
MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–348

����� ����� ��� ���
����
 �	
�

INTRODUCTION

The world of embedded controls is currently experiencing
a push into the realm of fuzzy logic. In the past, manufactur-
ers have contended with performance vs. cost tradeoffs with
no apparent fulfillment of both. However, the concept of fuzzy
logic has repeatedly proven that for some applications a low
cost, 8–bit microcontroller can equal or exceed the perfor-
mance of a more expensive number crunching DSP (digital
signal processor). Motorola has recognized the power of
fuzzy logic and has created fuzzy kernels and support tools
for a number of their microcontrol lers including the
MC143150/20 (NEURON CHIP).

The NEURON CHIP is a communications and control proces-
sor (designed by Echelon, manufactured by Motorola) with
an embedded LONTALK protocol used for multimedia net-
working environments in which received network inputs (on
the processor’s communications port) are used to control
processor outputs (on its I/O port). An important design con-
cept relevant to NEURON CHIPs is intelligen t d istributed
control — the distribution of control among several NEURON

processors (called nodes) which share I/O data on a net-
work. Specifically, in fuzzy applications input data can be
sent via a network to a “fuzzy” node which will run the inputs
through its fuzzy engine and control its outputs accordingly.
This application note will give the reader a brief introduction
to 8–bit fuzzy logic, present a fuzzy kernel for the NEURON

CHIP practical for a 30 Hz controller, and demonstrate a fuzzy
node in a fan controller application. Finally, refer to
Motorola’s data book (MC143150/D) for technical informa-
tion on the NEURON CHIP and Echelon’s NEURON C Program-
mer’s Guide for details on NEURON C syntax.

FUZZY LOGIC PRIMER

This section gives a brief introduction to the simplest con-
cepts of 8–bit fuzzy logic. Readers who are familiar with fuzzy
logic should consider skipping this section. More details can
be obtained through Motorola’s Fuzzy Logic Education Pro-
gram, a PC tutorial available through Motorola sales offices.

Introduction

The invention of fuzzy logic is usually attributed to Lotfi
Zadeh, a professor at UC Berkeley, in the mid 1960s. He de-
veloped an approach to control solutions which require nei-
ther memory intensive lookup tables nor complicated
mathematical formulae. In brief, the fuzzy logic methodology,
called inference, assigns predefined degrees of truth to the
entire range of inputs to a system and then processes real–

time inputs through a set of rules to derive a weighted system
output. Three basic steps of fuzzy inference are fuzzification,
rule evaluation, and defuzzification (see Figure 1), described
in the following sections. Though many inference methods
exist, this document will detail only one, the min –max
inference methodology.

FUZZY INPUTS

FUZZY OUTPUTS

FUZZY ENGINE

CRISP OUTPUTDEFUZZIFICATION

RULE EVALUATION

FUZZIFICATION

CRISP INPUT #2

CRISP INPUT #1

Figure 1. Block Diagram of Fuzzy System

Fuzzification

A fuzzy controller will receive crisp inputs (typically two or
three) on its input or communications port and initially fuzzify
them. Each system input is divided into overlapping sets of
membership functions , typically 3 to 9 sets per input. The
predefined membership functions cover the entire range of
values (or universe of discourse) for an input and will define
a degree of truth for every point in the universe of discourse.
Figure 2 shows five trapezoidal membership functions for an
input to a fuzzy controller; note that each membership func-
tion is typically labeled to quantify the input (i.e. very slow,
fast, etc.) and that each function assigns a degree of truth
(between 0 and 255) to an input. In other words, as you slide
along the horizontal axis representing an input value, each
point translates to one point on the border(s) of one or more
trapezoids representing a degree of membership (pay atten-
tion only to points on the edges of the trapezoids when as-
signing degrees of truth to inputs). Thus fuzzy logic is unlike

NEURON is a registered trademark of Echelon Corporation.

��������
SEMICONDUCTOR TECHNICAL DATA

�
����

MOTOROLA L ONWORKS TECHNOLOGY
AL–349
AN1225

20463

1000

SPEED
(FT/S)

SCALED

UNIVERSE OF DISCOURSE

255

MEMBERSHIP FUNCTIONS

0 255

VERY
FASTFASTMEDIUMVERY

SLOW

8025

SLOW

Figure 2. Input Membership Functions for Fuzzification

boolean logic in that system input values can partially be-
long to multiple sets (i.e., an input can be 30% slow and 70%
medium); with boolean input values set membership is either
100% or 0%. In this sense, fuzzy logic will often help em-
bedded controllers to respond in a smoother manner over
the full range of inputs. Note that membership functions may
be more complicated in shape (than the trapezoids in Fig-
ure 2) with a tradeoff of more complex arithmetic and
memory requirements in the fuzzification step.

The fuzzification process uses two basic steps which are
repeated for each system input. First, a crisp input must be
read and scaled to a value between 0 and 255 (for an 8–bit
fuzzy engine). Second, the input must be translated to a
degree of membership (between 0 and 255) for each input
membership function. For example, in Figure 2, if the read
input indicates 25 ft/s, its value is scaled to 63 and 255 is
assigned to the slow function — the other four functions (very
slow, medium, fast, and very fast) are assigned to 0 (the in-
put is 100% slow). In another example, the system input
80 ft/s is scaled to 204 and assigned to 179 for the fast func-

tion and to 76 for the very fast function — the other three
functions are assigned to 0 (the input is 70% fast and 30%
very fast). All of the assigned values to input membership
functions in a system are called the fuzzified inputs of the
system. In total, the number of fuzzified inputs will equal the
number of inputs times the number of membership functions
per input.

