
MOTOROLA L ONWORKS TECHNOLOGY
AL–303
AN1208

�������� ��� ��������� �� ��� �	����  �
��

INTRODUCTION

This application note describes the parallel I/O object of
the MC143150 and MC143120 NEURON CHIPs, including spe-
cifics on the handshaking and token passing process used to
establish synchronization and prevent bus contention. Ex-
amples are provided for interfacing to both a foreign proces-
sor (non–NEURON microprocessor or microcontroller) and
other NEURON CHIPs. Timing, interrupts, and memory alloca-
tion are also discussed.

Utilizing this application, the NEURON CHIP can act as a
communication chip for the foreign processor or can create a
bridge, gateway or router. Figure 1 demonstrates typical ap-
plications for the NEURON CHIP utilizing the parallel I/O object.

The parallel I/O object employs all eleven I/O pins, eight
for information exchange and three for control. No other I/O
objects of the NEURON CHIP may be used in conjunction with
parallel I/O.

For increased design flexibility, the NEURON CHIP provides
three modes of operation for the parallel I/O object: master,
slave A, and slave B. The different attributes of each mode
can be used to tailor the NEURON CHIP for a specific applica-
tion.

The NEURON CHIP master mode is the intelligent mode of
the parallel I/O object. Refer to Figures 2a and 2c. In this

mode, the NEURON CHIP can initiate and establish synchro-
nization with the slave. The slave must be either a NEURON

CHIP configured in slave A mode or a foreign processor emu-
lating slave A mode.

A NEURON CHIP in slave A mode implements a hardwired
handshake line (HS). The HS line and data are available in
the same clock cycles. Although this mode was designed to
interface with a NEURON CHIP master, either a foreign proces-
sor or another NEURON CHIP can act as the master. See Fig-
ures 2a and 2b.

The NEURON CHIP slave B mode is logically similar in op-
eration to the slave A mode; however, the handshake is read
from the slave’s control register in one cycle and the data is
available in a separate cycle. The slave B mode was de-
signed to make the NEURON CHIP act like a peripheral device
on a non–NEURON address bus. The master must be a foreign
processor as the NEURON CHIP master mode is designed to
interface to a slave A configuration. See Figure 2d.

The NEURON C programming language provides several
built–in functions that enable the use of the parallel I/O object
without the need for a detailed, hardware–level knowledge of
the handshaking protocol. These functions are discussed in
detail in the NEURON CHIP–to–NEURON CHIP interface section
of this document.
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In a non–NEURON CHIP (foreign processor) interface, it is
assumed that the microprocessor or microcontroller involved
has the ability to execute the handshaking/token passing al-
gorithm dictated by the attached NEURON CHIP. This usually
consists of a hardware interface and a software program that
duplicates the actions of a NEURON CHIP.

A foreign processor master can interface to a NEURON CHIP

configured in slave A (Figure 2b) or slave B (Figure 2d)
mode. In slave B mode, the foreign processor master reads
the HS bit on the data bus by accessing the control register.
In slave A mode, the HS line can be read using several differ-
ent approaches. See also the ‘‘Foreign–to–NEURON Proces-
sor Interface’’ section.

Certain applications, such as a NEURON CHIP–to–NEURON

CHIP connection, have only one solution (master to slave A).
Although several possible interfacing scenarios are shown

in Figure 2, not all can be considered for every application.

ALTERNATIVES TO THE
PARALLEL I/O INTERFACE

Echelon sells a licensed firmware, Microprocessor Inter-
face Program (MIP), which supplies an alternative to parallel
I/O interface. As in parallel I/O, MIP also requires a software
intensive driver for the host processor. MIP was designed to
accommodate systems with complex calculations or I/O,
applications needing more than 62 network variables, and
large network management applications. The MIP resides on
the NEURON CHIP and no other application can be implement-
ed. The MIP is faster than the parallel I/O object discussed in
this application note, as no scheduler is used and fewer buff-
ers are needed for data transfers. An Echelon sales repre-

sentative can provide the license cost, cost per node, and
additional information about the MIP.

A common way two microprocessors exchange informa-
tion is utilizing a dual–port RAM. This concept can also be
employed to allow data transfers between the MC143150
NEURON CHIP and a foreign processor. Details will not be dis-
cussed in this application note.

The NEURON CHIP also provides an asynchronous serial
data format, as in Motorola’s SCI, EIA–232 communication,
called serial input/output, and a synchronous serial data for-
mat called NEUROWIRE input/output, which interfaces to
Motorola’s SPI. The serial interfaces are slower than the par-
allel interface but some applications may require a serial
option.

NEURON CHIP PARALLEL I/O INTERFACE

The NEURON CHIP parallel I/O interface consists of eight I/O
and three control lines (see Figure 3).

The CS line is always driven by the master and, when
active, signifies that a byte transfer operation is currently in
progress. A low pulse on this line strobes the data into either
the master or slave. (Refer to Figures 8, 9, and 10.)

The type of data transfer actually taking place, either a
read or a write (with respect to the master), is assessed by
the level of the R/W line at the time the CS line is pulsed low.
The R/W line is driven by the master.

The HS (handshake) output is always driven by the slave.
It informs the master if the slave is busy. In effect the HS out-
put can be treated as a slave–busy signal. When high, the
slave is busy performing an action (read or write of a com-
mand or data); a low indicates it is ready for the next transac-
tion. In slave A mode, HS is a physical pin and in slave B
mode, HS is the least significant bit of the control register.
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Figure 3. Parallel Interface

The I/O10 pin is a register select pin, driven by the master
for interface to the slave B mode. It can be the least signifi-
cant address bit which selects between reads of the data
register and the control register. An even address typically
allows data transfers and reads of an odd address allow HS
monitoring. The remaining bits of the control register are
unused and indeterminate and therefore should be masked
by the software.

It is possible for the master device to come online and poll
the HS line before the slave has had a chance to set the
proper level on this line. To prevent the master from reading
invalid data on the HS line, a pull–up resistor should be used
on the HS line of a slave A NEURON CHIP or the HS/D0 line of
a slave B NEURON CHIP.

Token –Passing Protocol

A token–passing protocol implemented by the NEURON

CHIP firmware permits the coexistence of multiple devices on
a common bus. At any given time, only one device is given
the option of writing to the bus. A virtual write token is passed
alternately between the master and the slave on the bus in
an infinite, ping–pong fashion. The owner of the token has
the option of writing data, or alternatively, passing the token
without any data. The token is not physically passed

between the processors but is tracked with software. A token
is acquired after a read cycle and relinquished after a write
cycle. See also the ‘‘NEURON C Resources’’ section of this
text.

Figure 4 illustrates the token passing operation between a
master and a slave.

Multiple slaves on a common bus, with multiple write
tokens, can also be supported by the token–passing proto-
col. In such a case, the master must keep track of all out-
standing write tokens and accordingly direct bus traffic.
Slaves may be selected round robin or on a priority basis.
Uniquely assigned CS lines prevent bus contention.

Once in possession of the write token, a device may per-
form one of several operations (as shown in Figure 4): write
data, pass token, resynchronize (master only), or acknowl-
edge resynchronization (slave only).

The sequence of events for each of the above operations
is always the same, for either the master or the slave (A or
B). However, the degree to which the user is exposed to the
underlying token–passing operations is varied depending on
the actual device involved. Built–in tools within the NEURON C
language allow for straightforward software coding of the
NEURON CHIP. This translates to a transparent token–passing
protocol, which in turn results in program simplicity.
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Figure 4. Token –Passing Protocol Sequence Between Master and Slave

On the other hand, if a NEURON CHIP is interfaced to a non–

NEURON processor (foreign processor), the user must explic-
itly implement the handshaking/ token–passing protocol on
the foreign processor side. Although the NEURON CHIP soft-
ware remains straightforward, the data transfer rate may be
affected by the additional cycle needed for the foreign pro-
cessor to read the HS and the code needed to implement the
token tracking.

