network buffers
on a NEURON CHIP:

default size = max(42, 21 + size of (largest NV))

For a new MC143120 with no application, the default
size will be 42 bytes.

2. Listed below is the equation to determine an input net-
work buffer size:

net_buf_in_size = max_msg_size
+ protocol_overhead + 6

where:
max_msg_size > = largest network variable or

network management/
network diagnostic message
addressed to the node.
Explicit messages size
 includes data + code.
Network variables use size
of the network variable + 2.

protocol_overhead = bytes in protocol
overhead (addresses,
CRC, …). Worst case is
NEURON ID addressing
with domain ID of 6
bytes. Range is 7 – 20
bytes.

Working backwards, if the default size = 42 bytes, with a
worst case protocol_overhead addressing of 20 bytes,
the largest data size is 16 bytes:

net_buf_in_size=max_msg_size +protocol_overhead +6
42 = 16 + 20 + 6

If the addressing size is known and is not the worst case
addressing, the protocol_overhead will be decreased
and the max_msg_size increased. If no domain is used, the
max_msg_size will be increased by six bytes.

prog3120.nc Final Notes

prog3120.nc is shown in Appendix C. It took approxi-
mately 15 seconds to download the application to the
MC143120. The amount of time required will depend on the
number of bytes to program. The program prog3120.nc
program will always leave the MC143120 you are attempting
to program in the configured, on–line state, even if that is un-
specified in the NXE file.

prog3120.nc does not perform a complete verification by
reading after every wri te command. A commercial
MC143120 programmer should verify the node state after
each change; be certain that the MC143120 was actually re-
set upon request and verify EEPROM writes by performing a
memory read command after each memory write command.

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–408

APPENDIX A
S–RECORD INFORMATION

INTRODUCTION

The S–record format for output modules encodes pro-
grams and/or data files in a printable format for trans-
portation between computer systems. This facilitates
S–record editing and permits visual monitoring of the trans-
portation process.

S–RECORD CONTENT

S–Records are character strings of several fields which
identify the record type, length, memory address, code/data,
and checksum. Each byte of binary data is encoded as a
2–character hexadecimal number: the first character repre-
sents the high–order 4 bits, and the second the low–order 4
bits of the byte.

The 5 fields of an S–record are:

TYPE RECORD
LENGTH

ADDRESS CODE/
DATA

CHECKSUM

Field compositions are:

Printable
Field Characters Contents

Type 2 S–record type – S0, S1 – S9.
LONBUILDER V. 2.2 software uses
only S1 and S9 record types.

Record 2 The count of the character pairs
Length pairs in the record, excluding the

type and record length.

Address 4, 6, 8 The 2–, 3–, or 4–byte address at
which the data field is to be
loaded into memory. LONBUILDER

V 2.2 software uses only a 2
byte address. This is due to the
NEURON CHIP’s 16 bit addressing.

Code/Data 0 – 2n From 0 to n bytes of executable
code, memory loadable data, or
descriptive information. To
ensure a node can talk to
another node, keep the data size
limited to 11 bytes. This number
may be increased only if the

network node’s characteristics
(such as number of buffers, size,
and traffic) are understood.

Checksum 2 The least significant byte of the
one’s complement of the sum of
the values represented by the
pairs of characters making up
the record length, address, and
the code/data fields.

The record length (byte count) and checksum fields en-
sure accuracy of transmission.

S–RECORD TYPES

There are eight types of S–records to accommodate the
various needs of the encoding, transportation, and decoding
functions. LONBUILDER v2.2 software uses only S1 and S9 re-
cord types.

An S–record format module may contain S–records of the
following types:

Type Description

S0 The header record for each block of S–records.
The code/data field may contain any descriptive
information identifying the following block of
S–records. The address field is normally zeros.
LONBUILDER v2.2 software does not use this
S–record.

S1 A record containing code/data and the 2–byte
address at which the code/data is to reside. If
using the NEI file format, a 1–byte data at the
r/w bit address (0xf00a) should be moved to the
end of the S–records before the last reset (S9
record).

S2 – S8 Not applicable to LONBUILDER v2.2 software.

S9 A termination record for a block of S1 records.
When encountered using the NEI file format,
the node should be reset.

Typically there is only one termination record (S9) but the
NEI file may use multiples of these, showing where a reset of
the receiving node should be done.