Rule Evaluation

Fuzzified inputs are processed through a predefined set of
rules (typically 15 to 25 rules per system) using a min –max
evaluation to form fuzzified outputs. In detail, rules are ar-
ranged in an if–then format — if two or more inputs (called
antecedents) are all true then an output function (called a
consequent) is executed to the degree of the minimum
value antecedent (see Figure 3). Often times all the rules of a
system are displayed in a matrix fashion as shown in
Figure 4 where the consequents (outputs) are listed for all
possible combination pairs of antecedents (inputs). For
example, in Figure 4, if input #1 is 10% medium and input #2

RULE #2

RULE #1

FUZZY OUTPUTMAX

CONSEQUENT #1MINAND

ANTECEDENT #3

ANTECEDENT #2

THEN

CONSEQUENT #1

IF

MINAND

ANTECEDENT #2

ANTECEDENT #1

Figure 3. Rule Evaluation

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–350

INPUT #1

IN
PU

T
#2

SLOW MEDIUM FAST

IN
PU

T
#2

COLD OFF OFF
MEDIUM

LOW

IN
PU

T
#2

WARM
MEDIUM

LOW
MEDIUM MEDIUM

IN
PU

T
#2

HOT
MEDIUM

HIGH
MEDIUM

HIGH
HIGH

Figure 4. Rule Matrix

is 50% hot, then the output medium high will be weighted at
10% as a result of the minimum value function. The remain-
ing eight rules of the system would be evaluated in a similar
manner to create a set of five fuzzified (weighted) outputs
(described below). Additionally, for rules with the same con-
sequent the fuzzy engine will choose the rule with the maxi-
mum value for the system’s weighted output value. For
example, in Figure 4, if warm and medium fuzzy inputs yield
a 20% medium output, but warm and fast fuzzy inputs yield a
40% medium output, then the final output for medium will be
40% as a result of the maximum value function. The rule
evaluation procedure just described is the primary step in
min–max inference.

Fuzzified outputs are classified into membership sets simi-
lar to input membership functions. Though many types of
output functions are valid, this document will only cover
singletons in which the scaled outputs of a system (ranging
from 0 to 255) are defined as 3 to 9 discrete values which are

assigned weights (between 0 and 255) in the rule evaluation
step described above. The example in Figure 5 illustrates
five singletons representing possible output values for a
single output. Note that the output singletons are often la-
beled to “quantify” the output (i.e., medium low, very high,
etc.). The number of fuzzified outputs for a system will equal
the number of outputs times the number of singletons per
output. The final raw or crisp output value of the system is
determined in the defuzzification step.

Defuzzification

The final task of a fuzzy engine is to defuzzify its fuzzy out-
puts into a single raw or crisp output for an external device
(i.e., stepper motor, D/A converter, etc.). This document de-
scribes a center of gravity method. As described above, the
fuzzified outputs are a set of weights for the discrete values
called singletons. The final scaled output is the result of the
following equation:

scaled output = ((Σ (fuzzy outputs * output singletons)) /
(Σ fuzzy outputs))

The output is a value between 0 and 255 which might need
to be scaled for non–8–bit output functions. For example, in
Figure 5 if the rule evaluation process determines the system
output is 30% medium low, 60% medium, and 10% medium
high, then the center of gravity calculation will yield:

((.3*255)* 90 + (.6*255)*128 + (.1*255)*170) /
(.3*255 + .6*255 + .1*255) = 116

The value 116 can then be scaled for its output. Note that
not all output singletons (i.e., the ones with a value of zero)
will contribute to an output calculation for a set of inputs.

Conclusions

Min–max inference is quite simple to implement, yet it pro-
vides a powerful and rigorous solution for embedded control-
lers. Motorola’s 8–bit kernels all use this type of inference
because it is efficient in timing and code size. Many other
types of fuzzy inference exist and may be required for com-
plex or highly accurate solutions, but min–max inference is
applicable to a majority of control applications.

170128900

255

SINGLETONS

255
VERY
HIGH

MEDIUM
HIGH

MEDIUMMEDIUM
LOW

OFF

Figure 5. Output Singletons

MOTOROLA L ONWORKS TECHNOLOGY
AL–351
AN1225

FUZZY KERNEL FOR THE NEURON CHIP

Introduction

A fuzzy kernel, or engine, is simply a skeleton of program-
ming code which will perform the three basic steps of fuzzy
logic — fuzzification, rule evaluation, and defuzzification.
The kernel user makes the programming code unique by de-
fining and entering the input membership functions, rules,
and singletons in tabular form and entering scaling equations
for the crisp inputs and outputs. In addition to the kernel for
the MC143150, Motorola offers, free of charge, fuzzy kernels
for two of its 8–bit microcontrollers (the MC68HC11 and
HC05) as well as its 16–bit HC16 microcontroller and the
32–bit 68000 family. The fuzzy kernel in this document, writ-
ten in NEURON C, was designed using the HC11 kernel as a
model. See Appendix A for a print out of the NEURON C fuzzy
kernel.