Protocol Commands
The byte format of the command options available to the

token holder are shown in Figure 5. Each command is made
up of a fixed sequence of read and write operations to the
bus by both the master and the slave. The state transition
diagram for each command is shown in Figure 6.

These commands are the building blocks on which all
communication between a NEURON CHIP parallel I/O and the
outside world are based. Only one of the commands can be
performed by the token holder at any given time. Upon

completion of the command, the token is automatically
owned by the other device. The other device now has the
opportunity to execute a command. The write token is thus
passed back and forth between the master and slave indefi-
nitely.

The owner of the token (either master or slave, NEURON

CHIP or foreign processor) can hold the token for an indefinite
period of time. (Refer to Figure 4.) However, after passing
the token to a NEURON CHIP (master or slave) a check must
be implemented periodically to verify if the NEURON CHIP is
ready to write to the bus. If the NEURON CHIP is a token–hold-
ing slave, the master should monitor the HS line for a low
state indicating the slave is ready to output to the bus. If the
NEURON CHIP is a token–holding master, the slave should
toggle HS low to see if the master is ready to output to the
bus. A NEURON CHIP watchdog time–out may occur if commu-
nication is not completed within approximately 840 millisec-
onds (10 MHz) after the NEURON CHIP I/O output is ready. The
watch dog scales proportionally to the external clock.
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Figure 5. Commands Available to the Token Holder

If the NEURON CHIP slave receives any command byte
other than CMD_XFER, CMD_NULL, or CMD_RESYNC it
will go into a wait clause until a CMD_RESYNC is received or
a watch dog time out occurs.

Read and write operations require a negative pulse (high
to low to high) on the CS line (Figures 8, 9, and 10). For the
slave B write operation, a high to low CS transition causes
the slave B to put the data on the bus so that it can be latched
(strobed) in by a master. For a NEURON CHIP slave A write,
the NEURON CHIP continues to drive the data until a low pulse
is detected on CS, indicating the master has latched the
data.

In the case of the master write operation, both the NEURON

CHIP slave A and slave B read (strobe) the data on the rising
edge of CS.

The low to high transition of the CS causes the NEURON

CHIP slave (A or B) HS signal to go high. The only exception
to this is when the master reads the control register of a slave
B. HS is unaffected in this case.

As shown in Figure 6, the EOM byte always terminates a
command and is never read by the device it is sent to. The
EOM transaction is just a write cycle and is used by the slave
to toggle the state of HS at the end of a command in order to
pass the write token.

Handshake

The handshake (HS) signal acts like a slave busy flag to
ensure valid data transfers (Figures 8, 9, 10). Slave A has an
external HS line and slave B write HS as a control bit in the
control register. See Figure 3. The NEURON CHIP HS line is
hardware controlled, not firmware controlled.

When the master executes a data transfer, the NEURON

CHIP slave toggles the HS signal high. When the slave has
completed reading a byte or is ready to write, HS is low.
Therefore, HS = 1 indicates the slave is busy and valid data
transfers can not be initiated by the master until HS = 0.

When a foreign processor is the master, HS must be ex-
plicitly polled by that processor’s software routine to ensure
HS is low before a read or write operation is initiated (con-
trolled by the CS and R/W lines).

Synchronization

Upon a NEURON CHIP reset, the write token is, by definition,
in the possession of the master. Synchronization across the
parallel bus is required by the NEURON CHIP following any re-
set condition. The purpose of synchronization is to ensure
both the master and slave are ready for data transaction.
Synchronization prevents false starts of data transfers or
incorrect data transfers. This is automatically accomplished
by the NEURON CHIP through the use of a synchronization
sequence.

The NEURON CHIP’s automatic synchronization process
occurs just before the reset clause of the application program
is executed, and just after configuration of the NEURON CHIP’s
I/O pins. Prior to the synchronization sequence, the I/O pins
are configured as inputs.

The automatic synchronization sequence carried out by
the NEURON CHIP is dependent on the mode of its parallel I/O
object. If the NEURON CHIP is a master, it will initiate a resyn-
chronization command upon reset. If the NEURON CHIP is a
slave (A or B), it will await the arrival of a resynchronization
command from the master (any other command will be
ignored).

The parallel I/O object provides the capability to synchro-
nize the devices at any time when a foreign processor is the
master. This enables the foreign processor to ascertain the
integrity of the communication medium and reestablish a
predetermined state. Aside from the initial synchronization
necessary after a reset, a foreign processor is not required to
perform this operation at any other time. The capability, how-
ever, is provided for the system designer in case a need does
arise.

The resynchronization operation can be initiated by the
token–holding master at any time by the use of the RESYNC
command. The RESYNC command sends a special mes-
sage (CMD_RESYNC) to the slave, which in turn triggers it
to send its own special message (CMD_ACKSYNC) back to
the master. Thus, a two–way communication has taken place
and the token has been passed from the master to the slave
and back to the master again.
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• Master read and write operations are performed by a negative pulse on the CS line.
• In the slave B mode, the master polls the status of the HS line by reading the control

register of the slave (A0 = 1). The only difference between this type of read and a data
register read is that the state of the HS is unaffected.

• The EOM is never read.

Figure 6. Micro –Operations of the Handshake Protocol

The operations described by Figure 6, including the syn-
chronization operations, are transparent to the NEURON CHIP

application programmer. They are automatically executed by
the NEURON CHIP’s firmware. When interfacing a foreign pro-
cessor to the NEURON CHIP, however, the above–mentioned
operations must be explicitly carried out by the attached pro-
cessor.

Reset

Depending on the user application, the reset lines may
need to be monitored to ensure the integrity of the transmis-
sion. The foreign processor master reset can directly control
the NEURON CHIP slave reset. However, the master might
handle a slave reset with an interrupt service routine. A reset
circuit is shown in Figure 7.

MC68HC11 to NEURON CHIP Interface Reset Circuitry

Reset signals from and to the NEURON CHIP are handled by
additional logic as shown in Figure 7. There are two sources
of reset for the MC68HC11 and the NEURON CHIP. One source
internally generated by the MC68HC11 or NEURON CHIP and
the second source externally generated by a Low Voltage In-
hibit (LVI), for example, an MC33164 or a push–button reset
switch.

The MC68HC11 may reset the NEURON CHIP but not vice–
versa.

Additionally, resets may come from the NEURON CHIP by a
network management command being received over the
LONWORKS network. This network management command
causes the reset pin on the NEURON CHIP to become an out-
put and be pulsed low for a short period of time. Due to the
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Figure 7. Reset Scheme for the N EURON CHIP Interfacing to a MC68HC11 Processor

short duration of this pulse, this reset condition must be
latched (for instance, a 74HC74 D flip–flop). The output of
the D flip–flop is then used to interrupt the MC68HC11 to
notify the application program of this network management
command. Since this signal is an interrupt to the MC68HC11,
the IRQ pin must be held low until the interrupt is acknowl-
edged by the interrupt service routine. The interrupt is then
cleared by setting PD2 I/O pin low and restoring it back high
in the interrupt service routine. Optionally, in case of multiple
IRQ interrupts, the output of the flip–flop may also be used as
an input to another I/O pin (such as PD4) so that the interrupt
service routine may determine the source of the IRQ inter-
rupt.

The open collector device between the MC68HC11 reset
pin and the NEURON CHIP reset pin is used to prevent a
NEURON CHIP source reset from resetting the MC68HC11.
When designing the reset circuit several factors must be
taken into consideration, these include:

• How much current the NEURON CHIP can source.
• The saturation voltage of the LVI. This voltage will be

current dependent.
• The voltage level the NEURON CHIP will reset.
• The voltage level the NEURON CHIP will output a reset.
• The current level any LEDs will turn on.
• Voltage drops across all components including diodes

and resistors.
• Any time constants (ex: RC networks).

