
Order this document
by AN1240/D

SEMICONDUCTORSEMICONDUCTORSEMICONDUCTORSEMICONDUCTOR
MOTOROLA

APPLICATION NOTE
AN1240

©MOTOROLA INC., 1995 AN1240/D

HC05 MCU Software-Driven Async hronous
Serial Comm unication T echniques
Using the MC68HC705J1A
By Scott George
CSIC MCU Product Engineering

INTRODUCTION
This application note describes a method for asynchronous serial communication with a microcontroller
unit (MCU) using standard input/output (I/O) port pins and software which incorporate noise and frame-
error detection. If error detection is not needed, the code size may be reduced for more efficient use of
memory.

OVERVIEW
A serial communication interface (SCI) is a serial I/O sub system available with many Motorola MCUs. This
hardware module provides full-duplex, universal asynchronous receiver/transmitter-type (UART) serial
communication between the MCU and other UART-type devices, such as a cathode-ray-tube (CRT)
terminal, personal computer, or other MCUs. The SCI handles all transmission and reception duties and by
so doing off-loads the CPU to perform other functions simultaneously. The SCI is software programmable
for many different baud rates. The receiver can detect error conditions automatically, such as framing,
noise, and overrun.

Some Motorola MCUs do not include an SCI, specifically a low-cost, low-pin-count MCU such as the
MC68HC705J1A. To perform asynchronous serial communication, software must be used to emulate an
SCI. In this case, the CPU would control I/O port pins to perform the same functions as the receive data
(RXD) and transmit data (TXD) pins of a true hardware-driven SCI.

This application’s software solution requirements are:

• Speed optimization for maximum baud rate

• Minimal code size

• Easy configuration for different baud rates

• Ability to detect noise and framing errors while receiving.

Because the CPU is not as efficient as a dedicated hardware SCI, software emulation has limitations:

• Very fast baud rates are not attainable

• SCI software consumes memory space and CPU bandwidth

• Flexibility and features are reduced

MOTOROLA AN1240/D
2

If a particular application cannot be limited by these restrictions, then using an MCU with an SCI would be
appropriate. However, many applications do not need the performance or flexibility of an SCI, and, in those
cases, software emulation is a cost-effective solution.

The above requirements would be jeopardized by software emulation of full-duplex transmission. This
software solution only operates in half-duplex mode.

SERIAL COMMUNICATION TERMINOLOGY AND CONCEPTS
Several technical concepts and terms pertaining to SCI software operation are discussed here. Note that
message protocol is not discussed, since it is assumed the reader is knowledgeable about effective SCI
communication.

Half-Duplex Operation

In a half-duplex system, only one node transmits at any one time. The MCU cannot receive while it is
transmitting, and it cannot transmit while it is receiving. This inability is in contrast to the hardware SCI,
which can transmit and receive different information at the same time. This is known as a full-duplex
system.

Transmission Format

The SCI uses the standard non-return-to-zero (NRZ) format consisting of one start bit followed by one byte
(eight bits) of data and one stop bit. This is commonly referred to as an 8-N-1 format (8 data bits, no parity
bit, 1 stop bit). Data is both transmitted and received least significant bit (LSB) first. Each bit has a duration,
tp, which defines the baud rate.

Figure 1. NRZ 8-N-1 Transmission Format

As shown in Figure 1, an idle line is high (logic one) prior to transmission or reception, and the start bit is
low (logic zero). Each data bit is either high (logic one) or low (logic zero). The stop bit is high (logic one).
The start bit, eight data bits, and stop bit constitute one frame of data.

Noise Detection

On an asynchronous serial network, data transmitted by one node may be received incorrectly by another
node because of noise corruption along the data path. To minimize noise corruption, the SCI receiver
software routine samples each bit three times in the middle of each bit period (see Figure 2).

START
BIT

STOP
BIT0 1 2 3 4 5 6 7

tp tp tp tp

NEXT
START

BIT
IDLE
LINE

tp = 1 Bit Period = 1/Baud Rate

AN1240/D MOTOROLA
3

Figure 2. SCI Receiver Sample Points

The true bit data is derived by the receiver by using a majority rule of the three samples. A noise condition
occurs when the three samples are not identical. The SCI receiver software routine sets the half-carry bit
to signal a noise condition.