Fuzzification

The fuzzification function produces a set of fuzzy inputs by
reading a real–time crisp input, scaling it to 8 bits, and assign-
ing a degree or grade to it for each input membership func-
tion defined by the user. First, the designer of the embedded
controller must add equations to the kernel to scale crisp in-
puts to 8–bit values before fuzzification at which time the
NEURON fuzzy engine allows up to 4 inputs (default of 4) with
8 membership functions per input. The number of inputs is
set by redefining the constant called NUM_INPUTS (the ele-
ments per input membership function is always 8) and the in-
put membership functions are defined by modifying the table
called input_function . The membership functions (4 bytes
each) are entered in tabular form and represent points and
slopes which characterize the trapezoids (point 1, slope 1,
point 2, slope 2 — see Figure 6). Note that negative slopes
are entered as positive numbers since the kernel is aware
that the second slope entered will be negative. Also, vertical
slopes (typically on the minimum and maximum sides of the
universe of discourse) are given values of 0. The minimum
slope (default of 8) eliminates unnecessary slope calcula-

tions for larger input values and can be redefined by chang-
ing the constant called MIN_SLOPE. Unused membership
functions must remain in the table and are entered as 0xff —
the kernel is designed to ignore unused inputs.

Since the fuzzification process uses repetitive looping, the
number of inputs and the number of membership functions
per input will affect overall inference times. In other words,
the basic function of the fuzzification process is to assign a
degree or grade to each membership function, so the overall
time of execution is directly related to the number in input
membership functions used.

Rule Evaluation

The rule evaluation process produces a set of fuzzy out-
puts (one for each singleton) based on the min–max infer-
ence process described in the Primer section above. The
NEURON fuzzy engine allows any number of rules each with
any number of antecedents and consequents. The total num-
ber of antecedents is set by redefining the constant called
NUM_ANTECEDENTS , and the total number of conse-
quents is set with NUM_CONSEQUENTS. Each antecedent
and consequent uses one byte of table space (in the table
called rules) as shown in Figure 7. Also the number of out-
puts is limited to 2 (set by redefining NUM_OUTPUTS) and
singletons per output is limited to 8 (controlled by redefining
the constant called SING_PER_OUTPUT). An example of a
rule table entry and its connections with membership func-
tions and singletons is shown in Figure 8. Keep in mind that
the rule evaluation step uses repetitive looping, thus as the
number of rules and singletons increases so does the infer-
ence time (and the amount of memory required). The rule
table is terminated by a 0xff.

Defuzzification

The defuzzification process performs a center of gravity
calculation on the fuzzified outputs using the equation listed
in the Primer section above. This process yields an 8–bit
crisp output value which may need to be scaled for its output.
Its execution time is dependent on the number of outputs and
the number of singletons per output.

INPUT_FUNCTION

43 9 85 10

114700

MEMBERSHIP FUNCT. I : POINT 1 = 0, SLOPE 1 = 0
 POINT 2 = 47, SLOPE 2 = 11

MEMBERSHIP FUNCT. II: POINT 1 = 43, SLOPE 1 = 9
 POINT 2 = 85, SLOPE 2 = 10

III

11085704743

(85,1)

(43,0)

(47,1)

(0,0)

1 (255)

0 255

Figure 6. Table Entires for Input Membership Functions

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–352

CONSEQUENT

ANTECEDENT

1 000

0 = OUTPUT 0
1 = OUTPUT 1

000

00 = INPUT 0
01 = INPUT 1
10 = INPUT 2
11 = INPUT 3

000 = MEMBERSHIP
 FUNCTION 0
001 = MEMBERSHIP
 FUNCTION 1

⋅
⋅
⋅

111 = MEMBERSHIP
FUNCTION 7

000 = OUTPUT
 SINGLETON 0
001 = OUTPUT
 SINGLETON 1

⋅
⋅
⋅

111 = OUTPUT
SINGLETON 7

Figure 7. Table Format for Antecedents and Consequents

Results

Most fuzzy engines are analyzed for three basic parame-
ters: performance, code size, and inference time. First, per-
formance is a less tangible study and involves observing the
smoothness of output performance particularly in transition
areas (i.e., where the input membership functions overlap),
and minimum and maximum input values. Second, the size
of the kernel presented in this document is 983 bytes. Note
that the size of the kernel in different applications will vary,
depending upon the number of inputs, outputs, and rules.
Third, inference times are measurable but are also depen-
dent upon system parameters (number of inputs, member-
ship functions per input, number of rules, and number of
singletons). Our study used the following parameters for its
benchmarking: two inputs, 5 membership functions per input,
20 rules, and 5 singletons for one output. The fuzzy inference
times (not including input access or scaling) varied between
19 and 24 ms (larger values of transition inputs typically take
longer to fuzzify); each section of code was timed in an opti-
mization study (see Table 1) and parameters such as single-
tons and rules were varied in quantity when measuring
overall inference time (note that the optimization study was
performed with version 2.2 of the LONBUILDER; execution

times were improved over version 2.1 by using fastaccess
data types for all arrays). In conclusion the study shows that
the NEURON fuzzy kernel can be used to implement a dedi-
cated 30 Hz controller.

