
MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–394

��� ���� �� 	�������� �� �����
� ����� ����

With the availability of low cost PCs and software it is pos-
sible to create a professional low cost, high quality user inter-
face on a PC to monitor or control a LONWORKS network. To
show one possible method of doing this, an application was
made connecting a PC to Motorola’s Heating Venting Air
Conditioning (HVAC) briefcase demo. Motorola’s HVAC
briefcase demo consists of 6 nodes (3 NEURON nodes, and 3
display nodes): 1 smart setback thermostat with LCD display,
1 compressor node with an LED display, and a fan node with
an LED scroll display. The setback thermostat node with
LCD display contains a real time clock, temperature sensor,
and keypad.

This application will show how it is possible to develop a
low cost controller/monitor on a PC. In addition, the
NEURON C code and EIA–232 connections are shown to con-
nect a NEURON CHIP to a PC.

The HVAC demo can function as a stand alone demo, or
be controlled through a PC. The setback thermostat can be
programmed through a keypad to set a temperature setpoint
to turn on the compressor and fan. In addition, a PC can be
connected through an optional NEURON based board to dis-
play and even control the setback thermostat. Figure 1
shows a block diagram of the complete system. Figure 2
shows a more detailed diagram.

The six major building blocks of this system consist of:

1. PC

2. PC application

3. PC interface to a LONWORKS network

4. PC interface application

5. LONWORKS nodes
6. LONWORKS applications

PC AND PC APPLICATION

In this application a PC was used, but a similar approach
can be used with a Macintosh as well as other computers.
The PC application used was Microsoft’s Visual Basic. Visual
Basic is an object oriented programming language with the
capability to display event driven graphics. Visual Basic is
similar in a lot of ways to how a NEURON C program works.
When an event becomes true, Visual Basic code behind an
graphic object is executed. A sequencer polls each object to
determine when it is true. Visual Basic v3.0 supports
EIA–232 communications making it easy to connect to a
NEURON CHIP.

Visual BASIC is an extremely powerful, easy to use graph-
ical programming language supporting Dynamic Data
Exchange (DDE), Dynamic Link Libraries (DLL), and Object
Linking and Embedding (OLE). Visual BASIC has the capa-
bility to exchange data with other Windows programs that
support DDE, such as a spreadsheet, database, or graphics
program. Dynamic Link Libraries are libraries, written by
other people or by yourself, that your program can call. It is
analogous to calling a NEURON C object code function written
by someone else. OLE is a method through which Windows
applications can use each others resources. For example, a
Visual BASIC program can have data presented inside the
program as though Excel is running inside it. Visual BASIC is
available in DOS and Window versions. In this application,
the Visual BASIC windows version was used.

PC INTERFACE
(WITH A

NEURON CHIP)

SETBACK
THERMOSTAT

(WITH A
NEURON CHIP)

FAN
(WITH A

NEURON CHIP)

COMPRESSOR
(WITH A

NEURON CHIP)

PC
EIA–232

TWISTED PAIR NETWORK

Figure 1. HVAC Demo Block Diagram with PC

��������
SEMICONDUCTOR TECHNICAL DATA

�����

MOTOROLA L ONWORKS TECHNOLOGY
AL–395
AN1250

GIZMO 3
M143206EVK

(FAN)

EIA–232

M143150EVBU
NEURON

EVALUATION BOARD

GIZMO 4
M143207EVK

(SETBACK THERMOSTAT)

GIZMO 5
M143208EVK

(COMPRESSOR)

1.25 MBPS
TWISTED PAIR

NETWORK

MOTOROLA’S LONWORKS BRIEFCASE DEMO

PC TO NEURON
INTERFACE BOARD

(M143221EVK)

Figure 2. HVAC Block Diagram with PC

MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–396

BASIC OPERATION
As shown in Figure 3, the Visual BASIC application dis-

plays a picture of a keypad similar to the one used in the
stand alone HVAC demo. The user can set the time and tem-
perature setpoint for activation of the fan and compressor.