MOTOROLA L ONWORKS TECHNOLOGY
AL–409
AN1251

APPENDIX B
TRANSPOSING AN NEI FILE TO ‘ prog3120.nc’ FORMAT

A test program called test_io.nc was used to export to
an NEI file. The node was configured for:

10 MHz, 1.25 MBPS, differential input, configured

Following is the test_io.nei file created:

S105F0080803F7

S113F02C05AC03010000000000000000000000001B

S105F0240000E6

S109F026000000000000E0

S104F03C557A

S112F03D000000000000018400FFFFFFFFFFFF41

S123F04C00A0

S123F06C0080

S10EF08C000000000000000000000075

S106F0973FFF0F25

S10BF00D544553545F494F00C0

S108F008F1DB01F1EE53

S112F01513F012249B222323000000FF38000471

S123F09B99FE760002713B760102714876020271557603027162760402716F760502717C10

S123F0BB76060375F14976070375F15B76080375F16D76090375F17E760A0375F18FE47537

S123F0DBF19F81188880811874808218748084187475F19F821888808118748082187480F3

S123F0FB84187475F19F84188880811874808218748084187475F19FB4081888808118741F

S123F11B8082187480841874717AB41018888081187480821874808418747168B42018886B

S123F13B8081187480821874808418747156B440188880811874808218748084187471444A

S123F15BB48018888081187480821874808418747132801888818118748082187480841816

S123F17B747121801888808118748182187480841874711080188880811874808218748161

S123F19B8418742099FF721599FE3ED9FEB40B99FE0AC34781D9FFB409D9FE711299FE3FA5

S123F1BBD9FEB40B99FE0AC34680D9FF81D9FE8099FD8003C93175F1E98099FD8003C931CB

S11EF1DB01EFFDF1CF00040000000108F09AB419D9FD3100080100000E0000E6

S9030000FC

S113F02C25AC010401000100003D000000000000BB

S9030000FC

S104F01514E2

S104F00A0100

S9030000FC

The contents of the S records may be analyzed by looking
at the memory map structures in Appendix A in DL159
LONWORKS Technology Device Data.

The next step is to run alon.exe . For simplicity, place the
file to be converted (test_io.nei) in the same directory
as alon.exe. This step is optional. If you know which
directory the NEI file is located in, you can move to that direc-
tory through the menus.

Type Description

alon At the DOS prompt run this program.
A menu comes with the heading: ‘Choose
NXE File to load’.

*.nei Under Name, change to *.nei.
Move the cursor to highlight your NEI file.
In this example it is test_io.nei.

<enter> A menu comes up asking:
Enter Output File Name:

test_io.alo Type in an output file name that will be
created.

A file is created and the program is terminated. The file
created has a format similar to the one below (test_
io.alo). Starting with the second line (in this example it is
2,221,), paste this and the rest of the table into
prog3120.nc under the data table called codedata . Also,
place the number after the size: (in this example it is 733) in
the index of codedata.

The second line represents the byte size of the array with
the following format:

size of array = 1st number x 256 + 2nd number

For example:

2,221 ==> array size = 2 x 256 + 221 = 733 bytes.