Table 1. Execution Times with Kernel Variations

Characteristic Time (ms)

Fuzzification 3.6–7.8

Rule Evaluation 10–12.4

Defuzzification 3.6–4.4

Inference 19–24

Inference — with 10 rules 14–18

Inference — with 15 rules 16.5–21

Inference — with 3 singletons 17.5–22

Inference — with 7 singletons 20.5–26

Inference — with 3 membership functions 17.5–21.5

Inference — with 7 membership functions 19.5–25

MOTOROLA L ONWORKS TECHNOLOGY
AL–353
AN1225

OUTPUT 0, SINGLETON 0

INPUT 1, FUNCTION 1

INPUT 0, FUNCTION 0

RULES

AND

0X80

0X09

0X00

LARGE NEGATIVETHEN

MEDIUM

COLD

IF

0X00 LARGE NEG.
 :
0X80 OFF
 :
0XFF LARGE POS.

SINGLETONS FOR
 OUTPUT #0

MEMBERSHIP FUNCTIONS FOR INPUT #1

COLD
WARM

HOT

MEMBERSHIP FUNCTIONS FOR INPUT #0

POINT 1 SLOPE 1 POINT 2 SLOPE 2

0x00 0x00 0x20 0x0a
0x20 0x09 0x50 0x0a
0x50 0x0b 0x80 0x08

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

SLOW
MEDIUM

FAST

POINT 1 SLOPE 1 POINT 2 SLOPE 2

0x00 0x00 0x30 0x09
0x2d 0x0b 0x68 0x0a
0x68 0x0b 0x8a 0x09

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Figure 8. Association Between Rules, Membership Functions, and Singletons

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–354

FUZZY FAN APPLICATION
USING THE NEURON CHIP

Introduction

The final goal of this document is to present the NEURON

CHIP as a fuzzy controller in a network. The following exam-
ple uses two network inputs, water temperature and water
flow rate, to control the output (speed of a fan motor) in
Motorola’s LONWORKS Fluid Demo (see document on the
Fluid Demo for more system details — Figure 9 of this docu-
ment gives a system diagram). In brief, the fan node receives
temperature and flow rate data from two nodes via its com-
munication port on a 78 kbps twisted pair network, runs
scaled values through its fuzzy controller, and scales crisp
outputs for its PWM output control to a fan. Thus the fan
speed will be controlled by network data. The software for
the fan node is presented in Appendix B of this document.

Hardware

The hardware for the fan node is shown in Figure 10. A
PWM signal is output from pin IO_1 of the NEURON IC to
control a periodic pulse into the MOC2A40–10 triac device
which will control the fan’s motor speed. The schematic
shows that Motorola’s OEK–1 Evaluation Board was used;
note that the input current amplifying circuit is not necessary
with the NEURON IC since IO_1 is capable of driving 20 mA.

Software

Most of the required software was contained within the
fuzzy kernel, however scaling equations had to be written
and table values had to be entered to convert the kernel into
a fan controller. First, the inputs were received as network
variables, thus the temperature value (2–bytes ranging from
32 to 185) and flow rate (2–bytes ranging from 0 to 100) had
to be scaled to 8–bit values. Second, input membership func-
tions, rules, and output singletons were created for the fan
controller. The input membership functions are shown in Fig-
ure 11; note that the temperature input has four membership
functions and flow rate has five.

The rules for the fan controller are shown in Table 2. Note
that all possible combinations of the two inputs were used to
form 20 rules (40 antecedents and 20 consequents). Often
times the rule process can be optimized to eliminate conse-
quents, thus allowing the fuzzy engine to perform faster.

Finally, the 5 singletons for the fan speed output are
shown in Figure 12. Be aware that if the values of singletons
on the right side of the graph are too high, overflows can
occur when using 16–bit arithmetic in the center of gravity
calculation (this can be rectified by breaking the calculation
down into several equations).

The third step in writing the software was scaling the crisp
8–bit output to a 16–bit PWM output. Once again, the fuzzy
fan software is shown in Appendix B.

Results

The fan node was tested for performance characteristics
and fuzzy execution time. The key areas of observation for
performance were minimum and maximum input values and
the transition areas of input membership functions. The
limitations of 16–bit arithmetic were discovered in some of
the transition areas as the center of gravity calculation over-
flowed with higher singleton values on the output. This prob-
lem can be avoided by adjusting the singletons of an output
or breaking the calculations down into several blocks. After
adjusting the singletons, the advantages of fuzzy logic were
observed in the smooth transitions of the fan speed as the
inputs varied. Finally the execution time of the fuzzy loop (in-
cluding scaling) varied between 22.5 and 29 ms over the uni-
verse of discourse. Keep in mind that this NEURON CHIP was
dedicated to fan control and that other functions could poten-
tially slow down the operation of the fuzzy engine.