The current setpoint can also be displayed. When neither the
current setpoint nor the time or temperature setpoint is being
displayed, the display defaults to the HVAC’s time and tem-
perature. Pressing the keypad in the Visual BASIC applica-
tion is the same as pressing the keys in the HVAC demo.

MESSAGES FAN OFF COMPRESSOR OFF SETPT: 00 F 00 F 00:00

7

SET SETPT

8 9 SET TIME

4 5 6

0 (SETPT)1 2 3

00:00 00

HVAC CONTROL PANEL

Figure 3. Visual BASIC Application User Interface

PC INTERFACE TO A L ONWORKS NETWORK

The PC interface to the LONWORKS network consists of a
NEURON CHIP communicating through its serial port to the
PC. The NEURON CHIP supports only half duplex. The com-
munication l ines of the NEURON CHIP are t ied to the
LONWORKS network. In this case, the LONWORKS network is
differential direct connect. Since the NEURON CHIP supports
only half duplex, it must be waiting at an io_in function call
before data arrives, or else it will miss the data. The PC is set
up using RTS/CTS protocol. The NEURON CHIP asserts Clear
To Send (CTS) so the PC can send data if it has any.

The PC uses Request To Send (RTS) to determine
whether or not it can accept data, dependent upon how full
its buffers are. RTS is optional in this application because the
PC interface board will never fill the PC buffers. RTS will
always be asserted (+12 volts) by the PC.

EIA–232 signals are typically between +12 and – 12 volts
with –12 volts being the idle state. Optionally, the PC will as-
sert RTS around +12 volts, signifying it is ready to receive
data. The PC cannot send data out until the NEURON CHIP as-
serts CTS which arrives at the PC around +12 volts. An
EIA–232 transceiver such as Motorola’s MC145407 is need-
ed to convert the NEURON CHIP’s CMOS I/O to EIA–232 lev-

els, and vice–versa. Figure 4 shows the PC to NEURON

interface connections used in this application. The NEURON

interface board was designed so a standard DB9F to DB9M
straight through cable can be used.

Figure 5 shows the PC interface schematic. If RTS is used,
the 47 kΩ resistor in Figure 5 keeps RTS high (+10 volts) in
case the PC cable gets disconnected.

Figure 4. EIA–232 Interface Connections

(1)

(5)

(4)

(3)

(2)

(9)

(8)

(7)

(6)

DCD

RD

RI

CTS

DSR

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

DCD

TD

SG

DSR

RTS

TD

DTR

SG

RTS

RD

DTR

CTS

RI

DB9M
(PC)

DB9F (NEURON

INTERFACE BOARD)

(PIN #) (PIN #)

OPTIONAL

MOTOROLA L ONWORKS TECHNOLOGY
AL–397
AN1250

Figure 5. PC Interface

IO8

+ 5 V

16

IO106

5

IO214

IO38

7

47 k

GND

MC143150
NEURON

CHIP

+
10 µF

+
10 µF

13

15

17

18

19

20

+
10 µF

+
10 µF

4

3

2

1
GND

MC145407

12

10

9

11

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

DCD

TD

SG

DSR

RTS

RD

DTR

CTS

RI

(PIN #)
DB9M

PIN 17 OF
MC145407

OPTIONAL

PC INTERFACE APPLICATION

The setback thermostat node is the brain for the stand
alone HVAC application. The PC interface application re-
ceives data from the PC; using network variables, it tells the
smart setback to set the time and temperature. On the other
side, the PC interface application sends data every 250 ms
to the PC; including the HVAC’s time, temperature, and set-
point. The formats to/from the PC are as follows:

NEURON Interface to PC Packet Format:

<time><temperature><setpoint>
<compressor on/off><fan on/off><CR>

where:

field description

 start of packet
 <time >: hh:mm hh is hours, mm minutes
 <temperature > xx (in Fahrenheit)
 <setpoint > xx (in Fahrenheit)
 <compressor on/off > 0: off 1: on
 <fan on/off > 0: off 1: on
 <CR> carriage return

PC to NEURON Interface Packet Format:

<D><command><data>
where:

field description

<D> start of packet
<command > “1”: set time

“2”: set setpoint
<data> if<command>= “1”then HHMM

where HH: hours
MM: minutes

if <command> = “2” then xx
where xx is 2 digit
temperature setpoint

The PC interface application file is shown at the end of this
application note.