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–410

size: 733
2,221,
0x02,0xF0,0x08, 8, 3,
0x0A,0xF0,0x08,241,147, 1,241,166, 84, 69, 83, 84, 95,
0x0A,0xF0,0x12, 73, 79, 0, 19, 16, 18, 36,155, 34, 35,
0x0A,0xF0,0x1C, 35, 0, 0, 0,255, 56, 0, 4, 0, 4,
0x02,0xF0,0x26, 0, 0,
0x0A,0xF0,0x28, 0, 0, 0, 0, 5,172, 3, 1, 0, 0,
0x0A,0xF0,0x32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x0A,0xF0,0x3C, 85, 0, 0, 0, 0, 0, 0, 1,131, 0,
0x02,0xF0,0x46,255,255,
0x0A,0xF0,0x48,255,255,255,255, 0, 0, 0, 0, 0, 63,
0x0A,0xF0,0x52,255, 15, 0,153,254,118, 0, 2,113, 59,
0x0A,0xF0,0x5C,118, 1, 2,113, 72,118, 2, 2,113, 85,
0x02,0xF0,0x66,118, 3,
0x0A,0xF0,0x68, 2,113, 98,118, 4, 2,113,111,118, 5,
0x0A,0xF0,0x72, 2,113,124,118, 6, 3,117,241, 3,118,
0x0A,0xF0,0x7C, 7, 3,117,241, 21,118, 8, 3,117,241,
0x02,0xF0,0x86, 39,118,
0x0A,0xF0,0x88, 9, 3,117,241, 56,118, 10, 3,117,241,
0x0A,0xF0,0x92, 72,228,117,241, 87,129, 24,136,128,129,
0x0A,0xF0,0x9C, 24,116,128,130, 24,116,128,132, 24,116,
0x02,0xF0,0xA6,117,241,
0x0A,0xF0,0xA8, 87,130, 24,136,128,129, 24,116,128,130,
0x0A,0xF0,0xB2, 24,116,128,132, 24,116,117,241, 87,132,
0x0A,0xF0,0xBC, 24,136,128,129, 24,116,128,130, 24,116,
0x02,0xF0,0xC6,128,132,
0x0A,0xF0,0xC8, 24,116,117,241, 87,180, 8, 24,136,128,
0x0A,0xF0,0xD2,129, 24,116,128,130, 24,116,128,132, 24,
0x0A,0xF0,0xDC,116,113,120,180, 16, 24,136,128,129, 24,
0x02,0xF0,0xE6,116,128,
0x0A,0xF0,0xE8,130, 24,116,128,132, 24,116,113,102,180,
0x0A,0xF0,0xF2, 32, 24,136,128,129, 24,116,128,130, 24,
0x0A,0xF0,0xFC,116,128,132, 24,116,113, 84,180, 64, 24,
0x02,0xF1,0x06,136,128,
0x0A,0xF1,0x08,129, 24,116,128,130, 24,116,128,132, 24,
0x0A,0xF1,0x12,116,113, 66,180,128, 24,136,128,129, 24,
0x0A,0xF1,0x1C,116,128,130, 24,116,128,132, 24,116,113,
0x02,0xF1,0x26, 48,128,
0x0A,0xF1,0x28, 24,136,129,164, 24,116,128,130, 24,116,
0x0A,0xF1,0x32,128,132, 24,116,113, 31,128, 24,136,128,
0x0A,0xF1,0x3C,129, 24,116,129,130, 24,116,128,132, 24,
0x02,0xF1,0x46,116, 47,
0x0A,0xF1,0x48,128, 24,136,128,129, 24,116,128,130, 24,
0x0A,0xF1,0x52,116,129,132, 24,116,153,255,114, 21,153,
0x0A,0xF1,0x5C,254, 62,217,254,180, 11,153,254, 10,195,
0x02,0xF1,0x66, 71,129,
0x0A,0xF1,0x68,217,255,180, 9,217,254,113, 18,153,254,
0x0A,0xF1,0x72, 63,217,254,180, 11,153,254, 10,195, 70,
0x0A,0xF1,0x7C,128,217,255,129,217,254,128,153,253,128,
0x02,0xF1,0x86, 3,201,
0x0A,0xF1,0x88, 49,117,241,161,128,153,253,128, 3,201,
0x0A,0xF1,0x92, 49, 1,239,253,241,135, 0, 4, 0, 0,
0x0A,0xF1,0x9C, 0, 1, 8,240, 84,180,200,217,253, 49,
0x02,0xF1,0xA6, 0, 8,
0x0A,0xF1,0xA8, 1, 0, 0, 14, 0, 0, 0, 0, 0, 0,
0x0A,0xF1,0xB2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x0A,0xF1,0xBC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x02,0xF1,0xC6, 0, 0,
0x0A,0xF1,0xC8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x0A,0xF1,0xD2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x0A,0xF1,0xDC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x02,0xF1,0xE6, 0, 0,

MOTOROLA L ONWORKS TECHNOLOGY
AL–411
AN1251

0x0A,0xF1,0xE8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x0A,0xF1,0xF2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0x04,0xF1,0xFC, 0, 0, 0, 0,
0x00,
0x0A,0xF0,0x2C, 5,172, 1, 4, 0, 0, 0, 0, 0,103,
0x06,0xF0,0x36, 4, 0, 0, 0, 0, 0,
0x00,
0x01,0xF0,0x15, 20,
0x01,0xF0,0x0A, 1,
0x00

alon.exe takes the NEI file, which is in Motorola’s S–
record format (Appendix A of this databook explains the S–
record format) and converts it into a new file with the
following rules:

1. The format is:
<# of data bytes>, <2 byte address>, <data>

ex: 0x02, 0xF0,0x08, 8, 3,

where:

<# of data bytes> is between 0 and 0x0A , in hex

<2 byte address> is in hex

<data> is between 0 – 10 bytes of data (in decimal) to be
downloaded

2. Replaces S9 record with 0x00 record meaning to reset
the MC143120.

3. If found, move a single byte data record at address
$f00a to the bottom before the node is reset (a 0x00
record as in Step 1).

4. No more than 10 data bytes per record. If a number
higher than 10 is encountered, a new record(s) is
created.

REFERENCES

1. “Packaging Manual for ASIC Arrays” by Joellen Cas-
cante, Motorola, Issue A 1990.

2. NEURON CHIP Test Board User’s Manual, M143205EVK.

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–412

APPENDIX C

/***

Filename: prog3120.nc

Motorola, Inc

Disclaimer: Motorola reserves the right to make changes to this

software without further notice herein. Motorola

makes no warranty, representation or guarantee regarding

the suitability of this software for any particular

purpose nor does Motorola assume any liability arising

out of the application or use of it, and specifically

disclaims any and all liability, including without

limitation consequential or incidental damages.

0.1 02/16/93 original

0.2 05/27/94 change codedata using testnei.alo

0.2 06/01/94 change time to pulse IO1

Description: When receive a service pin message, download the table

under ‘codedata.’ ‘codedata’ is only set up to program

a 3120 version 3.