Conclusions

The NEURON CHIP can add value operating as a fuzzy en-
gine for embedded controls on a distributed network. The
only limiting factor of the NEURON controller is its slow infer-
ence time as a result of programming the kernel in NEURON

C. However, many applications will operate to specification
with a 30 Hz controller and if demand is high enough, Eche-
lon may consider writing the fuzzy routines in object code.
On the other hand, the added benefit of using the NEURON

CHIP is its communications capabilities. Inputs received on
the network take virtually no time for the application code to
read, as they are handled by the device’s network and MAC
processors which place the data in RAM. Also, use of a net-
work implies that inputs can easily be received from remote
locations. Overall, the use of fuzzy controllers in a distributed
network environment can result in considerable improve-
ments in system performance.

MOTOROLA L ONWORKS TECHNOLOGY
AL–355
AN1225

TE
M

P.
SE

N
SO

R

W
AT

ER

PR
ES

SU
R

E

FA
N

VA
LV

E
PU

M
PPR

IM
AR

Y

D
IS

PL
AY

TE
M

P
SE

T

TE
M

P.
SE

TTE
M

PE
R

AT
U

R
E

SE
C

O
N

D
AR

Y

LE
VE

L

W
AT

ER
TA

N
K

SE
N

SO
R

D
IS

PL
AY

C
O

N
TR

O
L

C
O

N
TR

O
L

C
O

N
TR

O
L

PU
M

P

M
O

D
E

SE
T

PO
IN

T

C
O

N
TR

O
L

PU
M

P
SP

EE
D

SE
TT

IN
G

PU
M

P
SP

EE
D

D
IS

PL
AY

PU
M

P
C

O
N

TR
O

L
R

F/
TP

G
AT

EW
AY

R
AD

IU
S

M
O

D
EM

PR
ES

SU
R

E
SE

N
SO

R

H
EA

TE
R

EL
EM

EN
T

TE
M

P.
SE

N
SO

R

W
AT

ER
LE

VE
L

PR
IM

AR
Y

W
AT

ER
TA

N
K

TE
M

PE
R

AT
U

R
E

M
O

N
IT

O
R

 D
IS

PL
AY

C
O

M
PU

TE
R R

AD
IU

S
M

O
D

EM

R
F/

TP
G

AT
EW

AY

TE
M

PE
R

AT
U

R
E

D
IS

PL
AY

C
O

N
TR

O
L

TE
M

P
SE

T
M

O
D

E

TE
M

P
SE

T
C

O
N

TR
O

L

D
IS

PL
AY

SE
T

PO
IN

T

VA
LV

E

AC
TI

O
N

PA
K

R
S–

23
2

C
O

N
VE

RT
ER

SE
C

O
N

D
AR

Y
PU

M
P

M
O

D
E

SE
T

PO
IN

T
D

IS
PL

AY

W
AT

ER
LE

VE
L

D
IS

PL
AY

W
AT

ER
LE

VE
L

D
IS

PL
AY

/
C

O
N

TR
O

L

C
O

O
LI

N
G

 E
XC

H
AN

G
E

LE
VE

L
SE

T

LE
VE

L
SE

T
C

O
N

TR
O

L

H
EA

TE
R

C
O

N
TR

O
L

78
 K

BP
S

TW
IS

TE
D

 P
AI

R

N

N

N
N

N
N

N
N

N
N

N
N

Figure 9. L ONWORKS Fluid Demo — System Diagram

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–356

10 k

.01

39

240

10 k

2.7 k

N

115 Vac

FANLOAD

HOT

–

+

7

9

2

3
MOC2A40–10

VSS

IO_1

VDD

NEURON IC

OEK — 1 EVALUATION BOARD

Figure 10. Schematic of Fan Mode

1

1

(DEG.)

INPUT #2 TEMPERATURE

255191140800

1851471168032

DANGER
VERY
HOTHOTWARM

INPUT #1 FLOW RATE

100

38 89 140 191

75553515

0

(%)

255

0

VERY
FASTFASTMEDIUMSLOW

VERY
SLOW

Figure 11. Input Membership Functions for Fuzzy Fan

MOTOROLA L ONWORKS TECHNOLOGY
AL–357
AN1225

Table 2. Fuzzy Fan Rules

FLOW RATE
TU

R
E

VERY
SLOW

SLOW MEDIUM FAST
VERY
FAST

TE
M

PE
R

AT
U

R
E

WARM OFF OFF OFF
MEDIUM

LOW
MEDIUM

LOW

TE
M

PE
R

AT
U

R
E

HOT
MEDIUM

LOW
MEDIUM

LOW
MEDIUM MEDIUM

MEDIUM
HIGH

VERY
HOT

MEDIUM
MEDIUM

HIGH
MEDIUM

HIGH
HIGH HIGH

DANGER
MEDIUM

HIGH
MEDIUM

HIGH
HIGH HIGH HIGH

156100640

255

SINGLETONS

255

HIGHMEDIUM
 HIGH

MEDIUMMEDIUM
 LOW

OFF

Figure 12. Singletons for Fan Node Output

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–358

APPENDIX A
NEURON C FUZZY KERNEL

This program is a Neuron IC fuzzy kernel written in Neuron C
with the following features:

1) Up to 4 4–byte inputs formatted {pt1, slope1, pt2, slope2}.
2) Up to 8 membership elements per input function.
3) Up to 2 outputs.
4) Up to 8 1–byte singletons per output function formatted {pt}.
5) 1 byte per antecedent (‘if’) formatted 000X XAAA

where XX = input# and AAA = input function member#.
6) 1 byte per consequent (‘then’) formatted 1000 XAAA

where X = output# and AAA = output function singleton#.
7) Min–max inference.
8) Defuzzification using COG calculation.