Frame Error Detection

The stop bit is defined as a logic one. If the stop bit is received as a logic zero, a frame error has occurred.
The SCI receiver software routine uses the carry bit to signal a frame-error condition.

APPLICATION

System Overview

The application of the SCI software consists of an RS232-C physical interface connecting an MCU to a
dumb terminal. As each character is typed on the terminal’s keyboard, the ASCII-equivalent data is
transmitted to the MCU. The MCU then transmits the ASCII character back to the dumb terminal. If a noise
or frame error occurs during the reception of the character, the appropriate LEDs are lit to signal the error.

Hardware Description

The Motorola MC68HC705J1A MCU and the Motorola MC145407 RS232-C transmitter/receiver are used
in this example (refer to Appendix A). The Motorola MC34064 low-voltage reset is connected to the reset
pin to provide brown-out and slow supply power-on protection. A ribbon cable connects the MC145407 to
the dumb terminal. A 4.0-MHz crystal oscillator clocks the MCU, and both the dumb terminal and the SCI
receiver routine are configured for 9600 baud. Other selectable baud rates also may be used.

Software Description

The SCI software consists of two main subroutines to be called by the main program. The receive routine,
get_char , receives one byte of data from the receive data pin (RXD) and places it into char , a variable in
zero-page RAM. The get_char routine calls a subroutine, get_bit , which captures three samples of the
state of RXD and adds them together to derive bit data and noise information. Upon exiting get_char , the

ts
tp

ts

ANY DATA OR STOP BIT

ts = 8 CPU Cycles
tp = 1 Bit Period = 1/Baud Rate

SAMPLING POINTS

MOTOROLA AN1240/D
4

carry bit is set if a noise condition occurred; otherwise, it is cleared. The half-carry bit is set if a frame error
occurred; otherwise, it is cleared. Char contains the received data.

The transmit routine, put_char , transmits serially the contents of char using the transmit data pin (TXD).

Both get_char and put_char call delay_13a , a subroutine which produces a delay of 13*ACC + 12 CPU
cycles, where ACC is the value in the accumulator at the time the subroutine is called. See Appendix B for
flowcharts and Appendix C for the source code listing.

The baud rate for both the receiver and transmitter is selected by changing BAUD_SEL to 4, 8, 16, 32, 64,
or 128 which, with a 4.0-MHz crystal oscillator, produces a baud rate of 19.2 k, 9600, 4800, 2400, 1200 or
600 respectively. The baud rate for the receiver and the transmitter will be the same. Appendix D specifies
receiver tolerances and transmitter accuracies for each baud rate.

CUSTOMIZATION
This section introduces possible customization of the software SCI concept. Detailed description of these
ideas is beyond the scope of this application note.

Wake-up and Time-out Features

Wake-up capability of the receiver routine allows the CPU to execute useful code while the RXD line is idle.
Both the RXD pin and the IRQ pin are connected to the RXD line. A negative transition on the RXD line will
cause an IRQ interrupt. The interrupt service routine can then call get_char . An excellent way to generate
a negative transition on the RXD line is to transmit a zero ($00) immediately followed by the stream of data
to be received. Note that the zero is not received, but the data following the zero is received.

Time-out capability of the receiver routine allows an interrupt to abort an idle line condition. Before the
get_char routine is called, the multifunction timer (MFT) can be configured to interrupt after a time longer
than the anticipated receive time. Care should be taken as to how the subroutine is entered and exited.
Note that stack pointer housekeeping might be required.

Low Voltage Reset Circuitry

An MC34064 low-voltage reset device has been included to show the most robust reset circuit. This
provides protection from slow-ramping power supplies. Many bench-type power supplies ramp slowly,
causing faulty power-on of MCUs. The MC34064 holds the RESET pin low until the power supply is within
a specified range. This also provides protection from brownout, when the MCUs minimum VDD
requirements are exceeded. If such robust protection is not required, engineering judgment may be used
to design a more cost-effective circuit.

Code Minimization

Code size may be minimized by eliminating code specific to noise detection if that feature is not needed in
an application. This could result in up to a 30% reduction of code space.

AN1240/D MOTOROLA
5

CONCLUSION
SCI receiver and transmitter software routines offer the application designer an alternative to using a
hardware SCI. The software routine listings contain the operational details. The routines may be used as
listed or customized as determined by engineering requirements.