I/O inputs: none

I/O outputs: IO_1: pulse when rx a msg_succeeds from node

trying to program. Then one long pulse

when finished.

net inputs: none

net outputs: none

message tags: write_image

Memory Requirements:

ROM Usage:

System Data 2 bytes

Application Code & Const Data 1288 bytes

Library Code & Const Data 0 bytes

Self–Identification Data 6 bytes

–––––

Total ROM Requirement 1296 bytes

Remaining ROM 15088 bytes

EEPROM Usage: (not necessarily in order of physical layout)

System Data & Parameters 74 bytes

Domain & Address Tables 20 bytes

Network Variable Config Tables 0 bytes

Application EEPROM Variables 0 bytes

Library EEPROM Variables 0 bytes

Application Code & Const Data 0 bytes

Library Code & Const Data 0 bytes

–––––

Total EEPROM Requirement 94 bytes

Remaining EEPROM 418 bytes

RAM Usage: (not necessarily in order of physical layout)

System Data & Parameters 572 bytes

Transaction Control Blocks 122 bytes

Appl Timers & I/O Change Events 4 bytes

Network & Application Buffers 528 bytes

MOTOROLA L ONWORKS TECHNOLOGY
AL–413
AN1251

Application RAM Variables 19 bytes

Library RAM Variables 0 bytes

–––––

Total RAM Requirement 1245 bytes

Remaining RAM 803 bytes

Required header files: none

Timing: Acknowledgments is used for network memory write

commands for downloading bytes to be programmed in

EEPROM, unacknowledgments otherwise. 150 ms

timer is used for the memory write commands before

the next packet is sent, 100 ms otherwise.

Testing: verified 3120 program working.

Notes:

1. node state is different than node mode.

Node state tells if:

a. applicationless: no application or configuration checksum

b. unconfigured: application checksum, no configuration checksum

c. configured: application and configuration checksum.

If the configuration or application checksum fails, the node

goes applicationless.

Node mode tells if:

a. online

b. offline: the only when statements that work here are:

reset, online, offline and wink

2. Timing:

a. Since unacknowledge is used, ‘load_image’ is a timer that

tells when to set up the next packet. This may need to be

increased (decreased) depending on clock rate of this node and

the receiving node, baud rate, routers, # of bytes written to,

to name a few.

b. To ensure that any node can be written to, less than or equal

to 16 bytes is written to at a time. This program uses 10.

The data book shows 38 bytes as a maximum for the 10 MHz

clock rate (see data book B.1.5) when the configuration

and application checksums are used.

This size may be increased if the receiving node buffers sizes

are known. Depending on receiving node clock rate, and

amount of RAM dedicated to buffers, increasing the number

of data bytes placed in a packet can drastically increase

the time to program a Neuron Chip.

3. The only time ack. service is used is loading the application.

All other cases unack. service is used. For a possible noisy

environment, this may want to be changed to unack. This program

would really speed up if unack. is used. Currently there is a

timer (load_image) that is used to know when to set up the

next packet. This program could be changed so that the

ack. is waited for.

4. Other possible additions:

a. Check if the node to be programmed has its’ read/write

bit set.

b. Maximum number of times to resend a message.

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–414

c. If the version number on the node to be programmed is the

same as what is expected. For example, do not program a

version 2 3120, with a version 3 exported file.

d. Program configuration data. If configuration data is

programmed, program it first. In addition, make sure

your NEI file is program with the new configuration

information. The reason the configuration is programmed

first is because the NEI file contains these parameters

and when it resets, it will lose communication with the

node unless the node is already programmed to that

data rate.

5. NEI file contains both application and configuration data

(data rate).

6. Program configuration data before programming the application

so when reset the node, the node matches the data rate in

the application.

***/

/****************************** Compiler directives *************************************/

#pragma scheduler_reset

#pragma enable_io_pullups

#pragma num_addr_table_entries 1

#pragma one_domain

#pragma app_buf_out_priority_count 0

#pragma net_buf_out_priority_count 0

/********************************* Include files **/

#include <addrdefs.h>

#include <access.h>

#include <msg_addr.h>

#include <netmgmt.h>

#include <control.h>

/********************************** I/O Objects ***/

IO_1 output oneshot clock(7) lamp; // everytime rx a msg_succeeds

// response from the node

// we are trying to program,

// pulse IO_1.

/******************************** Network Variables *************************************/

// none

/*********************************** Message Tags ***************************************/

msg_tag write_image;

/*********************************** Constants ***************************************/

/*

‘codedata’ is the data to be programmed. This data came from

the *.nxe file. If the first record has a data length of one byte,

then it should not be written until after all the other records

have been written. This is because it contains the read/write

protect bit which could prevent further downloading if it is set.

If a record has a data count of zero, then the node should be

reset at this point.