**/

/************************************ Compiler directives **********************************/

#define NUM_OUTPUTS 2
#define SING_PER_OUTPUT 8
#define NUM_INPUTS 4
#define ELEMENTS_PER_INPUT 8
#define BYTES_PER_ELEMENT 4
#define NUM_ANTECEDENTS 0
#define NUM_CONSEQUENTS 0
#define MIN_SLOPE 8

/*** Globals ***/

unsigned int input_function [NUM_INPUTS] [ELEMENTS_PER_INPUT]

[BYTES_PER_ELEMENT] = {
{ //Input #0

{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

},
{ //Input #1

{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

},
{ //Input #2

{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

},

MOTOROLA L ONWORKS TECHNOLOGY
AL–359
AN1225

{ //Input #3
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

}

};

unsigned int singletons [NUM_OUTPUTS] [SING_PER_OUTPUT] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, //Output #1
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} //Output #2

};

unsigned int rules [NUM_ANTECEDENTS + NUM_CONSEQUENTS + 1] = {
0xff

};

unsigned int *input_pt;
unsigned int *rule_pt;
signed long crisp_inputs [NUM_INPUTS];
unsigned int crisp_outputs [NUM_OUTPUTS];
unsigned int index;
unsigned int row_index;
unsigned int col_index;
signed long *fuzzy_pt;
signed long fuzzified inputs [ELEMENTS_PER_INPUT * NUM_INPUTS];
unsigned int *fuzzy_pt2;
unsigned int fuzzified_outputs [NUM_OUTPUTS][SING_PER_OUTPUT];
unsigned int minimum;
unsigned long sum;
unsigned long sum_of_products;
unsigned int point1;
unsigned int point2;
unsigned int slope1;
unsigned int slope2;
unsigned long pwm_value;
unsigned int max_displacement;
unsigned int local [2];

when (reset) {
max_displacement = 255 / MIN_SLOPE;

} //end when

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–360

/************************************ Fuzzy engine ***/

when (1) {

/************* Scale inputs here (give values to crisp_inputs[] and local[]) **************/

/************************************** Fuzzification **************************************/

input_pt = &input_function[0][0][0];
fuzzy_pt = &fuzzified_inputs[0];

/******************************* Look at each updated input ***************************/

for (index = 0; index < NUM_INPUTS; index++) {

/************************ Assign a grade to each input function member ************/

for (row_index = 0; row_index < ELEMENTS_PER_INPUT; row_index++) {
point1 = *input_pt++;

/**check if crsip input is below defined input range ***/
if (local[index] <= point1) {

if (point1) *fuzzy_pt++ = 0; //out of range
else *fuzzy_pt++ = 0xff;
input_pt += 3; //point to next input
goto jump;

} //end if

slope1 = *input_pt++;
point2 = *input_pt++;

/* check if crisp input is within input range and to the left of pt2 */
if (local[index] <= point 2) {

if (!slope1) *fuzzy_pt++ = 0xff; //vertical slope
else {

*fuzzy_pt = ((long)slope1) *
(crisp_inputs[index] – point1);

if (*fuzzy_pt > 0xff) *fuzzy_pt = 0xff; //max value
*fuzzy_pt++; //next grade

} //end else
input_pt++; //point to next input
goto jump;

} //end if

slope2 = *input_pt++;

/* check if crisp input is to the right of pt2 within reasonable range */
if (slope2 && (crisp_inputs[index] < (point2 + max_displacement))) {

fuzzy_pt = 255 – ((long)slope2
(crisp_inputs[index] – point2));
if (*fuzzy_pt < 0) *fuzzy_pt = 0; //out of range
*fuzzy_pt++;

} //end if

else *fuzzy_pt++ = 0; //vertical slope
jump: if (1);

} //end for
} //end for

MOTOROLA L ONWORKS TECHNOLOGY
AL–361
AN1225

/************************************ Rule evaluation **************************************/

fuzzy_pt2 = &fuzzified_outputs[0][0];
for (index = 0; index < NUM_OUTPUTS * SING_PER_OUTPUT; index++)

*fuzzy_pt2++ = 0; //clear output array
rule_pt = &rules[0];
while (1) {

minimum = 0xff;
while (*rule_pt < 0x80) { //antecedent evaluation (min function)

if (!minimum) rule_pt++; //check for 0 minimum
else {

//point to fuzzified input location
fuzzy_pt = &fuzzified_inputs [0] + *rule_pt++;
//check for new minimum
if (*fuzzy_pt < minimum) minimum = *fuzzy_pt;

} //end else
} //end while
while (*rule_pt & 0x80) { //consequent evaluation (max function)

if (*rule_pt == 0xff) goto done; //end of rules
if (!minimum) rule_pt++; //check for 0 maximum
else {

//point to fuzzified output location
fuzzy_pt2 = &fuzzified_outputs [0][0] + (*rule_pt++ – 0x80);
//check for new maximum
if (minimum > *fuzzy_pt2) *fuzzy_pt2 = minimum;

} //end else
} //end while

} //end while
done: if (1);

/************************************ Defuzzification **************************************/