An electronic listing of the source code in Appendix C can be found on the Motorola MCU BBS. The BBS
phone number is (512) 891-3733. The file name is J1A_5407.ARC and can be found on the CSIC BBS
under the APPNOTES directory.

MOTOROLA AN1240/D
6

APPENDIX A

AN1240/D MOTOROLA
7

D
a
t
e
:

J
a
n
u
a
r
y

2
4
,

1
9
9
5
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

A
J
1
A
_
5
4
0
7
.
S
C
H

1

T
i
t
l
e H
C
7
0
5
J
1
A

B
i
t

B
a
n
g
e
d

S
C
I

t
o

M
C
1
4
5
4
0
7

M
o
t
o
r
o
l
a

-

C
S
I
C

S
t
r
a
t
e
g
i
c

A
p
p
l
i
c
a
t
i
o
n
s

H
C
7
0
5
J
1
A

t
o

M
C
1
4
5
4
0
7

I
n
t
e
r
f
a
c
e

C
i
r
c
u
i
t

C
6
1
0
u
F

C
7
1
0
u
F

C
2
-

3

V
S
S

4

R
X
1

5

T
X
1

6

R
X
2

7

T
X
2

8

R
X
3

9

G
N
D

2

D
O
3

1
2

C
2
+

1

D
I
2

1
3

D
I
1

1
5

D
O
1

1
6

V
D
D

1
7

C
1
-

1
8

V
C
C

1
9

C
1
+

2
0

D
O
2

1
4

T
X
3

1
0

D
I
3

1
1

U
2

M
C
1
4
5
4
0
7
P

V
D
D

C
5
0
.
1
u
F

C
8
1
0
u
F

C
1
1
0
u
F

1
3

2
5

1
2

2
4

1
1

2
3

1
0

2
2

9

2
1

8

2
0

7

1
9

6

1
8

5

1
7

4

1
6

3

1
5

2

1
4

1

P
2

F
E
M
A
L
E

C
O
N
N

D
B
2
5

G
N
D

G
N
D

G
N
D

-
-
>

<
-
-

G
N
D

G
N
D

D
2
L
E
D

V
D
D

F
r
a
m
e

E
r
r
o
r

D
1
L
E
D

V
D
D

N
o
i
s
e

E
r
r
o
r

G
N
D

V
D
D

O
S
C
1

1

O
S
C
2

2

R
E
S
E
T

2
0

I
R
Q
/
V
P
P

1
9

P
A
0

1
8

P
A
1

1
7

P
A
2

1
6

P
A
3

1
5

P
A
4

1
4

P
A
5

1
3

P
A
6

1
2

P
A
7

1
1

P
B
0

8

V
S
S

1
0

V
D
D

9

P
B
1

7

P
B
3

5

P
B
2

6

P
B
4

4

P
B
5

3

U
1

M
C
6
8
H
C
7
0
5
J
1
A
P

C
2
0
.
1
u
F

<
-
-

T
x
D

-
-
>

R
x
D

Y
1

4
.
0
M
H
z

R
1
3
9
0

R
2
3
9
0

G
N
D

C
4
3
7
p
F

G
N
D

C
3
3
7
p
F

G
N
D

3

I
N
P
U
T

2

R
E
S
E
T

1

U
3

M
C
3
4
0
6
4

V
D
D

G
N
D

MOTOROLA AN1240/D
8

APPENDIX B

TURN OFF FRAME
ERROR LED

MAIN

FRAME
ERROR?

CALL INIT

CALL GET_CHAR

NOISE?

TURN ON FRAME
ERROR LED

CALL PUT_CHAR

TURN OFF FRAME
NOISE LED

TURN ON FRAME
NOISE LED

YES

NO

YES

NO

AN1240/D MOTOROLA
9

INIT

ACC = 0?

RETURN

INITIALIZE
 TXD AND RXD PINS

INITIALIZE NOISE
LED

INITIALIZE FRAME
LED

RETURN

DELAY_13A

WAIT 13 CPU
CYCLES

DECREMENT ACC

PUT_CHAR

COUNT = 9

CLEAR
CARRY

TXD PIN = CARRY

PREPARE FOR 1
BIT DELAY

CALL DELAY_13A

COUNT = 0?