MOTOROLA L ONWORKS TECHNOLOGY
AL–415
AN1251

The structure of ‘codedata’ is as follows:

1. first 2 bytes – the length of the table.

lenght of table = first byte times 256 + second byte.

The length of the table is what is used to define the

size of the array. For example, if 2,136 are the first

two entries in the table, the array size is:

2 x 256 + 136 = 648 ==> codedata[648].

2. Each record, or each data packet is put on a separate line.

Each record begins with a data length field:

If the data length = 0, it means to reset the neuron,

and the record ends.

Else if the data length is > 0, it is followed by the address

(in two bytes) and the data bytes themselves.

3. The data length and address is in hex, the data in decimal.

4. Example #1:

<data length:1 entry><address:2 entries><data bytes: up to 10 entries>

0x02, 0xF0, 0x08 8,3

*/

// using test_io.nei set up for a 3120, 10 MHz, 78 KBPS, differential,

// then used alon.exe to make test_io.alo

const unsigned char codedata[728] = {

2,216,

0x02, 0xF0, 0x08, 8, 3,

0x0A, 0xF0, 0x2C, 5, 172, 3, 1, 0, 0, 0, 0, 0, 0,

0x06, 0xF0, 0x36, 0, 0, 0, 0, 0, 0,

0x02, 0xF0, 0x24, 0, 0,

0x06, 0xF0, 0x26, 0, 0, 0, 0, 0, 0,

0x01, 0xF0, 0x3C, 85,

0x0A, 0xF0, 0x3D, 0, 0, 0, 0, 0, 0, 1, 132, 0, 225,

0x05, 0xF0, 0x47, 255, 255, 255, 255, 255,

0x0A, 0xF0, 0x4C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x0A, 0xF0, 0x56 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x0A, 0xF0, 0x60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x02, 0xF0, 0x6A, 0, 0,

0x0A, 0xF0, 0x6C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x0A, 0xF0, 0x76, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x0A, 0xF0, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x02, 0xF0, 0x8A, 0, 0,

0x0A, 0xF0, 0x8C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x01, 0xF0, 0x96, 0,

