
MOTOROLA L ONWORKS TECHNOLOGY
AL–337
AN1216

������� ���������� ������ ����� ��� ����� 	�

INTRODUCTION

For several years setback thermostats (SBTs) have been
microprocessor driven, giving the end–user energy–efficient
control over HVAC (Heating, Ventilating, and Air Condition-
ing) systems. However today’s designs still present system
limitations such as a single point of failure and lack of flexi-
bility. For example most SBTs have central control over all
units (i.e., heater and AC) in a HVAC system, which requires
point–to–point wiring and limits the performance capabilities
of the system to those of the SBT processor. A viable alter-
native is to distribute processing to each unit in the system
over a network. The MC143150 (NEURON IC) is a multimedia
communications and control processor with an embedded
standard protocol that lends itself to easy network commu-
nication of control information. Specifically, the open archi-
tecture design of the LONTALK protocol allows an OEM to
independently design interoperable HVAC units as well as
network interfaces to non–HVAC systems without writing a
cumbersome and costly software protocol. Using the NEURON

IC, a setback thermostat can provide control data (e.g., the

time of day, time/temperature set points, and current temper-
ature) to a network of “smart” units with NEURON ICs which
can each interpret data according to system specifications
(see Figure 1).

This application note describes how a NEURON IC can be
used as a SBT processor. NEURON IC functions include a
3 × 4 keypad interface for programmability; a 6–digit, 7–seg-
ment LCD display interface for time and temperature in-
dication; a temperature–to–frequency converted input; and a
software real–time clock. See Figure 2 for a schematic of the
system hardware. Although the NEURON SBT node tends to
be more expensive than the traditional SBT, cost savings will
result from ease of installation, reduction in wiring, and high-
er system reliability (lower rate of product maintenance and
return). Each of the hardware interfaces and its related soft-
ware functions will be described in the following sections.
Additionally, the NEURON C software for the SBT is included
in Print Out 1 at the end of this document. (See the NEURON C
Programmer’s Guide for details on unfamiliar syntax.
Request document NEURONCPG/AD.)

SBT
NEURON IC

A/C
NEURON IC

REMOTE
THERMOSTAT

NEURON IC

HEATER
NEURON IC

GATEWAY VENT CONTROL
NEURON IC

NON–HVAC
SYSTEM

NETWORK

Figure 1. Block Diagram of Distributed HVAC System

���
�
SEMICONDUCTOR TECHNICAL DATA

������

MOTOROLA L ONWORKS TECHNOLOGYAN1216
AL–338

7 8 9 TIME

4 5 6 TEMP

1 2 3 0

R1

R2

C1
24

19

18

12

23

22

1

4

2

3

7

6

8

5

5 V

MC75176
EIA–485
XCEIVER

78 kbps

5 V

MC143150
NEURON IC

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

IO9

CP4

CP3

CP2

CP1

CP0

LCD
ARRAY

12 FRONT–
PLANES

OSCout

OSCin

MC145000
LCD DISPLAY

DRIVER

VDD

CLK

Din

VSS

5 V

Rf

+

–

5 V

Ct
Rt

4 BACK–
PLANES

Figure 2. Setback Thermostat System Hardware

KEYPAD INTERFACE

Hardware

This interface is quite similar to the 4 × 4 keypad described
in the application note entitled, “Scanning a Keypad With the
NEURON Chip” (EB151/D). The major difference is that the
rows are monitored by three 1–bit control lines on the
NEURON IC as opposed to one 4–bit nibble.

Software

The keypad is read as follows: the software periodically
scans the three keypad rows until a key is depressed, at
which time each column is driven low until the row of the

depressed key is determined. See Figure 3 for an illustration
of the SBT keypad.

temp
(H)

time
(AC)

0
(disp)

7 8 9

4 5 6

1 2 3

Figure 3. SBT Keypad

MOTOROLA L ONWORKS TECHNOLOGY
AL–339
AN1216

The SBT is programmed using the keypad command
sequences described in Figure 4. A maximum of three time/
temperature set points can be saved for each unit (heater
and air conditioner). Data structures of “temp_time” type
store a temperature value as well as an hour and minute
value. Seven such structures have been created for each air
conditioner set point (ac_1 – ac_3), each heater set point
(heat_1 – heat_3), and the current time and temperature
(sbt_data).