SHIFT NEXT DATA
BIT INTO CARRY

DECREMENT
COUNT

CALL DELAY_13A

RETURN

TXD PIN = 1

PREPARE FOR 1
BIT DELAY

NO

NO

YES

YES

MOTOROLA AN1240/D
10

AN1240/D MOTOROLA
11

GET_CHAR

FALSE
START?

COUNT = 8

NOISE REG = 0

CALL GET_BIT

PREPARE FOR 1
BIT DELAY

SHIFT DATA BIT
INTO CHAR

PREPARE FOR 1
BIT DELAY

DECREMENT
COUNT

NOISE?

RETURN

XOR NOISE DATA
WITH CHAR DATA

SET HALF-CARRY
BIT

RXD IDLE?

START BIT
BEGUN?

PREPARE FOR 1/2
BIT DELAY

CALL DELAY_13A

CALL GET_BIT

CALL DELAY_13A

SHIFT NOISE BIT
INTO NOISE REG

COUNT = 0?

CALL GET_BIT

NOISE?

PUT FRAME BIT
INTO CARRY

COMPUTE FRAME
ERROR BIT

CALL DELAY_13A

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

MOTOROLA AN1240/D
12

GET_BIT

CLEAR ACC

CAPTURE STATE
OF RXD OIN

RETURN

CAPTURE STATE
OF ACC

ADD TO ACC

ADD TO ACC

CAPTURE STATE
OF ACC

ADD TO ACC

AN1240/D MOTOROLA
13

APPENDIX C

* *

* Main Routine SCI_01 - SCI Software Transmit/Receive Routines *

* *

* *

* File Name: SCI_01.RTN Copyright (c) Motorola 1995 *

* *

* Full Functional Description of Routine Design: *

* Program flow: *

* Reset: Call init to initialize port pins *

* Call get_char to receive a byte of data *

* Light frame error LED if frame error occurred *

* Light noise LED if frame error occurred *

* Call put_char to transmit the received byte of data *

* Loop back to get_char call (endless loop) *

* *

* *

* Part Specific Framework Includes Section *

* *

#INCLUDE 'H705J1A.FRK' ; Include the equates for the

 ; HC705J1A so all labels can

 ; be found.

MOTOROLA AN1240/D
14

* *

* MOR Bytes Definitions for the Main Routine *

* *

 org MOR

 fcb $20

**

* *

* Equates and RAM Storage *

* *

**

*** I/O Pin Equates:

serial_port equ $01 ; port used for serial port

 ; pins

status_port equ $00 ; port used for driving LED's.

noise equ 4 ; pin # for noise LED

frame equ 5 ; pin # for frame LED

rxd equ 0 ; pin # for receive data pin

txd equ 1 ; pin # for transmit data pin

*** Program Constant Equates: ; Baud rate select table:

BAUD_SEL equ $08 ; BAUD_SEL 4MHz osc 2MHz osc

 ; $04 19.2k 9600

 ; $08 9600 4800

 ; $10 4800 2400

 ; $20 2400 1200

 ; $40 1200 600

 ; $80 600 300

*** RAM variable allocation:

 org RAM

char rmb 1 ; data register for sci

count rmb 1 ; temp storage variable

AN1240/D MOTOROLA
15

* main - example program that continually echoes back received characters. *

* *

* input cond. - reset *

* output cond. - none (infinite loop) *

* stack used - 4 bytes *

* variables used - none *

* ROM used - 28 bytes *

 org ROM ; start at the top of ROM

main rsp ; reset the stack pointer

 jsr init ; initialize port pins

main_loop jsr get_char ; receive one byte of data

 ; from rxd pin

 bcc no_frame_error ; branch if no noise occured

 bclr frame,status_port ; turn on frame LED

 bra continue ; don't check for noise --

 ; it's undefined

no_frame_err bset frame,status_port ; turn off frame LED

 bhcs noise_error ; branch if noise occured

 bset noise,status_port ; turn off noise LED

 bra continue ; skip next line of code

yes_noise_err bclr noise,status_port ; turn on noise LED

continue jsr put_char ; transmit the received byte

 bra main_loop ; and prepare for next

 ; reception.