/********************************** COG for all outputs *******************************/

for (row_index = 0; row_index < NUM_OUTPUTS; row_index++) {

/****************************** Sum of products for each output ******************/

sum = 0;
sum_of_products = 0;
for (col_index = 0; col_index < SING_PER_OUTPUT; col_index++) {

sum += fuzzified_outputs[row_index][col_index];
sum_of_products += (unsigned long) singletons[row_index][col_index]

* (unsigned long) fuzzified_outputs[row_index][col_index];
} //end for
crisp_outputs[row_index] = sum_of_products / sum;

} //end for

/************************** Scale output(s) and call output function(s) ********************/

} //end when

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–362

APPENDIX B
NEURON C FAN CONTROL NODE

/**

Function: fan.nc
Definition:

This program is a N EURON IC fan node for Motorola’s water demo using a fuzzy kernel with
the following fuzzy features:

1) 2 4–byte inputs – flow rate and temperature formatted {pt1, slope1, pt2, slope2}.
2) 5 membership elements for flow rate, 4 for temperature.
3) 1 output – fan speed.
4) 5 1–byte singletons for fan speed.
5) 1 byte per antecedent (‘if’) formatted 000X XAAAA

where XX = input# and AAA = input function member#.
6) 1 byte per consequent (‘then’) formatted 1000 XAAA

where X = output# and AAA = output function singleton#.
7) Min–max inference.
8) Defuzzifiation using COG calculation.

I/O inputs: none
I/O output: PWM signal to ac fan motor via triac

net inputs: temperature and water flow rate
net outputs: none

application image (ROM): 1065 bytes

required header files: none

rev: 1.0 6/3/93 first revision
1.1 6/10/93 optimization – used unsigned int comparison

in fuzzification instead of long; also
fastaccess arrays (rev. 2.2 of L ONBUILDER).

**/

/************************************ Compiler directives **********************************/

#pragma enable_io_pullups
#define NUM_OUTPUTS 1
#define SING_PER_OUTPUT 5
#define NUM_INPUTS 2
#define ELEMENTS_PER_INPUT 8
#define BYTES_PER_ELEMENT 4
#define NUM_ANTECEDENTS 40
#define NUM_CONSEQUENTS 20
#define MIN_SLOPE 8

/*************************************** I/O objects ***************************************/

IO_1 output pulsewidth long clock(5) IO_pwm;
IO_4 output bit test;

/************************************* Network Variables ***********************************/

network input unsigned int NV_temp;
network input unsigned int NV_pump_spd;

MOTOROLA L ONWORKS TECHNOLOGY
AL–363
AN1225

/** Globals **/

fastaccess unsigned int input_function [NUM_INPUTS] [ELEMENTS_PER_INPUT]
 [BYTES_PER_ELEMENT] = {
 {

{0x00, 0x00, 0x26, 0x0a}, //very slow
{0x26, 0x0a, 0x59, 0x0a}, //slow
{0x59, 0x0a, 0x8c, 0x0a}, //medium
{0x8c, 0x0a, 0xbf, 0x0a}, //fast
{0xbf, 0x0a, 0xff, 0x00}, //very fast
{0xff, 0xff, 0xff, 0xff}, //not used
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

 } ,
 {

{0x00, 0x00, 0x50, 0x0a}, //warm
{0x50, 0x0a, 0x8c, 0x0a}, //hot
{0x8c, 0x0a, 0xbf, 0x0a}, //very hot
{0xbf, 0x0a, 0xff, 0x00}, //danger
{0xff, 0xff, 0xff, 0xff}, //not used
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff},
{0xff, 0xff, 0xff, 0xff}

 }
};

fastaccess unsigned int singletons [NUM_OUTPUTS] [SING_PER_OUTPUT] = {
{0x00, 0x40, 0x64, 0x9c, 0xff}

};

fastaccess unsigned int rules [NUM_ANTECEDENTS + NUM_CONSEQUENTS + 1] = {
0x08, 0x00, 0x80, //if warm and very slow, then off
0x08, 0x01, 0x80, //if warm and slow, then off
0x08, 0x02, 0x80, //if warm and medium, then off
0x08, 0x03, 0x81, //if warm and fast, then medium low
0x08, 0x04, 0x81, //if warm and very fast, then medium low
0x09, 0x00, 0x81, //if hot and very slow, then medium low
0x09, 0x01, 0x81, //if hot and slow, then medium low
0x09, 0x02, 0x82, //if hot and medium, then medium
0x09, 0x03, 0x82, //if hot and fast, then medium
0x09, 0x04, 0x83, //if hot and very fast, then medium high
0x0a, 0x00, 0x82, //if very hot and very slow, then medium
0x0a, 0x01, 0x83, //if very hot and slow, then medium high
0x0a, 0x02, 0x83, //if very hot and medium, then medium high
0x0a, 0x03, 0x84, //if very hot and fast, then high
0x0a, 0x04, 0x84, //if very hot and very fast, then high
0x0b, 0x00, 0x83, //if danger and very slow, then medium high
0x0b, 0x01, 0x83, //if danger and slow, then medium high
0x0b, 0x02, 0x84, //if danger and medium, then high
0x0b, 0x03, 0x84, //if danger and fast, then high
0x0b, 0x04, 0x84, //if danger and very fast, then high
0xff //end of rules