0x03, 0xF0, 0x97, 63, 255, 15,

0x08, 0xF0, 0x0D, 84, 69, 83, 84, 95, 73, 79, 0,

0x05, 0xF0, 0x08, 241, 219, 1, 241, 238,

0x0A, 0xF0, 0x15, 19, 240, 18, 36, 155, 34, 35, 35, 0, 0,

0x05, 0xF0, 0x1F, 0, 255, 56, 0, 4,

0x0A, 0xF0, 0x9B, 153, 254, 118, 0, 2, 113, 59, 118, 1, 2,

0x0A, 0xF0, 0xA5, 113, 72, 118, 2, 2, 113, 85, 118, 3, 2,

0x0A, 0xF0, 0xAF, 113, 98, 118, 4, 2, 113, 111, 118, 5, 2,

0x02, 0xF0, 0xB9, 113, 124,

0x0A, 0xF0, 0xBB, 118, 6, 3, 117, 241, 73, 118, 7, 3, 117,

0x0A, 0xF0, 0xC5, 241, 91, 118, 8, 3, 117, 241, 109, 118, 9,

0x0A, 0xF0, 0xCF, 3, 117, 241, 126, 118, 10, 3, 117, 241, 143,

0x02, 0xF0, 0xD9, 228, 117,

0x0A, 0xF0, 0xDB, 241, 159, 129, 24, 136, 128, 129, 24, 116, 128,

0x0A, 0xF0, 0xE5, 130, 24, 116, 128, 132, 24, 116, 117, 241, 159,

0x0A, 0xF0, 0xEF, 130, 24, 136, 128, 129, 24, 116, 128, 130, 24,

0x02, 0xF0, 0xF9, 116, 128,

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–416

0x0A, 0xF0, 0xFB, 132, 24, 116, 117, 241, 159, 132, 24, 136, 128,

0x0A, 0xF1, 0x05, 129, 24, 116, 128, 130, 24, 116, 128, 132, 24,

0x0A, 0xF1, 0x0F, 116, 117, 241, 159, 180, 8, 24, 136, 128, 129,

0x02, 0xF1, 0x19, 24, 116,

0x0A, 0xF1, 0x1B, 128, 130, 24, 116, 128, 132, 24, 116, 113, 122,

0x0A, 0xF1, 0x25, 180, 16, 24, 136, 128, 129, 24, 116, 128, 130,

0x0A, 0xF1, 0x2F, 24, 116, 128, 132, 24, 116, 113, 104, 180, 32,

0x02, 0xF1, 0x39, 24, 136,

0x0A, 0xF1, 0x3B, 128, 129, 24, 116, 128, 130, 24, 116, 128, 132,

0x0A, 0xF1, 0x45, 24, 116, 113, 86, 180, 64, 24, 136, 128, 129,

0x0A, 0xF1, 0x4F, 24, 116, 128, 130, 24, 116, 128, 132, 24, 116,

0x02, 0xF1, 0x59, 113, 68,

0x0A, 0xF1, 0x5B, 180, 128, 24, 136, 128, 129, 24, 116, 128, 130,

0x0A, 0xF1, 0x65, 24, 116, 128, 132, 24, 116, 113, 50, 128, 24,

0x0A, 0xF1, 0x6F, 136, 129, 129, 24, 116, 128, 130, 24, 116, 128,

0x02, 0xF1, 0x79, 132, 24,

0x0A, 0xF1, 0x7B, 116, 113, 33, 128, 24, 136, 128, 129, 24, 116,

0x0A, 0xF1, 0x85, 129, 130, 24, 116, 128, 132, 24, 116, 113, 16,

0x0A, 0xF1, 0x8F, 128, 24, 136, 128, 129, 24, 116, 128, 130, 24,

0x02, 0xF1, 0x99, 116, 129,

0x0A, 0xF1, 0x9B, 132, 24, 116, 32, 153, 255, 114, 21, 153, 254,

0x0A, 0xF1, 0xA5, 62, 217, 254, 180, 11, 153, 254, 10, 195, 71,

0x0A, 0xF1, 0xAF, 129, 217, 255, 180, 9, 217, 254, 113, 18, 153,

0x02, 0xF1, 0xB9, 254, 63,

0x0A, 0xF1, 0xBB, 217, 254, 180, 11, 153, 254, 10, 195, 70, 128,

0x0A, 0xF1, 0xC5, 217, 255, 129, 217, 254, 128, 153, 253, 128, 3,

0x0A, 0xF1, 0xCF, 201, 49, 117, 241, 233, 128, 153, 253, 128, 3,

0x02, 0xF1, 0xD9, 201, 49,

0x0A, 0xF1, 0xDB, 1, 239, 253, 241, 207, 0, 4, 0, 0, 0,

0x0A, 0xF1, 0xE5, 1, 8, 240, 154, 180, 25, 217, 253, 49, 0,

0x07, 0xF1, 0xEF, 8, 1, 0, 0, 14, 0, 0,

0x00,

0x0A, 0xF0, 0x2C, 37, 172, 1, 4, 1, 0, 1, 0, 0, 61,

0x06, 0xF0, 0x36, 0, 0, 0, 0, 0, 0,

0x00,

0x01, 0xF0, 0x15, 20,

0x01, 0xF0, 0x0A, 1,

0x00,

};

/*********************************** Globals ***************************************/

NM_service_pin_msg svc_pin_msg; // copy of service pin message

const char *image_ptr; // points to 1 byte in ‘codedata’. This is

// next byte to write

const char *last_image_ptr;

enum {

set_offline, // unack

set_appless, // unack

load_info, // if size field = 0 (reset node): unack,

// else ack (typically it will be this)

reset_node, // unack

recalculate_cs, // ack

set_config, // unack

set_online, // unack

final_reset // unack

} image_state = set_offline;

MOTOROLA L ONWORKS TECHNOLOGY
AL–417
AN1251

/*********************************** Timers ***************************************/

mtimer load_image; // when to send ready next packet

/********************************** Functions *************************************/

void config_message(service_type type, int code) {

msg_out.priority_on=FALSE;

msg_out.authenticated=FALSE;

msg_out.dest_addr.nrnid.type=NEURON_ID;

msg_out.dest_addr.nrnid.domain=0;

msg_out.dest_addr.nrnid.subnet=0;

msg_out.service=type;

memcpy(msg_out.dest_addr.nrnid.nid,svc_pin_msg.neuron_id,6);

msg_out.dest_addr.nrnid.retry=15;

msg_out.dest_addr.nrnid.tx_timer=10;

msg_out.code=code;

msg_send();

}

/********************************** Reset *************************************/

/* when (reset) {

not needed

} */

/************************** Priority When Clauses *****************************/

// none

/************************ Non–Priority When Clauses ***************************/

when (msg_arrives (NM_service_pin | NM_opcode_base))

{

memcpy(&svc_pin_msg, msg_in.data, sizeof(NM_service_pin_msg));

// get local copy of service pin message

image_state = set_offline; // 1st step in the sequence

image_ptr = &codedata[0]; // point to start in array

load_image = 1; // set timer to start sending image 1 ms from now

}

when(timer_expires(load_image)) {

char count;

char size;

if(msg_alloc()) { // returns true if the Neuron chip has

// buffers for the message. This way

// will never go into pre–emption mode.