MOTOROLA AN1240/D
16

**

* init - initialize port pins for sci operation and for driving LEDs; *

* called by main *

* *

* input cond. - none *

* output cond. - TXD = output initialize to 1, RXD = input, noise LED = *

* off, frame LED = off. *

* stack used - 0 bytes *

* variables used - none *

* ROM used - 15 bytes *

**

init bset txd,serial_port ; init txd = 1

 bset txd,serial_port+4 ; txd = output

 bclr rxd,serial_port+4 ; rxd = input

 bset noise,status_port ; noise LED = off

 bset noise,status_port+4 ; noise = output

 bset frame,status_port ; frame LED = off

 bset frame,status_port+4 ; frame = output

 rts ; exit (init)

**

* get_char - receive one byte of data from RXD pin; called by main *

* *

* input cond. - RXD pin defined as an input pin *

* output cond. - char contains received data; X,ACC undefined; *

* half carry = 1 (frame occured) or 0 (no frame error); *

* carry = 1 (noise and/or frame error occured) or 0 *

* (no noise). *

* stack used - 2 bytes *

* variables used - char: storage for received data (1 byte) *

* count: temporary storage (1 byte) *

* ROM used - 63 bytes *

**

AN1240/D MOTOROLA
17

get_char lda #8 ;[2] receiving 8 data bits

 sta count ;[4] store value into RAM

 clrx ;[3] used to store noise data

get_start_bit brclr rxd,serial_port,* ;[5] wait until rxd=1

 brset rxd,serial_port,* ;[5] wait for start bit

 lda #BAUD_SEL-3 ;[2] prepare for 1/2 bit delay

 bsr delay_13a ;[13a+12] execute delay routine

 bsr get_bit ;[39] sample start bit

 lsra ;[3] noise bit -> carry;

 ; acc=filtered start bit

 bne get_start_bit ;[3] if false start, start over

 tsta ;[3] for timing purposes only

 tsta ;[3] for timing purposes only

 lda #2*(BAUD_SEL-2) ;[2] prepare for 1 bit delay

 bsr delay_13a ;[13a+12] execute delay routine

get_data_bits bsr get_bit ;[39] sample data bit

 rora ;[3] noise bit -> carry

 rorx ;[3] carry -> noise data reg

 rora ;[3] filtered data bit -> carry

 ror char ;[5] carry -> char

 lda #2*(BAUD_SEL-3) ;[2] prepare for 1 bit delay

 bsr delay_13a ;[13a+12] execute delay routine

 tsta ;[3] for timing purposes only

 dec count ;[5] bit received, dec count

 bne get_data_bits ;[3] loop if more bits to get

get_stop_bit bsr get_bit ;[39] sample stop bit

 lsra ;[3] noise bit -> carry

 ; acc=filtered stop bit

 sta count ;[4] store stop bit in count

 bcc yes_noise ;[3] if noise, then branch

MOTOROLA AN1240/D
18

 txa ;[2] noise data -> acc

 eor char ;[3] XOR noise with char,

 beq no_noise ;[3] and if result=0,

 ; then no noise in data

 ; reception

yes_noise lda #$08 ;[2] set noise bit (half carry)

 add #$08 ;[2] by adding $8 to $8

no_noise lda count ;[3] retrieve stop data bit,

 coma ;[3] complement it,

 lsra ;[3] and shift it into carry

 ; for frame error bit

 rts ;[6] exit (get_char)

**

* get_bit - receive one bit of filtered data and noise info; called by *

* get_char *

* *

* input cond. - RXD pin defined as an input pin *

* output cond. - ACC = 000000dn, where d = filtered data, n = noise info *

* stack used - 0 bytes *

* variables used - none *

* ROM used - 17 bytes *

**

get_bit clra ;[3] used to add sampled bits

 brset rxd,serial_port,samp_1 ;[5] sample 1st bit into carry

samp_1 adc #0 ;[3] add it to acc

 brset rxd,serial_port,samp_2 ;[5] sample 2nd bit into carry

samp_2 adc #0 ;[3] add it to acc

 brset rxd,serial_port,samp_3 ;[5] sample 3rd bit into carry

samp_3 adc #0 ;[3] add it to acc

 rts ;[6] exit (get_bit)