};

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–364

unsigned int *input_pt;
unsigned int *rule_pt;
fastaccess signed long crisp_inputs [NUM_INPUTS];
fastaccess unsigned int crisp_outputs [NUM_OUTPUTS];
unsigned int index;
unsigned int row_index;
unsigned int col_index;
signed long *fuzzy_pt;
fastaccess signed long fuzzified_inputs [ELEMENTS_PER_INPUT * NUM_INPUTS];
unsigned int *fuzzy_pt2;
fastaccess unsigned int fuzzified_outputs [NUM_OUTPUTS] [SING_PER_OUTPUT];
unsigned int minimum;
unsigned long sum;
unsigned long sum_of_products;
unsigned int point1;
unsigned int point2;
unsigned int slope1;
unsigned int slope2;
unsigned long pwm_value;
unsigned int max_displacement;
fastaccess unsigned int local[2];

when (reset) {
max_displacement = 255 / MIN_SLOPE;

} //end when

/************************************** Fuzzy engine ***************************************/

when (1) {

/************************************** Scale inputs ***************************************/

io_out (test,0);

crisp_inputs[0] = ((signed long)NV_pump_spd) * 255 / 100;
local[0] = crisp_inputs[0];
crisp_inputs[1] = ((signed long)NV_temp – 32) * 5 / 3;
local[1] = crisp_inputs[1];

/************************************** Fuzzification **************************************/

input_pt = &input_function[0][0][0];
fuzzy_pt = &fuzzified_inputs[0];

/****************************** Look at each updated input ****************************/

for (index = 0; index < NUM_INPUTS; index++) {

MOTOROLA L ONWORKS TECHNOLOGY
AL–365
AN1225

/********************* Assign a grade to each input function member *******************/

for (row_index = 0; row_index < ELEMENTS_PER_INPUT; row_index++) {
point1 = *input_pt++;

//check if crisp input is below defined input range
if (local[index] <= point1) {

if (point1) *fuzzy_pt++ = 0; //out of range
else *fuzzy_pt++ = 0xff;
input_pt += 3; //point to next input
goto jump;

} //end if

slope1 = *input_pt++;
point2 = *input_pt++;

//check if crisp input is within input range and
//to the left of pt2
if (local[index] <= point2) {

if (!slope1) *fuzzy_pt++ = 0xff; //vertical slope
else {

*fuzzy_pt = ((long)slope1) *
(crisp_inputs[index] – point1) ;

if (*fuzzy_pt > 0xff) *fuzzy_pt = 0xff; //max value
*fuzzy_pt++; //next grade

} //end else
input_pt++; //point to next input
goto jump;

} //end if

slope2 = *input_pt++;

//check if crisp input is to the right of pt2 and
//within reasonable range
if (slope2 && (crisp_inputs[index] < (point 2 + max_displacement))) {

*fuzzy_pt = 255 – ((long) slope2 *
(crisp_inputs[index] – point2));

if (*fuzzy_pt < 0) *fuzzy_pt = 0; //out of range
*fuzzy_pt++;

} //end if

else *fuzzy_pt++ = 0 //vertical slope
jump: if (1);

} //end for
} //end for

MOTOROLA L ONWORKS TECHNOLOGYAN1225
AL–366

/*************************************** Rule evaluation ***********************************/

fuzzy_pt2 = &fuzzified_outputs[0][0];
for (index = 0; index < NUM_OUTPUTS * SING_PER_OUTPUT; index++)

*fuzzy_pt2++ = 0; //clear output array
rule_pt = &rules[0];
while (1) {

minimum = 0xff;
while (*rule_pt < 0x80) { //antecedent evaluation (min function)

if (!minimum) rule_pt++; //check for 0 minimum
else {

//point to fuzzified input location
fuzzy_pt = &fuzzified_inputs[0] + *rule_pt++;
//check for new minimum
if (*fuzzy_pt < minimum) minimum = *fuzzy_pt;

} //end else
} //end while
while (*rule_pt & 0x80) { //consequent evaluation (max function)

if (*rule_pt == 0xff) goto done; //end of rules
if (!minimum) rule_pt++; //check for 0 maximum
else {

//point to fuzzified output location
fuzzy_pt2 = &fuzzified_outputs[0][0] + (*rule_pt++ – 0x80);
//check for new maximum
if (minimum > *fuzzy_pt2) *fuzzy_pt2 = minimum;

} //end else
} //end while

} //end while
done: if (1);

/************************************ Defuzzification **************************************/

/******************************* COG for all outputs **********************************/

for (row_index = 0; row_index < NUM_OUTPUTS; row_index++) {

/*************************** Sum of products for each output **********************/

sum = 0;
sum_of_products = 0;
for (col_index = 0; col_index < SING_PER_OUTPUT; col_index++) {

sum += fuzzified_outputs[row_index][col_index];
sum_of_products += (unsigned long) singletons[row_index][col_index]

*(unsigned long)fuzzified_outputs[row_index][col_index];
} //end for
crisp_outputs[row_index] = sum_of_products / sum;

} //end for

pwm_value = (unsigned long)crisp_outputs[0] * 257;
io_out (IO_pwm, pwm_value);

io_out (test,1);
} //end when