LONWORKS NODES AND LONWORKS APPLICATIONS

The LONWORKS nodes and LONWORKS applications are
documented with the HVAC briefcase demo and not covered
in this application note.

CONCLUSION

It took approximately 2 weeks to build up the PC interface
hardware, write the NEURON C code for the interface, learn
Visual BASIC, and write the Visual BASIC code. The result
was an easy to use, high quality PC graphical user interface
with application code to monitor and control a LONWORKS

network, more specifically, a HVAC application.
More complex code, such as time of day functions to turn

on/off the fan or air conditioner can now be performed on a
PC. This will save LONWORKS node memory and time to per-
form these functions. A lower cost MC143120 node might
now be used in place of an MC143150 node.

The advantages of this application are the low cost, power,
and resources of the PC including readily available hardware
and software for the PC and ease of use. MIP drivers and
applications, API libraries, or more expensive PC interfaces
are unnecessary.

This low cost PC interface is not meant for a network
manager or protocol analyzer. It is possible to set up the PC
to do some of these functions in a limited way, such as using

MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–398

the PC for sending network management commands to the
NEURON interface. If variables are bound to the Network
interface, or if the Network interface polls other LONWORKS

nodes, the PC can then display their values.
The NEURON CHIP to PC interface may also be used to con-

nect a modem and other serial devices. There are several
good graphical user interfaces on the market, including
Microsoft’s Visual C++, National Instruments Labview, and
Wonderware. These products differ significantly in cost,

methodology, and learning curves. Another option is to
develop your own graphical user interface using such pro-
grams as Zinc, Borland C++, and Microsoft C++, to name a
few.

To sum up, the PC can be an inexpensive way to monitor
and control a LONWORKS network. Using existing PC soft-
ware, a NEURON CHIP can be used to interface a PC to an ex-
isting or new LONWORKS network.

SOURCE CODE FOR THE PC INTERFACE NODE

/**
Filename: pctobc.nc
Copyright Motorola, Inc

0.1 02/17/94 DRS original
03/30/94 DRS Change so this nodes polls fan and compressor nodes

add polling NVcomp_state_in
add compress_state, fan_state

01/11/95 DRS documentation

Description: Be an interface between a PC (laptop) and briefcase
demo. Will allow PC to change settings (time,
temperature setpoint) on demo. Also pass info.
every 500 ms from demo to PC.

Packets to PC will be in the following format:
<start><time><temperature><setpt><compressor><fan><CR>

where <start> = ‘B’
<time> = hrmn where hr:hours, mn:minutes
<temperature> = tt (degrees F, 0 = 99)
<setpt> = ss (degrees F, 0 – 99)
<compressor> = 1:on, 0:off
<fan> = 1:on, 0:off

note: all data displayed on PC is what is sent over.
No range checking is done by the PC.

Link Memory Usage Statistics:
ROM Usage:

System Data 2 bytes
Application Code & Const Data 743 bytes
Library Code & Const Data 0 bytes
Self–Identification Data 18 bytes

–––––
Total ROM Requirement 763 bytes
Remaining ROM 15621 bytes

EEPROM Usage: (not necessarily in order of physical layout)
System Data & Parameters 74 bytes
Domain & Address Tables 20 bytes
Network Variable Config Tables 18 bytes
Application EEPROM Variables 0 bytes
Library EEPROM Variables 0 bytes
Application Code & Const Data 0 bytes
Library Code & Const Data 0 bytes

–––––
Total EEPROM Requirement 112 bytes
Remaining EEPROM 400 bytes

MOTOROLA L ONWORKS TECHNOLOGY
AL–399
AN1250

RAM Usage: (not necessarily in order of physical layout)
System Data & Parameters 572 bytes
Transaction Control Blocks 109 bytes
Appl Timers & I/O Change Events 8 bytes
Network & Application Buffers 300 bytes
Application Ram Variables 154 bytes
Library RAM Variables 0 bytes

–––––
Total RAM Requirement 1143 bytes
Remaining RAM 905 bytes

required header files : control.h

Notes:
1. PCPLUS communication program and EIA232:

Set up PCPLUS on the PC the following way:
command description
––––––– –––––––––––
pcplus<CR> run communication program
<CR> do this after

RTS is an output from the PC staying high (+12v) until
the PC’s buffers are full, then it goes low (–12V).