• Saturation voltage of the open collector device.

Other reset circuits could be designed to fit specific
applications. See also the appropriate technical data sheets
for the suggested power_on_reset circuits and other reset
issues.

NEURON C RESOURCES

The NEURON C programming language allows access to
the parallel I/O object. The following section describes the
available resources within the NEURON C programming lan-
guage.

The parallel I/O object is declared in a NEURON C program
using the following syntax (more details are given in Fig-
ure 12 of this document and the LONBUILDER NEURON C Pro-
grammer ’s Guide [Motorola document order number
NEURONCPG/AD].)

IO_0 parallel slave/slave_b/master io_object_name;

The functions io_in and io_out  are used as parallel
reads and writes, respectively. To use the parallel I/O object
of the NEURON CHIP, i o _ i n  and i o _ o u t  require a
parallel_io_interface  structure as defined below:

Struct parallel_io_interface {
unsigned length; //length of data field
unsigned data[maxlength]; //data field
}pio_name;
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The previous structure must be declared, with an appropri-
ate definition of maxlength  signifying the largest expected
buffer size for any data transfer.

In the case of io_out , length  is the number of bytes to
be transferred out and is set by the user program. In the case
of io_in , length  is the maximum number of bytes to be
transferred in. If the incoming length is larger than length
then the incoming data stream is truncated to length  bytes.
The length field must be set before calling either io_in  or
i o _ o u t . The maximum value for the l e n g t h  and
maxlength  field is 255.

The parallel I/O object of the NEURON CHIP is easily ac-
cessed with the use of built–in NEURON C functions and
events. The following functions and events are provided spe-
cifically for use with the parallel I/O object:

• io_in_ready This event becomes TRUE whenever a
message arrives on the parallel bus
that must be read. The application must
then call io_in  to retrieve the data.

• io_out_request This function is used to request an in-
dication for an I/O object. It is up to the
application to buffer the data until the
io_out_ready  event is TRUE.

• io_out_ready This event becomes TRUE whenever
the parallel bus is in a state where it can
be written to and the io_out_
request  function was previously in-
voked. The application must then call
the io_out  function to write the data to
the parallel port.

NEURON C applications may be written that use the parallel
bus in a unidirectional manner (i.e., applications may be writ-
ten without either an io_in_ready  or io_out_ready
when clause). In the case where no io_in  function exists, it
is up to the programmer to assure that no read transfers of
real data messages will ever be required by the application.
This is to protect the device on the other side of the bus from
waiting forever on a data transfer.

If there is no data to be transferred, the programmer simply
does not generate an in_out_request . No additional code
is needed for passing the token (CMD_NULL). The
CMD_NULL generation is part of the transparent token pass-
ings protocol of the NEURON CHIP.

TIMING

Figures 8, 9, and 10 give the detailed timing specifications
for the parallel I/O object. All three modes of the object are
included. Note that these are typical observed numbers and
are not meant to replace actual device characterization.

RAM ALLOCATION

If transferring large packets of data from the communica-
tion port (network) through the I/O port, memory issues may
be of concern. This section describes how to determine if the
on–chip RAM is adequate for a specific application.

There are four types of buffers needed to move data be-
tween the application program and the communication port
(network). They are: the network input buffers, the applica-
tion input buffers, the application output buffers and the net-
work output buffers. As shown in Figure 11, the network

buffers allow communication between the media access con-
trol (MAC) processor and the network processor, and the ap-
plication buffers allow the network processor and application
processor to communicate.

The NEURON CHIP accepts messages from the network into
the network input buffers, verifies the CRC, and interprets
the destination address. Therefore, the size of the network
input buffers must support the largest potential message
transmitted over the channel in order to prevent error condi-
tions. The LONBUILDER DEVELOPER’S WORKBENCH default size
for each of these buffers is 66 bytes and the default count is
two buffers on the MC143150. The default memory allocation
for these buffers is on–chip RAMFAR.

In a condition when the count of NEURON CHIP input buffers
is not sufficient to support traffic on a network, the NEURON

CHIP does not overwrite data in the buffers, but instead ig-
nores the incoming packet. If, for example, the network mes-
sage is specified as an ‘‘acknowledged service with retries’’
the message is not lost immediately. The source NEURON

CHIP instead continues to resend the message until either an
acknowledgement is received or the maximum retries are
sent.

Likewise, the NEURON CHIP does not overwrite data in
the output buffers. Refer to the documentation on the ‘‘Pre-
emption Mode’’ in the NEURON C Programmer’s Guide for de-
tails on specifing preemption. If the network is active, an
increase in the count of buffers may be needed. In any case,
data is never overwritten.

Application variables, including the parallel I/O application
structure(s), are also stored in RAM. By default, user RAM is
stored in the 256 bytes available in RAMNEAR; however,
RAMFAR can also be employed for user RAM.

The MC143150 has 2 K of on–chip RAM. The LONBUILDER

DEVELOPER’S WORKBENCH allocates memory for both the sys-
tem data (i.e., stack) and for the transaction control block.
The remaining memory available for the input and output
buffers is potentially less than 1K, depending on memory
needed for user RAM. The MC143120 has 1K of RAM and
may not be suitable for channels with large packet transfers.

For example, if the value of 114 bytes is selected for all the
four types of I/O buffers and the counts selected are two,
then the total number of I/O buffers is eight. In this case, no
external RAM should be needed if the user RAM does not
exceed the 256 bytes of RAMNEAR. Note: 114 bytes × 8
(4 buffers × count 2) = 912 bytes needed for all I/O buffers.
The overhead for the application buffers is maximum 7 bytes
and the overhead for the network buffers is 25, therefore,
maximum data length in this scenario is 89 (114–25) bytes.
Refer to the memory management section of the NEURON C
Programmer’s Guide for allowed buffer values.

In some applications, large packets of data are transfered
in only one direction. If the value assigned to the output buff-
ers is 210 bytes, then the average of the input buffers could
potentially be given the value of up to 42 bytes without exter-
nal memory (210 bytes × 4 output buffers + 42 bytes × 4 input
buffers = 1008 bytes total RAM needed). Again, the count is
left to its default of 2. The maximum potential actual data out-
put size is 185 bytes (210 – 25 overhead = 185). Note, the
size of the network input buffers is determined by the largest
potential packet transmitted on the channel. The application
input buffers need only accomodate the largest packet des-
tined for a particular NEURON CHIP.
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tmhsdv

CS

HS

R/W

DATA OUT

DATA IN

READ CYCLE WRITE CYCLE

tmcspw
tmhsv

tmhsh

tmcspw

tmhsh

tmhsv

tmrwstmrws

tmrdz
tmwds

tmwdh
tmwdd

tmrdh

tmrds

tmrwh

tmhscs

Parameter Description Min Typ Max

tmrws R/W setup before falling edge of CS 150 ns 3 CLK1 —

tmrwh R/W hold after rising edge of CS 100 ns — —

tmcspw CS pulse width 150 ns 2 CLK1 —

tmhsh HS hold after falling edge of CS 0 ns — —

tmhsv HS checked by firmware after rising edge of CS 150 ns 10 CLK1 —

tmrdz Master three–state DATA after rising edge of R/W — — 25 ns

tmrds Read data setup before falling edge of HS 3 0 ns — —

tmhscs HS low to falling edge of CS 5 2 CLK1 6 CLK1 —

tmrdh Read data hold after falling edge of CS 0 ns — —

tmwdd Master drive of DATA after falling edge of R/W 150 ns 2 CLK1 —

tmhsdv HS low to data valid 5 — 50 ns —

tmwds Write data setup before rising edge of CS 150 ns 2 CLK1 —

tmwdh Write data hold after rising edge of CS 1 Note 1 — —

NOTES:
1. Master will hold output data valid during a write until the Slave device pulls HS low.
2. CLK1 represents the period of the NEURON CHIP input clock (100 ns at 10 MHz).
3. HS high is used as a slave busy flag. If HS is held low, the maximum data transfer rate is 24 CLK1s (2.4 µs @

10 MHz) per byte. If HS is not used for a flag, caution should be taken to ensure the master does not initiate a data
transfer before the slave is ready.