DISPLAY INTERFACE

Hardware

This interface uses a 6–digit, 7–segment LCD display driv-
en by an MC145000 Serial Input Multiplexed LCD Driver
interfaced to the SBT NEURON IC processor. Two I/O lines are

required from the NEURON IC: clock and data out (a chip
select line and data out are not necessary).

Software

The display driver IC receives data via NEUROWIRE (iden-
tical to Motorola’s SPI and National’s Microwire) from the
NEURON IC. The display will change when the time changes
(once per second), any time the SBT is being programmed,
and while the end user is sequencing the SBT through its dis-
play modes (described immediately below).

Under normal operating conditions (normal mode) the SBT
will provide current military time (hours, minutes) and current
temperature on its display. Also the decimal after the hour
indicator will alternately blink either on or off each second.
When in display mode (entered by pressing the ‘‘0’’ key),
the SBT will display the first set point time and temper-
ature for the air conditioner. If no other key is pressed for
5 seconds (at any time during display mode) the SBT will

SBT COMMANDS:

TO TURN THE AIR CONDITIONER OFF (n = 4), ON (n = 5), OR ON AUTO (n = 6):

TO TURN THE HEATER OFF (n = 4), ON (n = 5), OR ON AUTO (n = 6):

TO PROGRAM CURRENT TIME:

TO PROGRAM AC SETPOINT TIME NUMBER n (n = 1–3):

TO PROGRAM AC SETPOINT TEMP NUMBER n (n = 1–3):

TO PROGRAM HEATER SETPOINT TIME NUMBER n (n = 1–3):

TO PROGRAM HEATER SETPOINT TEMP NUMBER n (n = 1–3):

time
(AC)

temp
(H)

time
(AC)

time
(AC)

temp
(H)

time
(AC)

temp
(H)

n

n

0

n

n

n

n

time
(AC)

temp
(H)

hour
hi dig

hour
hi dig

temp
hi dig

hour
hi dig

temp
hi dig

hour
lo dig

min
hi dig

min
lo dig

hour
lo dig

min
hi dig

min
lo dig

time
(AC)

temp
lo dig

time
(AC)

hour
lo dig

min
hi dig

min
lo dig

temp
(H)

temp
lo dig

temp
(H)

Figure 4. Keypad Command Sequences to Program the N EURON SBT

MOTOROLA L ONWORKS TECHNOLOGYAN1216
AL–340

return to the current time and temperature display. If “0” is
pressed again before the 5 second timeout, the SBT will dis-
play the second set point time and temperature for the air
conditioner. Similarly, as “0” is successively pressed, the
SBT will display time and temperature set points for the
remaining AC set point followed by each of the three set
points for the heater. When in programming mode (entered
by pressing either the “time” or “temp” key), the display will
actively display numeric keypad sequences (see Figure 4 for
programming command sequences).

TEMPERATURE SENSOR INTERFACE

Hardware

The temperature sensor interface is implemented with a
comparator using an RC combination in its feedback loop.
The R component is a thermistor. When the circuit is initially
powered up, Point B (refer to Figure 5) has a “high” voltage
value. Point A is “low” so the RC circuit charges up in an at-
tempt to make A equal to B. Eventually the RC circuit forces
the voltage at A above the voltage at B, causing point C, and
hence B, to go “low”. In an attempt to make point A equal to
B again, the RC circuit discharges. Eventually the RC circuit
discharges too much, causing point C, and thus point B, to
go “high” again. At this time the process repeats itself, result-
ing in a periodic square wave from the temperature sensor
output C, which serves as a “frequency” input to the NEURON

IC.
The “high” and “low” points discussed above are deter-

mined by the values of R1, R2, Rf, and Rp. The frequency
range of the output C is determined by the value of Ct and the
characteristic of the thermistor Rt (as the RC time constant
changes, the rise and fall times of graph A in Figure 5
change).

Software

The frequency input from the temperature sensor is read
using a frequency input object called “temp_signal_in”, which
is periodically read (every 2 seconds). The frequency value
is then converted to a temperature using a look–up table that
was created using the characteristic of the thermistor used.
The temperature range of this SBT is 32 to 122 degrees
Fahrenheit. The current temperature value is stored in the
“temp” field of the “sbt_data” structure.