CTS is an input to the PC enabling it to transmit.

**/

/******************************** Compiler directives **************************************/

#pragma scheduler_reset
#pragma enable_io_pullups

#pragma num_addr_table_entries 1
#pragma one_domain
#pragma app_buf_out_priority_count 0
#pragma net_buf_out_priority_count 0

#define timerl 100 // bring CTS low every 100 ms to check for PC data
#define max_char_from_PC 30
#define max_packet_size 60 // this # should be 2’s max_char_from_PC

struct temp_time {
unsigned int temp;
unsigned int minutes;
unsigned int hours;

};

struct temp_time data_out;

struct time {
unsigned int hours;
unsigned int minutes;

};

/******************************** Include files ***************************************/
#include <control.h>

/********************************* I/O Objects **/

IO_3 output bit CTS; // clear to send output
IO_2 input bit RTS; // optional request to send input
IO_8 input serial baud(4800) RXD; // read data from PC
IO_10 output serial baud(4800) TXD; // send data to PC

MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–400

/****************************** Network Variables *************************************/

network input struct temp_time pctobc_temp_in; // temperature (setback node)
network input struct temp_time pctobc_setpt_in; // setpoint (setback node)
network input struct time NV_time_in; // BC time
network input boolean NVfan_state_in // TRUE: fan is flashing
network input boolean NVcomp_state_in; // TRUE: compressor is on
network output struct temp_time bind_info(unackd) NV_timesetpt_out;

// send setback node time and set point data

/************************ Network resource tuning pragmas *****************************/
// none

/************************************ Globals ***/

char input_but[max_packet_size]; // complete packet from PC
char input_buf1[max_char_from_PC]; // Input from PC (1st time)
char input_buf2[max_char_from_PC]; // Input from PC (2nd time)
char * buf_ptr; // pointer into buffer
boolean packet_found = FALSE; // what looks like a good packet is not found.
boolean compress_state = FALSE; // compressor off
boolean fan_state = FALSE; // fan off
int last_num_chars; // keeps a running total of characters received
int temp;
char out_char[1];
struct bcd digits; // holds BCD data to be sent to PC

// digits.d1 most significant nibble in ms byte
// digits.d2 least significant nibble in ms byte
// digits.d3 most significant nibble
// digits.d4 least significant nibble
// digits.d5 most significant nibble in ls byte
// digits.d6 least significant nibble in ls byte

struct { // data from bc
unsigned int hours; // time
unsigned int minutes;
unsigned int temperature;
unsigned int setpoint;

} bc_data;

struct temp_time bc_setpoint;

/************************************ Timers **/

mtimer repeating check_CTS;
mtimer repeating get_data_from_bc; // every 500 ms poll bc

// then send to PC

/*********************************** Functions **/

boolean append_packet()
/* 0.1 drs 02/16/94 original
description: assert CTS, append data to input_buf[] if any

and return append_packet = TRUE if 1st char. = ‘D’
and last char. is a CR.