AN1240/D MOTOROLA
19

* put_char - transmit data byte in char out onto TXD pin; called by main *

* *

* input cond. - TXD pin defined as an output pin and TXD = 1; *

* char contains byte to be tranmitted. *

* output cond. - X,ACC,char = undefined; *

* stack used - 2 bytes *

* variables used - char: storage for transmitted data (1 byte) *

* ROM used - 31 bytes (35 if sending two stop bits) *

put_char ldx #9 ;[2] be sending 8 data bits

 clc ;[2] clear carry for start bit

put_data_bits bcc send_0 ;[3] if carry<>0, then

 bset txd,serial_port ;[5] send out a 1

 bra jmp_bit ;[3] finished sending a 1

send_0 bclr txd,serial_port ;[5] else send a 0

 bra jmp_bit ;[3] finished sending a 0

jmp_bit lda #2*(BAUD_SEL-1)-1 ;[2] prepare for a 1 bit delay

 bsr delay_13a ;[13a+12] execute delay routine

 tsta ;[3] for timing purposes only

 ror char ;[5] get next data bit to send

 decx ;[3] one bit sent, so dec count

 bne put_data_bits ;[3] loop if more bits to send

put_stop_bit nop ;[2] for timing purposes only

 bset txd,serial_port ;[5] send out a one

 lda #2*(BAUD_SEL-1) ;[2] prepare for a 1 bit delay

 bsr delay_13a ;[13a+12] execute delay routine

* add the next two lines to guarantee sending two stop bits:

* lda #2*(BAUD_SEL-1)+1 ;[2] prepare for a 1 bit delay

* bsr delay_13a ;[13a+12] execute delay routine

 rts ;[6] exit (put_char)

AN1240/D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any par ticular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating
parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distrib ution Center s:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po Industrial Estate,
 Tai Po, N.T., Hong Kong.

**

* delay_13a - delay for 13*ACC + 12 cycles; called by get_char and put_char *

* *

* input cond. - ACC set to appropriate value (13*ACC + 12 cycles) *

* output cond. - ACC = 0 *

* stack used - 0 bytes *

* variables used - none *

* ROM used - 7 bytes *

**

delay_13a nop ;[2] this is a 13-cycle loop

 nop ;[2]

 tsta ;[3]

 deca ;[3] decrement loop count

 bne delay_13a ;[3] loop if count not zero

 rts ;[6] exit (delay_13a)

**

* *

* Interrupt and Reset vectors for Main Routine *

* *

**

 org RESET

 fdb main

AN1240/D MOTOROLA
21

APPENDIX D

Receiver Tolerances

The following tolerances state the maximum variation of the average bit period allowable for accurate
reception of data without noise or frame error conditions occurring.

Transmitter Accuracy

The following table states the percent accuracy of the transmitted bit period to the ideal bit period.

Table 1 Receiver Tolerances

Baud Rate for
4 MHz clock

(bits/sec)

Baud Rate for
2 MHz clock

(bits/sec)

Bit Period t p
(µs)

Bit Period Tolerance

19.2k n/a 52.08 +2.7%/-4.0%

9600 9600 104.2 +3.7%/-5.7%

4800 4800 208.3 +3.9%/-5.5%

2400 2400 416.7 +4.3%/-4.8%

1200 1200 833.3 +4.9%/-5.2%

600 600 1666.7 +4.9%/-5.4%

n/a 300 3333.3 +4.9%/-5.1%

Table 2 Transmitter Accuracy

Baud Rate for
4 MHz clock

(bits/sec)

Baud Rate for
2 MHz clock

(bits/sec)

Ideal Bit
Period t p (µs)

Actual Bit
Period t p (µs)

% Accuracy

19.2k n/a 52.08 52.0 0.16%

9600 9600 104.2 104.0 0.16%

4800 4800 208.3 208.0 0.16%

2400 2400 416.7 416.0 0.16%

1200 1200 833.3 832.0 0.16%

600 600 1666.7 1664.0 0.16%

n/a 300 3333.3 3328.0 0.16%

MOTOROLA AN1240/D
22

REFERENCES

1) Motorola, M68HC11 Reference Manual, Prentice Hall, Englewood Cliffs, New Jersey, 1989, Order
no. M68HC11RM/AD.

2) Motorola, M68HC05 Applications Guide, Revision 1, Order no. M68HC05AG/AD.

3) Motorola, MC68HC05J1A Technical Data, Order no. M68HC05J1A/D

4) Steve Leibson, The Handbook of Microcomputer Interfacing, Second Edition, TAB Books, Inc.,
Blue Ridge Summit, Pennsylvania, 1989.