4. In a master read, CS pulsing low acts like a handshake to flag the slave that data has been latched in.
5. Parameters were added in order to aid interface design with the NEURON CHIP.

Figure 8. Master Mode Timing
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CS

HS

R/W

DATA OUT

DATA IN

READ CYCLE
(MASTER WRITE)

WRITE CYCLE
(MASTER READ)

tsawds tsawdh

tsahsv

tsacspw tsacspw

tsahsv

tsarws tsarws

tsards tsardhtsawdd

tsardz

tsarwh

tsahshtsahsh

Parameter Description Min Typ Max

tsarws R/W setup before falling edge of CS 25 ns — —

tsarwh R/W hold after rising edge of CS 0 ns — —

tsacspw CS pulse width 45 ns — —

tsahsh HS hold after rising edge of CS 0 ns — —

tsahsv HS valid after rising edge of CS — — 50 ns

tsawdd Slave A drive of DATA after rising edge of R/W 25 ns — —

tsawds Write data valid before falling edge of HS 150 ns 2 CLK1 —

tsawdh Write data valid after rising edge of CS 150 ns3 2 CLK1 —

tsardz Slave A three–state DATA after falling edge of R/W — — 25 ns

tsards Read data setup before rising edge of CS 25 ns — —

tsardh Read data hold after rising edge of CS 5 ns — —

NOTES:
1. CLK1 represents the period of the NEURON CHIP input clock (100 ns at 10 MHz)
2. In slave A mode the HS signal is high, a minimum of 4 CLK1 periods. The typical time HS is high during consecutive

data reads or consecutive data writes is also 4 CLK1 periods.
3. If tsarwh < 150 ns, then tsawdh = tsarwh.

Figure 9. Slave A Mode Timing
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CS

A0

R/W

DATA OUT

DATA IN

READ CYCLE
(MASTER WRITE)

WRITE CYCLE
(MASTER READ)

tsbcspw

tsbas

tsbcspw

tsbrdh

tsbrds

tsbwdz

tsbwdh
tsbwdv

tsbrws

tsbrws

tsbah

tsbrwh

Parameter Description Min Typ Max

tsbrws R/W setup before falling edge of CS 0 ns — —

tsbrwh R/W hold after rising edge of CS 0 ns — —

tsbcspw CS pulse width Note 1 — —

tsbas A0 setup to falling edge of CS 10 ns — —

tsbah A0 hold after rising edge of CS 0 ns — —

tsbwdv CS to write data valid — — 50 ns

tsbwdh Write data hold after rising edge of CS 0 ns 30 ns —

tsbwdz CS rising edge to slave B release data bus — — 50 ns

tsbrds Read data setup before rising edge of CS 25 ns — —

tsbrdh Read data hold after rising edge of CS 5 ns — —

NOTES:
1. The slave B write cycle (master read) CS pulse width is directly related to the slave B write data valid parameter and master

read set–up parameter. To calculate the write cycle CS duration needed for a specific application use:

tsbcspw = tsbwdv + master’s read data setup before rising edge of CS

Refer to the Master’s Specification Data Book for the master read set–up parameter. The slave read cycle minimum CS pulse
width = 50 ns.

2. In a slave B write cycle the timing parameters are the same for a control register (HS) write as for a data write.

3. Special Applications: Both the state of CS and R/W determine a slave B write cycle. If CS cannot be used for a data transfer
then toggling the R/W line can be used with no changes to the hardware. In other words, if CS is held low during a slave B
write cycle, a positive pulse (low to high to low) on R/W can execute a data transfer. The low to high transition on R/W causes
slave B to drive data with the same timing parameters as tsbwdv (redefined R/W to write data valid). Likewise, the falling edge
of R/W causes slave B to release the data bus with the same timing limits as the CS rising edge in tsbwdz. This scenario is
only true for a slave B write cycle and is not applicable to a slave B read cycle or any slave A data transitions. This application
may be helpful if the master has separate read and write signals but no CS signal. Caution must be taken to ensure the bus
is free before transfers to avoid bus contention.

Figure 10. Slave B Mode Timing
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66 66 66 6666 66 66 66

RAMFAR

256

COMMUNICATION PORT (CP0–CP4) INPUT/OUTPUT PORT (IO0–IO10)

MAC
PROCESSOR

NETWORK
PROCESSOR

APPLICATION
PROCESSOR

NETWORK I/O BUFFERS
(2 INPUT, 2 OUTPUT)

APPLICATION I/O
BUFFERS

(2 INPUT, 2 OUTPUT)

USER BUFFER

RAMNEAR
(TO BASE PAGE)

Figure 11. L ONBUILDER 2.1 DEVELOPER’S WORKBENCH Default for RAM Allocation
(Excluding Priority Buffers)

Following the same calculations as shown above, if the in-
put buffers are assigned the value of 210, then the output
buffers could potentially be 42 without external memory.

If the NEURON CHIP requires the size of 210 for the network
input buffers to accommodate the largest packet on the
channel, the potential size of the output buffers is related to
the size of the application input buffers.

In a scenario where the maximum value of 255 bytes is re-
quired for output, the source NEURON CHIP could potentially
need external memory. Additionally, the destination NEURON

CHIP will potentially need external memory, depending on the
size of the outgoing messages. Note all the NEURON CHIPs on
the channel need to accommodate this packet (all network
input buffers must equal 255 on all NEURON CHIPs on the
channel).

Pragmas allow the NEURON C programmer to change the
size of any of the four buffers, change the count of any of the
four buffers, or change the count of the priority buffers. Some
examples follow; refer also to the memory management
section of the NEURON C Programmer’s Guide for additional
examples:

#pragma net_buf_in_size 210
#pragma app_buf_in_size 114
#pragma net_buf_out_size 42
#pragma app_buf_out_size 42
#pragma net_buf_in_count 3
#pragma net_buf_out_priority_count 0
#pragma app_buf_out_priority_count 0

The LONBUILDER DEVELOPER’S WORKBENCH provides
memory allocation information for a specific application by
choosing the Output Link Summary build option in the
Options / project pull down menus. The Build All option,
under the Project pull down menu, stores the memory alloca-
tion information in a build.log file which can be viewed
through the LONBUILDER DEVELOPER’S WORKBENCH editor.

Priority buffers and authentications require additional buff-
er allocation and are not considered in the previous exam-
ples. The LONBUILDER DEVELOPER’S WORKBENCH by default
assigns priority buffers; therefore, pragmas are required to
release this memory space.

NEURON CHIP–TO–NEURON CHIP INTERFACE

The parallel connection of one NEURON CHIP to another is
accomplished by assigning one as the master device and the
other as a slave A device. The hardware requirements in this
case reduce to a direct, one–to–one, connection of all eleven
I/O pins on both sides.

Figure 12 illustrates a typical parallel I/O processing inter-
face routine which would reside on the slave (A) NEURON

CHIP. Information is transferred through the I/O port and is
never transmitted over the network in this example.