REAL–TIME CLOCK

The real–time clock interface is implemented in software
since the I/O port of the NEURON IC is dedicated to keypad,
display, and temperature sensor interfaces. A millisecond
timer object called read_timer is programmed to expire every
984 milliseconds, at which time the software checks for
changes in minutes, hours, and days. Additionally, the soft-
ware automatically updates the 1 second counter (984 ms
added to the average software delay of 16 ms equals 1 se-
cond). The software time delay was experimentally deter-
mined by running the real–time clock for long periods of time
and comparing its output to an accurate timepiece. The

current time in minutes and hours is stored in the “sbt_data”
structure.

NETWORK VARIABLES

The SBT has time, temperature, and status data which it
may submit to the heater and air conditioner units on the net-
work. These units can receive current time and temperature
in addition to up to three time and temperature set points
from the SBT. The SBT in this document is designed to out-
put network data every 30 seconds. The system is flexible in
that the HVAC units read only the information required. For
example, a heater may be designed to receive only two set
points, in which case the third set point made available by the
SBT would not be bound to the heater. (See Chapter 3 of the
NEURON C Programmers Guide for details on network vari-
ables and binding.) This degree of flexibility allows indepen-
dent suppliers to manufacture compatible equipment.

NETWORK INTERFACE

The SBT NEURON IC is interfaced to a 78 kbps twisted pair
network via an MC75176BP EIA–485 Differential Transceiv-
er IC. According to the EIA–485 standard this allows for up to
32 nodes per bus over a length of up to 1200 m (4000 ft).
Note that each node in the HVAC system (e.g., heater, vent
control, air conditioner) requires a transceiver with its NEU-
RON IC. Also note that the network is accessed in the same
manner regardless of the media interfaced to the NEURON

IC’s general purpose communication port.

+

–

R1

R2 C1

5 V

A

B

C

Rf

Ct

Rt

Rp

A

B

C

Figure 5. Temperature Circuit and
Waveforms for SBT

MOTOROLA L ONWORKS TECHNOLOGY
AL–341
AN1216

CONCLUSIONS

In conclusion, the NEURON IC can adequately perform as a
setback thermostat processor. Additionally, it provides HVAC
systems with characteristics previously unavailable at a rea-
sonable cost. For example, the owner of a two–story house
has begrudgingly accepted the fact that one air conditioner
with one thermostat will keep the first level about five de-
grees cooler than the second level, given the exorbitant cost
of two separate A/C units. With a LONWORKS HVAC system,
the network of communication (not only in the home, but in
factories and other buildings as well) is in place for remote
thermostats, zoning, vent controls, etc., each at the low cost
of an additional node. The number of units communicating
with a single NEURON IC SBT is virtually unlimited.

HVAC OEMs are now taking the time to compare their
present system technologies to the solution offered by
LONWORKS. Traditionally node costs have been the foremost
concern of HVAC manufacturers, but today’s OEM also

realizes that installation, maintenance, and reliability can be
key to the long term cost and value of a system. Although the
SBT node requires an external display driver and a trans-
ceiver, external relays are not needed since all necessary
data is passed to intelligent units which individually control
themselves. Also, a distributed control network allows inde-
pendent control of zones or units in the event of a wire break.

Finally, this document presents a rather simple SBT (func-
tionally). Note that a system designer is not limited to
EIA–485 twisted pair as a medium; the NEURON IC has a gen-
eral purpose communication port which will interface to
transceivers for virtually any medium (power line and RF are
both popular). Also, keeping in mind that the code in Print–
Out 1 consumes approximately 1.7K bytes of the NEURON

IC’s ROM, one can conclude that the available 42K of ROM
may be used to give the SBT many more capabilities (i.e.,
system diagnostics, interfaces to ventilation control, safety
features, etc.).