*/
{
boolean packet;
int i;
int num_chars1; // keeps track of # of chars. read from 1st read
int num_chars2; // keeps track of # of chars. read from 2nd read

packet = FALSE;
num_chars1 = 0;
num_chars2 = 0;
io_out(CTS, 0); // enable cts
num_chars1 = io_in(RXD, input_buf1, max_char_from_PC);
io_out(CTS, 1); // disable cts
// read serial buffer again in case PC can’t stop sending data

MOTOROLA L ONWORKS TECHNOLOGY
AL–401
AN1250

// when CTS is disabled. Maybe PC in middle of sending a byte out.
num_chars2 = io_in(RXD, input_buf2, max_char_from_PC);

// append data over to where final packet goes
if (num_chars1 != 0) { // if data append it to input_buf

for (i = last_num_chars; i < last_num_chars + num_chars1; i++) {
input_buf[i] = input_buf1[i – last_num_chars]; // append

}
last_num_chars = last_num_chars + num_chars1;

}

if (num_chars2 != 0) { // if data append it to input_buf
for (i = last_num_chars; i < last_num_chars + num_chars2; i++) {

input_buf[i] = input_buf2[i – last_num_chars]; // append
}
last_num_chars = last_num_chars + num_chars2;

}

if (last_num_chars > 0) { // something there
if (input_buf[0] != ‘D’) {
// A packet is started and packet is invalid

last_num_chars = 0; // reset count of total characters read
packet = FALSE;

}
else if (input_buf[last_num_chars – 1] == ‘/r’) {
// 1st char. a ‘D’ and last char. a carriage return

packet = TRUE;
}

} // something there
return(packet);

}

// This function converts a hex character to 2 ASCII characters
// and sends the characters to out the TXC port to the PC
//
void putch_hex(unsigned int hex_char)
{

out_char[0] = (hex_char >> 4) & 0x0f; // keep lower nibble
if(out_char > 9)

out_char[0] += 0x37;
else

out_char[0] += 0x30;

io_out(TXD, out_char, 1); // output 1 char. out the 232 port to the PC
out_char[0] = hex_char & 0x0f;
if(out_char > 9)

out_char[0] += 0x37;
else

out_char[0] += 0x30;
io_out(TXD, out_char, 1); // output 1 char. out the 232 port to the PC

}

//
// This function converts two ascii characters to a decimal digit
//
unsigned char to_dec(unsigned char msb,unsigned char lsb)
{

return((msb – 48) * 10 + (lsb – 48));
}

MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–402

/************************************* Reset ***
when (reset) {

bc_data.hours = 0;
bc_data.minutes = 0;
bc_data.temperature = 0;
bc_data.setpoint = 0;

check_CTS = timer1; // repeating timer when to assert CTS
// to check for PC data

get_data_from_bc = 500; // every 500 ms poll bc and then send to PC

/******************************** Priority When Clauses ***********************************

// none

/****************************** Non–Priority When Clauses *********************************
when (timer_expires(check_CTS) { // go get next character(s)
/* note: a timer is used (‘data_timer’) because this allows

less time in this when clause so if network data comes
in, can spend less time in a when clause and more
getting data out of the application buffers. If want
to change this time, either change the timer, or even
take it out and replace it with ‘when (1)’. Remember
that when reading in serial data, if no characters, there
is a 20 character time out. How ever many times that is used
may be the worst case best time to get back into this
when clause.

*/
packet_found = append_packet(); // append more data if any

// to input_buf[].
// also returns true if
// when finds what looks like a good packet.

check_CTS = timer1;
}

when (packet_found) { // process packet
// packet format: <D><command><data>

 switch(input_buf[1]) { // select from type of packet byte
case ‘1’: // set time <D><1><xxxx><CR>

if (last_num_chars == 7) {
NV_timesetpt_out.temp = 255; // code for do not use
// convert ASCII HHMM in input_buf[2–5] to unsigned int.
bc_data.hours = NV_timesetpt_out.hours =

to_dec(input_buf[2], input_buf[3]);
bc_data.minutes = NV_timesetpt_out.minutes =

to_dec(input_buf[4], input_buf[5]);
}

break;
case ‘2’: // set setpoint <D><2><xx><CR>

if (last_num_chars == 5) {
// convert ASCII set point in input_buf[2–3] to unsigned int.
bc_data.setpoint = NV_timesetpt_out.temp =

to_dec(input_buf[2], input_buf[3]);
NV_timesetpt_out.hours = 255; // code for do not use
NV_timesetpt_out.minutes = 255; // code for do not use

}
break;

default: // bad packet
break;