FOREIGN–TO–NEURON PROCESSOR
INTERFACE (SLAVE B MODE)

Slave B mode was designed to interface the NEURON CHIP

to a foreign processor master.
This section illustrates an M68HC11 (HC11) acting as a

master to a NEURON CHIP configured in slave B mode. The
NEURON CHIP looks like a peripheral device residing on the
HC11’s address bus. The hardware interface is shown in Fig-
ure 13. ECLK is gated twice for CS in order to insure timing
compatibility for the HC11’s read data hold parameter.

External address decoding logic allows the HC11 to ac-
cess the NEURON CHIP by using specific addresses (one ad-
dress for the data register (A0=0) and one for the control
register (A0=1)). The decoding circuitry in Figure 13 specifi-
cally memory maps the NEURON CHIP to addresses between
hex 4000 and hex 7FFF. This section of memory was chosen
because it had the simplest decoding circuitry for this specific
example’s available memory map. In particular, this example
software specifies address 4000 for the data register and
4001 for the control register.
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************************************************************************
* Example 1   
* This N EURON C example program configures the N EURON C HIP in slave A 
* mode.   
************************************************************************
IO_0 parallel slave s_bus;
#define DATA_SIZE 255 //maximum data field allowed
struct parallel_io_interface
{

unsigned int length; // length of data field
unsigned int data[DATA_SIZE];

}piofc
when (io_in_ready(s_bus)) //ready to input data
{

piofc.length = DATA_SIZE; //maximum number of bytes
  to read

io_in(s_bus,&piofc); //get 10 bytes of
  incoming data

}
when (io_out_ready(s_bus)) //ready to output data
{

piofc.length = 10; //number of bytes to write
io_out(s_bus,&piofc); //output 10 bytes from buffer

}
when (...) //user defined event

  indicating buffer has been filled
 {

io_out_request(s_bus); //post the write transfer
 }   request

Figure 12. Example 1 — N EURON C Program for the N EURON CHIP
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Figure 13. Interfacing the N EURON CHIP (Slave B) to the M68HC11A1
(* ECLK Must be Gated Twice for Interface Timing Requirements)
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The HC11’s least significant byte of the address bus is
multiplexed with its data bus. As A0–A7 is valid the first half of
the HC11’s E–clock (ECLK) cycle and the data, D0–D7, is
valid the last half of the HC11’s E–clock cycle, a 74HC373
was used to latch A0. Therefore, A0 controls access to the
data register or the control (HS) register.

The M68HC11EVM (EVM) evaluation board was used for
this example, as the address and data lines are easily acces-
sible through the existing expanded mode connector. An
MC68HC11A1 is supplied with the EVM board. The EVM
board provides an 8–MHz external crystal and supports
2–MHz bus operations. The specified bus cable length is
6 inches.

The M68HC11EVBU also brings the address and data
lines to the external world through an expanded mode con-
nector and could be used with adjustments to this example’s
software memory mapping and external decoding circuitry.
The M68HC11EVB evaluation board is not suggested as the
address and data lines appear as general purpose I/O lines
on the connectors and cannot easily support peripheral
memory mapped devices.

Another option includes Motorola’s M68HC11EVS.
The LONBUILDER DEVELOPER’S WORKBENCH I/O cards

(Echelon part number 27800 or 27810; contact an Echelon
salesperson) may be used to access the I/O pins from the
NEURON emulator unit. The LONBUILDER DEVELOPER’S WORK-
BENCH Startup and Hardware Guide describes how to config-
ure the jumpers for parallel I/O and suggests I/O_9 (R/W) be
tied to the master’s I/O buffers circuitry to configure (on the
fly) the I/O lines for either input or output mode. As per this
example, the slave will need the R/W line inverted before
connecting to the I/O buffers or alternately the pull up on the
I/O buffer schematic can be configured as a pull down. The
eight bidirectional I/O data lines are configured on jumpers
JP15–JP8. Motorola also provides a direct connect trans-
ceiver board (M143204EVK).

The NEURON C code listing (Figure 14) which interfaces the
NEURON CHIP with an HC11 can also be used for NEURON

CHIP–to–NEURON CHIP interface by declaring the I/O object a
slave instead of a slave_b. Due to the transparent nature of
the communication protocol at the NEURON C programming
level, the NEURON CHIP programmer need not be aware that
the interface is to an M68HC11 (or any other foreign proces-
sor for that matter) instead of to another NEURON CHIP.

For the M68HC11, an assembly program listing (Figure 15)
and also a C program listing (Figure 16) is provided in this
application note. Either program may be chosen for the
HC11. An IASM11 assembler is provided with the EVM. Addi-
tional software tools, including C compilers for the HC11, are
available (contact a Motorola salesperson). It is not  recom-
mended to use the bulletin board C compilers designed for
the HC11.

The HC11 watchdog time–out option was not implemented
in this code but can be included for further reliability pur-
poses.

In the code presented in Figures 14–16, both the NEURON

CHIP and the HC11 always have data to send. Therefore, the
NULL command which simply passes the token without data
transfer is not implemented.

As seen in Table 1, the processing time required by the
NEURON CHIP for the HC11 CMD_XFER and length bytes,
which preceeds the actual data transfer, greatly affects the
overall performance of the NEURON CHIP.

However, all the HC11 byte reads, per the assembly code
provided in Figure 15, are dependent on the HC11 speed.

Therefore, the overall performance is dependent both on
the processing time of the NEURON CHIP and the speed of
the HC11.

Typical timing using the master HC11 assembly code
(from Figure 15) and the slave B NEURON C code (from Fig-
ure 14) is given in Table 1.

Table 2 shows the overall performance of the NEURON CHIP

slave B interfacing to a foreign processor master. The HC11
code from Figure 15 was utilized. The size of the data buffer
varied with the data length.

The NEURON C code, from Figure 14, was also used to ac-
quire the data in Table 2. The buffer size assigned in the
NEURON C parallel I/O structure, as specificed by Max_ (see
Figure 14), does not affect the performance of the NEURON

CHIP unless the buffer size designated is smaller than the ac-
tual length of data being transferred. Therefore, buffer size
was adjusted accordingly.

A write/read cycle is defined as starting at the CMD_XFER
master write and ending at the following CMD_XFER master
write. Therefore, the timing in Table 2 not only considers the
actual byte transfer as discussed in Table 1, but also includes
time required by the scheduler and processing of the NEURON

C event (when) statements.

Table 1. Typical Byte Transfer Timing for
NEURON CHIP Slave B–to–HC11 Master Parallel I/O Interface

HC11 Cycle Byte Data

Typical Process
Time (µs)
(per byte)

Typical
Time to HS Low ( µs)

(per byte)

Write CMD_XFER TO LENGTH 01 730 719

Write LENGTH TO FIRST DATA 05 207 197

Write FIRST DATA TO NEXT BYTE 51 37 27.5

Write ADTL DATA 52–55 24 *

Read CMD_XFER TO LENGTH 01 18 *

Read LENGTH TO FIRST BYTE 06 21 *

Read DATA 0–5 24 *

*HS was low the first loop it was tested, therefore, a faster foreign processor would improve the typical byte transfer time.
Typically, HS is low within 3.0 µs during these data transfers.
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Table 2 does not reflect network activity; increase in net-
work activity may increase processing time.

An HC11 NULL write occurs when the HC11 passes the
token without a data transfer. Altering the HC11 assembly
program in Figure 15, a NULL write was performed to pass
the token to the NEURON CHIP and the NEURON CHIP trans-
fered 4 bytes of data to the HC11. The time for this write/read
cycle was 2.2 ms.

If the application is such that the HC11 would never trans-
fer data to the slave, the io_in_ready  event statement can
be removed and the total master read cycle time reduces to
1.5 ms.

Resynchronizing on the fly can be implemented as a safe-
guard to verify data integrity. The master initiates the resyn-
chronization (CMD_RESYNC) and the NEURON CHIP replies
with an acknowledgement (CMD_ACKSYNC). The resyn-
chronization does not affect data waiting to be transferred.