/ ***************** Print–Out 1. N EURON IC as a Setback Thermostat ****************** /

#pragma enable_io_pullups
#pragma one_domain
#pragma num_addr_table_entries 8

IO_8 neurowire master select (IO_7) IO_to_LCD;
IO_0 output nibble IO_keypad_column;
IO_4 input bit IO_row0;
IO_5 input bit IO_row1;
IO_6 input bit IO_row2;
IO_7 input period IO_temp_in;

struct temp_time {
unsigned int temp;
unsigned int minutes;
unsigned int hours;

};

struct unit_type {
struct temp_time data_out;
unit_states unit_data;

};

network output struct unit_type NV_ac_data;
network output struct unit_type NV_heat_data;
network output struct temp_time NV_sbt_out;
network output struct temp_time NV_ac_set1;
network output struct temp_time NV_ac_set2;
network output struct temp_time NV_ac_set3;
network output struct temp_time NV_heat_set1;
network output struct temp_time NV_heat_set2;
network output struct temp_time NV_heat_set3;

const char table [3] [4] = {”789A”, ”456B”, ”1230”};
const unsigned int lcd_table[17] = {0,215,6,227,167,54,181.245,7,247,55,119,244,209,

230,241,113};
const unsigned long r_table[50] = {22592,21678,20973,20207,19469,18757,18072,17412,

16776,16163,15573,15004,14456,13928,13420,
12929,12457,12002,11564,11141,10734,10342,
9965,9601,9250,8912,8587,8273,7971,7680,7399,
7129,6869,6618,6376,6143,5919,5703,5494,5294,
5100,4914,4734,4562,4395,4234,4080,3931,3787,
3549};

MOTOROLA L ONWORKS TECHNOLOGYAN1216
AL–342

typedef enum {ON,OFF,AUTO} unit_states;
unit_states ac_mode;
unit_states heater_mode;

struct temp_time sbt_data;
struct temp_time ac_1;
struct temp_time ac_2;
struct temp_time ac_3;
struct temp_time heat_1;
struct temp_time heat_2;
struct temp_time heat_3;

struct unit_type heater;
struct unit_type air_conditioner;

struct bcd digits;

unsigned int lcd_update;
unsigned int lcd_data[6];
unsigned int array_index[6];
unsigned int indicator;
unsigned int serial_out[6];
unsigned int row;
unsigned int col;
unsigned int key_input;
unsigned int i;
unsigned int prog_busy;
unsigned int temp_adder;
unsigned int num_bytes;
unsigned int second_byte;
unsigned int point_on;
unsigned int seconds;
unsigned int display_next;

unsigned long period_in;
unsigned long thermistor_value;
unsigned long value;

stimer display_timer;
stimer nv_timer;
mtimer read_timer;
mtimer temp_timer;

/ *** /
/* This function will update the 6–digit LCD clock display which includes */
/* time in hours and seconds and temperature in degrees fahrenheit. This */
/* function is called every 1.0s. */
/ *** /

void update_clock (struct temp_time *disp_in) {
for (i=0; i<6; i+=2) {

value = *(unsigned int*)disp_in; //point to next digit of display
(unsigned int*)disp_in += 1; //increment pointer
bin2bcd(value,&digits); //convert digit to BCD
array_index[i+1] = digits.d5 + 1; //store BCD values
array_index[i] = digits.d6 + 1;

} //end for

//use look–up table to encode BCD digits for LCD driver

for (i=0; i<6; i++) {
lcd_data[i] = lcd_table[array_index[i]];
serial_out[i] = lcd_data[i];

} //end for

MOTOROLA L ONWORKS TECHNOLOGY
AL–343
AN1216

//determine whether decimal point should be on or off

if (point_on || (sbt_mode == DISPLAY)) {
point_on = 0;
serial_out[4] += 0x08;

} //end if
else point_on = 1;
io_out (IO_to_LCD,&serial_out,48); //serial xmit to LCD driver
read_timer = 984; //set real time clock for another 1s

} //end update_clock

/ *** /
/* This function converts ASCII clock data to decimal and loads hours and */
/* minutes into the address of the structure sent. */
/ *** /

void clock_init (struct temp_time *data_in) {
if (indicator) indicator = 1; //use data indicator as index
(unsigned int*)data_in += 1; //point to minute field
(unsigned int)data_in = array_index[indicator + 2] * 10 +

array_index[indicator + 1] – 11; //store minutes
(unsigned int*)data_in += 1; //point to hour field
(unsigned int)data_in = array_index[indicator + 4] * 10 +

array_index[indicator + 3] – 11; //store hours
} //end clock_init

/ *** /
/* This function converts ASCII temperature data to decimal and returns */
/* the value. */
/ *** /

unsigned int temp_init () {
return (array_index[3] * 10 + array_index[2] – 11);