msg_out.tag = write_image;

switch(image_state) {

case set_offline:

msg_out.data[0] = 0; // set mode state: appl_offline

config_message(UNACKD,NM_set_node_mode | NM_opcode_base);

break;

case set_online:

msg_out.data[0] = 1; // set mode state: appl_online

config_message(UNACKD,NM_set_node_mode | NM_opcode_base);

break;

case set_appless:

msg_out.data[0] = 3; // set mode state: change

msg_out.data[1] = 3; // if [0] = 3, need to

// tell which option: appl’ess

config_message(UNACKD,NM_set_node_mode | NM_opcode_base);

break;

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–418

case set_config:

msg_out.data[0] = 3; // set node state:

msg_out.data[1] = 4; // configured, online

config_message(UNACKD,NM_set_node_mode | NM_opcode_base);

break;

case load_info:

last_image_ptr=image_ptr;

if(*image_ptr == 0) { // if size field is zero,

// reset the node

image_ptr++; // point to next byte in table

msg_out.data[0] = 2; // reset node

config_message(UNACKD,NM_set_node_mode|NM_opcode_base);

}

else {

msg_out.data[0] = 0;

msg_out.data[3] = size = *image_ptr;

image_ptr++; // point to next byte in table

msg_out.data[1] = *image_ptr; // low byte of address

image_ptr++; // point to next byte in table

msg_out.data[2] = *image_ptr; // high byte of address

image_ptr++; // point to next byte in table

msg_out.data[4] = 0; // do not recalculate checksum

for (count = 0; count < size; count++) {

msg_out.data[5+count] = *image_ptr;

image_ptr++; // point to next byte in table

}

config_message(ACKD, NM_write_memory | NM_opcode_base);

}

break;

case reset_node:

case final_reset:

msg_out.data[0] = 2; // reset node

config_message(UNACKD, NM_set_node_mode | NM_opcode_base);

break;

case recalculate_cs:

msg_out.data[0] = 1; // both checksums

config_message(UNACKD, NM_checksum_recalc | NM_opcode_base);

break;

}

}

else load_image = 1; // if msg_alloc fails, will try in again

// in 1 ms.

}

When(msg_fails(write_image)) {

if(image_state == load_info) image_ptr = last_image_ptr;

load_image = 1;

}

when(msg_succeeds(write_image)) {

io_out(lamp,1000); // indicate finished with write

switch(image_state) {

case set_offline:

case set_appless:

case reset_node:

case recalculate_cs:

case set_config:

case set_online:

MOTOROLA L ONWORKS TECHNOLOGY
AL–419
AN1251

image_state++; // next command in sequence

load_image = 100; // when to send next packet. These

// commands typically do not take as long

// as a write message. Although, according

// to the data book, a reset can take

// up to 18 seconds worst case. See

// appendix B under application

// downloading.

break;

case load_info:

if (((long unsigned) image_ptr) >=

((* (const long unsigned *) &codedata) +

((long unsigned) &codedata)))

image_state = reset_node;

load_image = 150; // give more time for up to

// 10 byte xfers

break;

case final reset: // installation complete;

io_out(lamp,50000); // indicate finished with process

break;

}

}

when(msg_arrives) {

}

when(resp_arrives) {

}

when(msg_completes) {

}

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–420

APPENDIX D

/***

Filename: comm1.nc

Motorola, Inc

Disclaimer: Motorola reserves the right to make changes to this

software without further notice herein. Motorola

makes no warranty, representation or guarantee regarding

the suitability of this software for any particular

purpose nor does Motorola assume any liability arising

out of the application or use of it, and specifically

disclaims any and all liability, including without

limitation consequential or incidental damages.

0.1 06/07/94 get svc pin msg, program to 78 kbps, 5 mhz

Description: When get svc pin msg, program to 78 kbps, 5 MHz.

If using a gizmo 2 or 3 will sound buzzer,

turn on IO_1 red LED and display ID. Pushing

button corresponding to IO_7 will scroll to

next part on service pin message and turn off

red LED. When get to beginning of service pin

message red LED goes back on.

I/O inputs: IO_7 input bit IO_left_sw;

IO_8 neurowire master select (IO_2) IO_display;

I/O outputs: IO_0 output frequency clock (7) IO_sound = 0;

IO_1 output bit IO_red_led = OFF;

IO_2 output bit IO_display_select = 1; active low

net inputs: none

net outputs: none

Memory Requirements: for the 3150

Link Memory Usage Statistics:

ROM Usage:

System Data 2 bytes

Application Code & Const Data 277 bytes

Library Code & Const Data 0 bytes

Self–Identification Data 6 bytes

–––––

Total ROM Requirement 285 bytes

Remaining ROM 16099 bytes

EEPROM Usage: (not necessarily in order of physical layout)

System Data & Parameters 74 bytes

Domain & Address Tables 105 bytes

Network Variable Config Tables 0 bytes

Application EEPROM Variables 0 bytes

Library EEPROM Variables 0 bytes

Application Code & Const Data 0 bytes

Library Code & Const Data 0 bytes

–––––

Total EEPROM Requirement 179 bytes

Remaining EEPROM 333 bytes

RAM Usage: (not necessarily in order of physical layout)