Utilizing a program similar to the HC11 assembly program

shown in Figure 15, the typical time for resynchronization is
less than 940 µs. The NEURON C program, from Figure 14,
was employed with no modifications (as NEURON CHIP syn-
chronization is not handled by the application).

Table 2. Typical Write/Read Cycle Timing
Interfacing the N EURON CHIP in Parallel I/O

Slave B Mode to the HC11 Master

HC11 Write
(# of Data Bytes)

HC11 Read
(# of Data Bytes)

Typical Time for
One Write/Read

Cycle (ms)

1 4 2.4

5 4 2.5

20 4 2.9

60 4 3.8

200 4 7.2

************************************************************************
** Example 2. N EURON C code slave B mode 
** Program for a N EURON C HIP in parallel I/O interface with 
** an M68HC11. The N EURON C HIP is in slave B mode and the HC11 is acting 
** as a master. The program enters in an infinite loop of read and 
** write cycles.
************************************************************************
#define MAX_ 10 //buffer size is ten 
IO_0 parallel slave_b p_bus;

unsigned char i=0; //counter to fill buffer
unsigned char maxin=10, len_out=4; //# of bytes for input and output

struct parallel_io
{

unsigned char len; //actual number of bytes in buffer
unsigned char buf[MAX_]; //array to store data

}pio; //name of structure
when (io_in_ready(p_bus))
{

pio.len = maxin; //maximum input length
io_in(p_bus,&pio); //read in data
io_out_request(p_bus);

}
when (io_out_ready(p_bus))
{

pio.len=len_out; //number of bytes to be output
for (i=0; i<len_out; i++) //fill buffer with data

pio.buf[i] = i;
 io_out(p_bus,&pio); //output data
}

Figure 14. Example 2 — N EURON C Code Slave B Bode
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********************************************************************
**  Example 3. Assembly code for the HC11 master
** Assembly listing of a test program for master/slave B mode where
** master is resident on 68HC11 and slave is resident on the  
** N EURON C HIP.       
**        
** The code below implements the 68HC11 portion,  
** receiving any data and sending pre–defined data messages. 
** This code is implemented more as a test of the interface 
** rather than a test of the protocol.    
*********************************************************************

NEURON_ADDR equ $4000
DEBUG_ADDR equ $0030
HS_MASK equ $01
MAXMSGLEN equ $20
EOM equ $0
TRUE equ $1
FALSE equ $0
CMD_RESYNC equ $5A
CMD_ACKSYNC equ $07

** The N EURON C HIP is sitting on the HC11’s data bus with a chip
** select address decode set to the following addresses:

data equ $4000
control equ $4001

ORG $0000

XDEF token *boolean representing which side has the token
token RMB 1 * token

XDEF counter *general purpose counter
counter RMB l

XDEF msgi *message in structure
msgi RMB 34

mi_command equ 0 *location of command in the msg structure
mi_length equ 1 *location of data length in the msg structure
mi_data equ 2 *location of start of data in the msg structure

** Program Section

ORG $E000

***********************************************************
** start of parallel master code
***********************************************************

XDEF start_pio
start_pio

JSR master_init *initialize

XDEF main_loop
main_loop

LDAB token *load token
BEQ no_token *if token==O, can’t write
JSR pio_write *send code message

** Receives any messages

no_token
JSR pio_read *try to read
BRA main_loop *repeat

Figure 15. Example 3 — Assembly Code for the HC11 Master (Sheet 1 of 3)
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********************************************************************
** wait_hs
** When the N EURON CPU reads or writes to the data port, it 
** initially drives the HS line high. The master must wait for HS 
** to go low again before the next read from or write to the port. 
********************************************************************

XDEF wait_hs
wait_hs

LDAB control
ANDB #HS_MASK
BNE wait_hs
RTS

*****************************************************************
** master_init
** Standard synchronization with the N EURON C HIP.
** Continue to write the CMD_RESYNC value plus EOM until the 
** slave returns the CMD_ACKSYNC value. Return owning token.
*****************************************************************

XDEF master_init
master_init

JSR wait_hs *wait for H.S.
LDAB #CMD_RESYNC *
STAB data *send the resync value
JSR write_eom *and the EOM.

JSR wait_hs *wait for the CMD_ACKSYNC.
LDAB data *read data from the port
CMPB #CMD_ACKSYNC
BEQ read_complete *repeat is not sync’ed
BRA master_init

*****************************************************************
** pio_read
*****************************************************************

XDEF pio_read
pio_read

LDAB control *load control
ANDB #HS_MASK
BEQ da
RTS *no data available

** We have data available, handshake line is low

da
LDY #msgi *set up Y index
LDAB data *read data from the port
STAB 0,Y *store in message.command
INY
BNE have_data *go get data, if command!=NULL

** This was token passing message (NULL)

CLR 0,Y *msgi.length=0
BRA read_complete

** Since the command was non–zero, get the length byte next.

have_data
JSR wait_hs *wait for indication of data
LDAB data *read data from port
STAB 0,Y *msgi.length=ACCB
INY
STAB counter *set up the counter

Figure 15. Example 3 — Assembly Code for the HC11 Master (Sheet 2 of 3)



MOTOROLA L ONWORKS TECHNOLOGYAN1208
AL–320

loop_data
LDAB counter  *load the counter, Z=1, if counter==0
BEQ read_complete *if counter==0, read is complete

** There is more data to be read from port.

JSR wait_hs *wait for data available
LDAB data *read byte from data port
STAB 0,Y *store byte at Y[0]
INY *increment Y
DEC counter  *decrement counter
BRA loop_data

read_complete
LDAB #TRUE
STAB token
JSR wait_hs *wait for EOM to be sent
RTS

********************************************************************
** pio_write
********************************************************************

XDEF pio_write
pio_write

LDY #msgo *load pointer to message
LDAB 0,Y *store Y[0] in ACCB
STAB data *X[0]=Y[0]
BEQ write_eom *if command!=0, then there is a message

** There is data (non–zero command) so send it

is_data
INY *increment to length
JSR wait_hs *wait for handshake
LDAB O,Y *load length byte
STAB counter *store in counter
STAB data *send the length

** Send the data

send_next
LDAB counter *load the counter
BEQ write_eom *if counter==0, then done
DEC counter *counter––
INY *increment message pointer
JSR wait_hs *wait for receiver
LDAB 0,Y *load the next byte
STAB data *send the byte
BRA send_next

XDEF write_eom
write_eom

JSR wait_hs *wait before sending EOM
CLR data *send EOM
CLR token *token=FALSE
RTS

** coded outgoing message;

XDEF msgo
msgo

FCB $01,$05,$51,$52,$53,$54,$55
END

Figure 15. Example 3 — Assembly Code for the HC11 Master (Sheet 3 of 3)
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/*******************************************************************************************/
/*  Example 4 – C code for the HC11 master */
/* Example in C–programming language for a 68HC11A1 interfacing */
/* with a N EURON C HIP. The N EURON C HIP is in parallel I/O */
/* slave B mode and the HC11 is acting as a master. The program */
/* synchronizes the HC11 master and N EURON C HIP slave and then */
/* enters an infinite loop of read and write cycles  */
/*******************************************************************************************/