} //end temp_init

/ ** reset event ************************************** /

when (reset) {
for (i=0; i<6; i++) serial_out[i] = 0xff; //turn all segments on
io_out (IO_to_LCD, &serial_out, 48); //serial xmit to LCD
seconds = 0; //initialize real time clock to midnight
sbt_mode = NORMAL; //nromal display mode
sbt_data.minutes = 0;
sbt_data.hours = 0;
nv_timer = 30; //30s timer for network xmission
read_timer = 1000; //1s real time clock timer
temp_timer = 2000; //2s temperature timer

} //end when

/ ********************************* check for keypad depression ***************************** /

when (io_changes (IO_row1) to 0)
when (io_changes (IO_row2) to 0)
when (io_changes (IO_row3) to 0) {

delay (400); //debounce

MOTOROLA L ONWORKS TECHNOLOGYAN1216
AL–344

//find row and column of pressed key
for (col=0; col<4; col++) {

io_out (keypad_column, ~(1<<col));
key_input = ~((io_in (IO_row2) * 4) + (io_in (IO_row1) * 2) +

(io_in (IO_row0)));
for (row=0; row<3; row++) {

if (key_input & (1<<row)) {
array_index[0] = (unsigned int)table[row][col];
goto jump1;

} //end if
} //end for

} //end for

array_index[0] = 48; //if key not found: assign null character
jump1:

// if programming temperature or time value
if ((sbt_mode == TIME) || (sbt_mode == TEMP)) {

lcd_update = 1; //display update flag
if (second_byte) { //second byte indicates function

second_byte = 0; //clear flag
indicator = array_index[0] – 48; //ASCII to decimal
if (indicator == 0) { //program current time

read_timer = 0; //stop realtime clock
num_bytes = 6; //this function requires 6 bytes

} //end if
if (indicator >= 4) //program unit status

num_bytes = 3; //this function requires 3 bytes
} //end if

} //end if

//if in display mode
else if (sbt_mode == DISPLAY) {

if (array_index[0] == 48) lcd_update = 1; //toggle to next display
} //end else if

// if in normal mode (first key touched)
else {

// if time or temperature key touched
if ((array_index[0] >= 65)) {

for (i=0; i<6; i++) lcd_data[i] = 0; //clear out display
if (array_index[0] == 65) { //program time

sbt_mode = TIME;
num_bytes = 7; //this function requires 7 bytes

} //end if
else { //program temperature

sbt_mode = TEMP;
num_bytes = 5; //this function requires 5 bytes

} //end else
lcd_update = 1; //set display update flag
prog_busy = 1; //set busy flag to prevent clock function
second_byte = 1; //prepare for second byte

} //end if

// if display key touched
if (array_index[0] == 48) {

sbt_mode = DISPLAY;
lcd_update = 1; //set display update flag

} //end if
} //end else
io_out (keypad_column,0); //clear all columns to prepare for next read

} //end when

MOTOROLA L ONWORKS TECHNOLOGY
AL–345
AN1216

/ **************************** check for the display update flag **************************** /

when (lcd_update) {

//if programming time or temperature
if ((sbt_mode == TIME) || (sbt_mode == TEMP)) {

//shift display to the left
for (i=5; i>0; i––) lcd_data[i] = lcd_data[i–1];
if (array_index[0] < 58) array_index[0] –= 47;
else array_index[0] –= 54;
for (i=5; i>0; i––) array_index[i] = array_index[i–1];
lcd_data[0] = lcd_table[array_index[0]];
for (i=0; i<6; i++) serial_out[i] = lcd_data[i];
io_out (IO_to_LCD,&serial_out,48); //update display

// update sbt data after last programming byte has been entered
if ((prog_busy++ >= num_bytes)) {

prog_busy = 0; clear byte count
if (sbt_mode == TIME) {

//update current time
if (indicator == 0) clock_init (&sbt_data);
//update ac status
else if (indicator == 4) air_conditioner.unit_data = OFF;
else if (indicator == 5) air_conditioner.unit_data = ON;
else if (indicator == 6) air_conditioner.unit_data = AUTO;
//update ac time
else if (array_index[1] == 11) {

if (indicator == 1) clock_init (&ac_1);
else if (indicator == 2) clock_init (&ac_2);
else if (indicator == 3) clock_init (&ac_3);