}
packet_found = FALSE; // finished last packet
last_num_chars = 0; // reset # of bytes collected in packet
for (temp = 0; temp < max_packet_size; temp++) { // not needed but helps in d

input_buf[temp] = 0;
}

}

MOTOROLA L ONWORKS TECHNOLOGY
AL–403
AN1250

when (nv_update_fails) {
}

when (nv_update_occurs(NV_time_in)) { // BC to PC time (HHMM)
bc_data.hours = NV_time_in.hours; // HH time
bc_data.minutes = NV_time_in.minutes; // MM time

}

when (nv_update_occurs(pctobc_temp_in)) { // BC to PC temperature
bc_data.temperature = pctobc_temp_in.temp; // BC temperature

}

when (nv_update_occurs(pctobc_setpt_in)) { // BC to PC setpoint
bc_data.setpoint = pctobc_setpt_in.temp; // BC setpoint

}

when (nv_update_occurs(NVcomp_state_in)) {
if (NVcomp_state_in == TRUE) {

 compress_state = TRUE;
}
else {

 compress_state = FALSE;
}

}

when (nv_update_occurs(NVfan_state_in)) {
if (NVfan_state_in == TRUE;

fan_state = TRUE;
}
else {

fan_state = FALSE;
}

}

when (nv_update_fails(NVcomp_state_in)) { // compressor not responding
compress_state = FALSE; // assume off

}

when (nv_update_fails(NVfan_state_in)) { // fan not responding
fan_state = FALSE; // assume off

}

when(timer_expires(get_data_from_bc)) {
// every 500 ms send data to PC and poll fan and compressor for status

poll(NVcomp_state_in); // compressor state
poll(NVfan_state_in); // fan state
get_data_from_bc = 500; // 500 ms repetitive timer

// packet consists of: <start><time><temperature><setpt><compressor><fan><CR>
out_char[0] = ‘B’; // Beginning of packet character
io_out(TXD, out_char, 1); // send out 232 port

// output time (hours only)
bin2bcd((long) bc_data.hours, &digits);
out_char[0] = digits.d5 + 0x30; // high time BCD digit converted to ASCII
io_out(TXD, out_char, 1);
out_char[0] = digits.d6 + 0x30; // low time BCD digit converted to ASCII
io_out(TXD, out_char, 1);

// output time (minutes only)
bin2bcd((long) bc_data.minutes, &digits);
out_char[0] = digits.d5 + 0x30; // high time BDC digit converted to ASCII
io_out(TXD, out_char, 1);
out_char[0] = digits.d6 + 0x30; // low time BCD digit converted to ASCII
io_out(TXD, out_char, 1);

MOTOROLA L ONWORKS TECHNOLOGYAN1250
AL–404

// output time (temperature)
bin2bcd((long) bc_data.temperature, &digits);
out_char[0] = digits.d5 + 0x30; // high temp. BCD digit converted to ASCII
io_out(TXD, out_char, 1);
out_char[0] = digits.d5 + 0x30; // low temp. BCD digit converted to ASCII
io_out(TXD, out_char, 1);

// output time (setpoint)
bin2bcd((long) bc_data.setpoint, &digits);
out_char[0] = digits.d5 + 0x30; // high stpt BCD digit converted to ASCII
io_out(TXD, out_char, 1);
out_char[0] = digits.d6 + 0x30; // low stpt BCD digit converted to ASCII
io_out(TXD, out_char, 1);

// output compressor on/off
if (compress_state == TRUE) { // compressor is on

// (i.e. LEDs scrolling)
io_out(TXD, “1”, 1); // output to PC compressor is on

}
else { // compressor is off (i.e. LEDs not flashing)

io_out(TXD, “0”, 1); // output to PC compressor is off
}

// output fan on/off
if (fan_state == TRUE) { // fan is actually on (i.e. LED flashing)

io_out(TXD, “1”, 1); // output to PC fan is on
}
else { // fan is actually on (i.e. LED flashing)

io_out(TXD, “0”, 1); // output to PC fan is off
}

// a <CR> ends the packet
io_out(TXD, “\r”, 1); // <CR>

}