#define HS_MASK 0x01 /*mask for lsb of control register */
#define CMD_RESYNC 0x5A /*initial command to synchronize N EURON C HIP */
#define CMD_ACKSYNC 0x07 /*synchronization acknowledge from slave */
#define CMD_XFER 0x01 /*command to transfer data */
#define LENGTH_OUT 0x08 /*length of data transfer from master */
#define EOM 0X00 /*end of message */
#define MAX_ 0X09 /*maximum size of data buffer  */
#define DATA_REGISTER 0X4000 /*even adrs accesses data register */
#define CNTRL_REGISTER 0x4001 /*odd address accesses HS register */
#define MASTER 1 /*token tracking for master write  */
#define SLAVE 0 /*token tracking for master read  */

unsigned char token; /*tracks read and write cycles  */
unsigned char *data, *hs; /*pointers for data and HS registers */

struct parallel_io /*buffer for data transfers */
{
unsigned char len; /*length of data transferred */
unsigned char data[MAX_]; /*array to store data  */
}pio;

/*******************************************************************************************/
/* Verify the processors are synchronized before any data is  */
/* transmitted. The master sends the command to resynchronize until */
/* the slave acknowledges with CMD_ACKSYNC. The master owns the */
/* token after resynchronization.     */
/*******************************************************************************************/

sync_loop()
{

while (*data != CMD_ACKSYNC) { /*loop until acknowledge received */
hndshk();
*data = CMD_RESYNC /*send command to resync  */

 hndshk();
*data = EOM; /*send end of message */
hndshk();

}
 token = MASTER; /*master owns token after reset */
}

/*******************************************************************************************/
/* Verify the slave is ready for the next byte transaction. Read */
/* the control register of the slave which accesses the handkshake */
/* signal(least significant bit of the control register). Mask all */
/* bits but the handshake bit and verify if the handshake signal has */
/* gone low.  */
/*******************************************************************************************/

hndshk() /*infinite loop until the handshake bit goes low */
{
     while ((*hs) & HS_MASK);
}

Figure 16. Example 4 — C Code for the HC11 Master (Sheet 1 of 3)
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/*******************************************************************************************/
/*  Identify the owner of the token to determine if a read or write */
/* is appropriate. If the master owns the token a write cycle is */
/* performed. If the slave owns the token a read cycle is initiated. */
/* Token passing prevents bus contention, as only the owner of the */
/* token can write to the bus. */
/*******************************************************************************************/

main_loop ()
{

while(1) { /*infinite loop of read/write cycles */
if (token == MASTER) /*master owns the token */

write(); /*master writes to the slave */
else /*slave owns the token */

read(); /*master reads from the slave */
}

}

/*******************************************************************************************/
/* The master owns the token at the start of this function,  */
/* therefore, the master can write to the bus. The buffer is filled, */
/* the command to send data (CMD_XFER) is transmitted, the length */
/* (number of bytes of data) is transmitted and the data is  */
/* transmitted one byte at a time. The handshake signal is  */
/* monitored for low transition before each byte transfer. After */
/* the data is transmitted, the token is processed.   */
/*******************************************************************************************/

write()
{

unsigned char send_data;
make_buffer();  /*assign length and create data */
hndshk();
*data = CMD_XFER; /*command to send data */
hndshk();
*data = pio.len; /*send length of data to be transmitted */
for (send_data=0; send_data<pio.len; send_data++){

hndshk();
*data = pio.data[send_data]; /*send one byte of data */

 }
pass_token();   /*process the token */

}

/*******************************************************************************************/
/* Assign the data length. Fill the buffer with data before */
/* transmitting. The data is ascii: P,Q,R,S,T,U,V,W.  */
/*******************************************************************************************/

make_buffer()
{

unsigned char data_out;  /*counter for creating data */
pio.len = LENGTH_OUT;  /*length of bytes of data */
for(data_out=0; data_out<LENGTH_OUT; data_out++)
pio.data[data_out]=(data_out+(0x50));

} /*ascii output*/

 Figure 16. Example 4 — C Code for the HC11 Master (Sheet 2 of 3)
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/*******************************************************************************************/
/*  The slave has the token at the beginning of this function, */
/* therefore, the master reads from the slave. If the first byte is */
/* the command to transfer, read the length of data bytes to be */
/* received, read each byte of data, then transfer the token to the */
/* master. If the slave has no data to send, assume the command is a */
/* NULL and simply transfer the token to the master. Always wait */
/* for the handshake signal to be low before each transaction. */
/* Note: No error checking is implemented to verify the command */
/* is a NULL. */
/*******************************************************************************************/

read()

{
unsigned char cmd; /*stores the command from the slave */

 unsigned char i=0; /*counter to read in data  */
  hndshk();
  if ((cmd = *data) == CMD_XFER) { /*slave has data to send */

hndshk();
pio.len = *data; /*read length of data to be transferred */
while (pio.len––) {  /*read in each byte of data */
hndshk();
pio.data[i] = *data; /*put data in a buffer  */
++i;
}

 }
 pass_token(); /*pass token to the master  */
}
/*******************************************************************************************/
/* Process the token. If the master owns the token, send an end of */
/* message to the bus and then pass the token to the slave.  */
/* If the slave owns the token, simply pass the token to the master. */
/*******************************************************************************************/

pass_token()
{

if (token == MASTER) { /*master owns the token */
hndshk();
*data = EOM; /*write an end of message */
token = SLAVE; /*pass the token to the slave */

}
else

token = MASTER; /*pass the token to the master */
}
main ()
{

data = DATA_REGISTER; /*data points to the data register */
hs = CNTRL_REGISTER; /*hs points to the control register */
sync_loop(); /*synchronize the processors */
main_loop(); /*infinite loop of read/write cycles */

}

 Figure 16. Example 4 — C Code for the HC11 Master (Sheet 3 of 3)
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Debugging the Example Programs

The foreign processor must stabilize in approximately
840 milliseconds (10 MHz) after the NEURON CHIP reset to
avoid a NEURON CHIP watchdog timeout. If a watchdog time-
out does occur the NEURON CHIP simply resets and waits
again for the synchronization command.

JP1 and JP2 on the emulator boards should be discon-
nected. If you are using Echelon’s I/O evaluation board,
verify that D7 through D0 are jumpered on JP8–JP15 not
JP5–JP12.

Prior to the 2.1, release the documentation on configuring
the I/O buffer circuitry by tying to I/O9 (R/W) was for the mas-
ter NEURON chip only. The slave must have the R/W signal
inverted.

FOREIGN–TO–NEURON PROCESSOR INTERFACE
(SLAVE A MODE)

Slave A mode was designed for a NEURON CHIP–to–
NEURON CHIP interface. However, interface of a foreign pro-
cessor master to a NEURON CHIP in slave A mode can be
accomplished several different ways. One interface using an
HC11 is conceptually demonstrated in Figure 17.

The slave A write data hold time after the rising edge of CS
(tsawdh) is 150 ns. Therefore, the HC11 can not easily sup-
port the NEURON CHIP as a peripherial device in expanded
chip mode.

The HC11 single chip mode does, however, support a par-
allel IO mode which allows port C to be a full handshake IO
port. This option will conceptually support an interface which
uses only 11 IO lines and will not require an additional cycle
for HS reads. It can be optioned to use HC11 interrupts. This
mode may not be appropriate for multiple NEURONS interfac-
ing to a single HC11.

In this example, STRB is configured as an interlocked ac-
tive high signal for HC11 reads and an interlocked active low

signal for HC11 writes. STRA is always configured as an ac-
tive falling edge signal. The R/W signal is generated by any
general purpose HC11 output pin.

During an HC11 read, HS directly drives STRA. Initially,
STRB is high indicating the HC11 is ready for a data transfer.
When the NEURON CHIP has data and is ready to output, the
HS line transitions low. The HC11 then pulls STRB low, be-
ginning a low pulse on CS. When the HC11 pulls STRB high,
this indicates data is latched and the NEURON CHIP releases
the data and pulls HS high again until the next byte transfer.
The HS line does not transition high until after STRB (CS) is
high, therefore, allowing HS to control STRA directly.