} //end else if
//update heater time
else if (array_index[1] == 12) {

if (indicator == 1) clock_init (&heat_1);
else if (indicator == 2) clock_init (&heat_2);
else if (indicator == 3) clock_init (&heat_3);

} //end else if
} end if
else {

//update heater status
if (indicator == 4) heater.unit_data = OFF;
else if (indicator == 5) heater.unit_data = ON;
else if (indicator == 6) heater.unit_data = AUTO;
//update ac temperature
else if (array_index[1] == 11) {

if (indicator == 1) ac_1.temp = temp_init();
else if (indicator == 2) ac_2.temp = temp_init();
else if (indicator == 3) ac_3.temp = temp_init();

} //end else if
//update heater temperature
else if (array_index[1] == 12) {

if (indicator == 1) heat_1.temp = temp_init();
else if (indicator == 2) heat_2.temp = temp_init();
else if (indicator == 3) heat_3.temp = temp_init();

} //end else if
} //end else
sbt_mode = NORMAL; //return to normal mode
update_clock (&sbt_data); //display current time/temp

} //end if
} //end if

MOTOROLA L ONWORKS TECHNOLOGYAN1216
AL–346

//if in display mode
else {

display_timer = 5; //5s timeout on any one display
if (display_next++ > 6) display_next = 1; //wrap around
//display 1st programmed ac value
if (display_next == 1) update_clock (&ac_1);
//display second programmed ac value
else if (display_next == 2) update_clock (&ac_2);
//display 3rd programmed ac value
else if (display_next == 3) update_clock (&ac_3);
//display 1st programmed heater value
else if (display_next == 4) update_clock (&heat_1);
//display 2nd programmed heater value
else if (display_next == 5) update_clock (&heat_2);
//display 3rd programmed heater value
else if (display_next == 6) update_clock(&heat_3);
//display current time/temp
else {

update_clock (&sbt_data);
display_timer = 0;
sbt_mode = NORMAL;

} //end else
} //end else
lcd_update = 0;

} //end when

/ ***************************** check the real time clock timer ***************************** /

when (timer_expires (read_timer)) {
if (seconds++ > 58) { //check for minute expiration

seconds = 0;
if (sbt_data.minutes++ > 58) { //check for hour expiration

sbt_data.minutes = 0;
if (sbt_data.hours++ > 22) //check for day expiration

sbt_data.hours = 0;
} //end if

} //end if
if (sbt_mode == NORMAL) //update display

update_clock (&sbt_data);
else read_timer = 984; //set clock for one more second

} //end when

/ **************************** check for next temperature update **************************** /

when (timer_expires (temp_timer)) {
thermistor_value = io_in (IO_temp_in) * 7; //read frequency value
temp_adder = 1;

//look up temperature value in table and convert to fahrenheit
while (temp_adder) {

if (thermistor_value >= r_table[temp_adder]) {
if ((r_table[temp_adder – 1] – thermistor_value) <
 (thermistor_value – r_table[temp_adder]))

temp_adder––;
sbt_data.temp = temp_adder * 3 / 5 * 3 + 32;
temp_adder = 0;

} //end if
else temp_adder++;
if (temp_adder > 50) temp_adder = 0;

} //end while
temp_timer = 2000; //read temperature every 2s

} //end when

MOTOROLA L ONWORKS TECHNOLOGY
AL–347
AN1216

/ *********************** check for 5s timeout while in display mode ************************ /

when (timer_expires (display_timer)) {
update_clock (&sbt_data); //display current time/temp
display_next = 0;
sbt_mode = NORMAL;

} //end when

/ ******************************** send out sbt data every 30s ****************************** /

when (timer_expires (nv_timer)) {
heater.data_out = sbt_data;
air_conditioner.data_out = sbt_data;
NV_heat_out = heater; //xmit current heater status
NV_ac_out = air_conditioner; //xmit current ac status
NV_ac_set1 = ac_1; //xmit 1st ac value
NV_ac_set2 = ac_2; //xmit 2nd ac value
NV_ac_set3 = ac_3; //xmit 3rd ac value
NV_heat_set1 = heat_1; //xmit 1st heater value
NV_heat_set2 = heat_2; //xmit 2nd heater value
NV_heat_set3 = heat_3; //xmit 3rd heater value

} //end when