System Data & Parameters 572 bytes

Transaction Control Blocks 140 bytes

MOTOROLA L ONWORKS TECHNOLOGY
AL–421
AN1251

Appl Timers & I/O Change Events 7 bytes

Network & Application Buffers 792 bytes

Application RAM Variables 19 bytes

Library RAM Variables 0 bytes

–––––

Total RAM Requirement 1530 bytes

Remaining RAM 518 bytes

Required header files: #include <addrdefs.h>

#include <access.h>

#include <netmgmt.h>

#include <msg_addr.h>

Timing:

Testing:

Notes:

1. This program only shows that it is possible to change

the communication parameters. Refer to Appendix B

in the data book under ‘Configuration Changes’ for

the proper sequence to take.

***/

/****************************** Compiler directives *************************************/

#pragma enable_io_pullups

#pragma scheduler_reset

#define PRESSED 0 /* Switch pressed */

#define ON 0 /* Led is on if given a 0 */

#define OFF 1 /* Led is off if given a 1 */

/********************************* Include files **/

#include <addrdefs.h>

#include <access.h>

#include <netmgmt.h>

#include <msg_addr.h>

/********************************** I/O Objects ***/

IO_0 output frequency clock(7) IO_sound = 0;

IO_1 output bit IO_red_led = OFF;

IO_2 output bit IO_display_select = 1; /* active low */

IO_7 input bit IO_left_sw;

IO_8 neurowire master select (IO_2) IO_display;

/******************************** Network Variables *************************************/

// none

/*********************************** Message Tags ***************************************/

// none

/*********************************** Constants **/

// none

/************************************** Globals ***/

NM_service_pin_msg svc_pin_msg; /* copy of service pin message */

unsigned char dd_config = 0x01; /* 8 bits=>display config reg */

unsigned char dd_data[3]; /* 24 bits=>display data reg */

unsigned int display_byte_index = 0;

// unsigned int flash_static = 0; // for test board, this means on

MOTOROLA L ONWORKS TECHNOLOGYAN1251
AL–422

/*********************************** Timers ***************************************/

mtimer flash_LED; // flash IO3–6 if bad, on if good

/********************************** Functions *************************************/

void config_message(service_type type, int code) {

msg_out.priority_on=FALSE;

msg_out.authenticated=FALSE;

msg_out.dest_addr.nrnid.type=NEURON_ID;

msg_out.dest_addr.nrnid.domain=0;

msg_out.dest_addr.nrnid.subnet=0;

msg_out.service=type;

memcpy(msg_out.dest_addr.nrnid.nid,svc_pin_msg.neuron_id,6);

msg_out.dest_addr.nrnid.retry=15;

msg_out.dest_addr.nrnid.tx_timer=10;

msg_out.code=code;

msg_send();

}

/********************************** Reset *************************************/

/* when (reset)

{

io_out (IO_display, &dd_config, 8);

dd_data[0] = 0x80;

dd_data[1] = 0x00;

dd_data[2] = 0x00;

io_out (IO_display, dd_data, 24);

}

/************************** Priority When Clauses *****************************/

// none

/************************ Non–Priority When Clauses ***************************/

when (msg_arrives (NM_opcode_base + NM_service_pin)) // code 0x7f

{

io_out(IO_red_led, ON);

io_out (IO_sound, 30);

memcpy (&svc_pin_msg, msg_in.data, sizeof (NM_service_pin_msg));

dd_data[0] = 0x80; // update display with service pin id

display_byte_index = 0;

dd_data[1] = svc_pin_msg.neuron_id[0]; // most significant nibble

dd_data[2] = svc_pin_msg.neuron_id[1]; // next nibble

io_out (IO_display, dd_data, 24); // output to display

// program neuron chip with 78 KBPS, 5 MHz

msg_out.data[0] = 2; // config_relative

msg_out.data[1] = 0; // comm_clock, input_clock

msg_out.data[2] = 8; // 1:2 is a long,

msg_out.data[3] = 1; // # of bytes to write

msg_out.data[4] = 4; // cnfg_cs_recalc

msg_out.data[5] = 0x1c; // 5 MHz, 78 KBPS

config_message(UNACKD, NM_write_memory | NM_opcode_base);

}

when (io_changes(IO_left_sw) to PRESSED)

{

io_out(IO_red_led, OFF);

io_out (IO_sound, 0);

display_byte_index = display_byte_index + 2;

if (display_byte_index >= NEURON_ID_LEN) /* 6 bytes */

MOTOROLA L ONWORKS TECHNOLOGY
AL–423
AN1251

{

display_byte_index = 0;

io_out(IO_red_led, ON);

}