During an HC11 write both the HS signal and the STRB
signal must be low before STRA falls. Therefore, both pro-
cessors have activated their ready signals before the transfer
is initiated.

The PIOC register should be reconfigured as follows:

HC11 read: CWOM=1, HNDS=1, OIN=0, PLS=0, 
EGA=0, INVB=1

HC11 write: CWOM=1, HNDS=1, OIN=1, PLS=0, 
EGA=0, INVB=0

Figure 17 demonstrates the conceptual hardware inter-
face. Interrupts can be generated for each byte transfer. For
more information, including timing parameters, refer to docu-
ment M68HC11RM/AD, M68HC11 Reference Manual.

Synchronization

After reset, the master initiates synchronization by sending
the command for resynchronization (CMD_RESYNC). If the
slave is powered up and ready to begin communication, it
sends an acknowledgment back to the master (CMD_
ACKSYNC). If the slave is not ready, the master continues to
initiate the resynchronization until the slave acknowledges.
After synchronization, the master owns the token.

IO8

IO10

8

68HC11A1Neuron Chip

PBOIO9

STRB

R/W

CS

IO0–IO7

STRA

IRQ

PORT C

HS

D0–D7

Figure 17. Interfacing the Slave A N EURON CHIP to the M68HC11EVM Master
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Master Owns Token

Only the owner of the token can write to the bus. At this
point, the master can resynchronize with the slave, write data
to the bus, or perform a null write. After the master completes
one of these commands, the slave owns the token.

Slave Owns Token

Once the slave owns the token, the slave can acknowl-
edge a resynchronization, or if a resynchronization has not
been initiated, the slave can either write data to the bus or
perform a null write. After the slave has completed one of
these commands, the master owns the token again. The
cycle alternates between master writes (master owns the to-
ken) and master reads (slave owns the token).

Handshake

The master verifies HS is low before every byte transfer to
ensure the slave has finished any internal processing and is
ready for the next transaction.

Refer to document NEURONCPG/AD, NEURON C Pro-
grammer ’s Guide and document MC143150/D,
MC143150/MC143120 Technical Data for additional informa-
tion on NEURON CHIP parallel I/O objects.

GENERATING AN INTERRUPT SIGNAL
TO A FOREIGN PROCESSOR MASTER

If the NEURON CHIP holds the token and the foreign pro-
cessor master does not complete a master read in an ap-
propriate amount of time (approximately 840 milliseconds
(10 MHz) after the NEURON CHIP is ready to write to the bus)
a NEURON watchdog timeout may occur.

If the master holds the token and does not pass the token
to the NEURON CHIP in a timely manner the network could
potentially suffer or data could be lost. On the other hand,
polling the NEURON CHIP often for data transfers can be ineffi-
cient. Therefore, an interrupt strategy is appropriate to
release the foreign processor from polling the NEURON CHIP.

Information for configuring and handling interrupts can be
found in the foreign processor technical data book or refer-

ence manual. In particular, the HC11’s I bit in the condition
code register (CCR) is the primary enable control for HC11’s
IRQ, and is set during reset. It should be cleared by the HC11
with a CLI instruction after parallel I/O synchronization is
complete. The I bit is automatically set during entry to the
HC11’s service routine and can be automatically cleared with
each return from the service routine using the RTI command.
Refer to the HC11’s reference manual for more details. The
HC11’s IRQ interrupt vector is located at address FFF2.

Utilizing the L ONTALK  Network to Generate an Interrupt
Signal to a Foreign Processor for Parallel I/O Transfers

Figure 18 demonstrates how two NEURON CHIPs can be uti-
lized to generate an interrupt signal to a foreign processor
master.

When NEURON CHIP 1 (slave) is ready to transfer informa-
tion, a signal is sent to NEURON CHIP 2 (interrupt generator)
over the network. This can be done with the same message
(i.e., network variable) that brings the information into
NEURON CHIP 1, or it can be a separate network signal.

NEURON CHIP 2 utilizes an I/O pin to generate the interrupt
signal to the master.

The approach in Figure 18 can be employed with a master/
slave A interface or a master/slave B interface, and either
version of the NEURON CHIP.

The interrupt service routine would begin with the foreign
processor performing a data write or a NULL write, if the for-
eign processor has no data. The master would then perform
a read cycle to obtain the data from the slave. At the conclu-
sion of the master read, the master owns the token again. In
order to avoid watchdog timeouts, the interrupt service rou-
tine concludes with the master owning the token.

Utilizing Memory Mapped I/O to Generate an Interrupt
Signal to the Foreign Processor Master

Utilizing the schematic shown in Figure 19, an MC143150
NEURON CHIP can utilize an interrupt approach similar to
memory mapped I/O to generate an interrupt signal when the
NEURON CHIP has data to transfer, in either slave A or slave B
mode. The MC143120 does not support an expanded
address and data bus and cannot be used to generate a
memory mapped interrupt.

I/O PIN INTERRUPT 

PARALLEL I/O 11

IO0–IO10

(DATA AND CONTROL LINES)

NETWORK CHANNEL

NEURON CHIP 1
(SLAVE)

NEURON CHIP 2
(INTERRUPT
GENERATOR)

FOREIGN PROCESSOR
(MASTER)

Figure 18. L ONTALK  Interrupt Option for the Parallel I/O Interface Between
the NEURON CHIP Slave and a Foreign Processor Master
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In the partial NEURON C program shown in Figure 20,
INTRPT_ADRS is the interrupt generating address to be de-
termined by the application. Accessing this address will
cause the IRQ pin to pulse low for a time period of 100 ns at
10 MHz.

The IRQ pin should be configured as a negative–going
edge–detect input (set IRQE=1 in the OPTION control regis-
ter within 64 clock cycles after reset). This configuration
allows only a single interrupt source to use the IRQ pin. As
demonstrated in Figure 19, the decoded interrupt address is
gated with the Eclock and generates an input to the IRQ pin.

 The interrupt service routine would begin with the master
owning the token. When an interrupt occurs, the master
would pass the token to the slave, which would enable the
slave to write data to the bus. After the slave write command
is completed, the interrupt routine concludes with the master
owning the token.

Utilizing a State Machine to Monitor the N EURON CHIP for
Data Transfers

A state machine which passes the token in a ping–pong
fashion between itself and the NEURON CHIP can be designed
using a programmable logic device. When the state machine
owns the token, a pass token command is emulated, as
described in Figure 6, to pass the token to the NEURON CHIP.

When the NEURON CHIP has the token and is ready to
access the bus, the state machine monitors the least signifi-
cant bit of the data bus. A zero on the least significant bit in-
dicates a NULL (the NEURON CHIP has no data) and a logic
one indicates a CMD_XFER.

If the NEURON CHIP has data, the state machine generates
an interrupt signal to the foreign processor. The foreign pro-
cessor’s interrupt handler would release the state machine
and accept the remaining bytes (length and data) from the
NEURON CHIP.

At any time, the foreign processor could also release the
state machine and transfer data to the NEURON CHIP.

The slave can be monitored between every byte transfer to
ensure a low on the HS output. The state machine can emu-

late a master, slave A or slave B mode provided the timing
parameters can be met by the state machine. See Figures 8,
9, and 10 for detailed timing information. Either version of the
NEURON CHIP (MC143120 or MC143150) can be utilized.

Slave A Generates an Interrupt Signal to a Foreign 
Processor Master for Byte Transfers

A NEURON CHIP in slave A mode supports a hardwired HS
line, which transitions from high to low when the NEURON

CHIP is ready for the next byte transaction. The low state or
transition of this HS line can be used to generate an interrupt
signal to the foreign processor master, indicating the NEURON

CHIP is available for the next byte transfer. This application is
useful to free the foreign processor between byte transfers.
The interrupt service routine would handle each byte transfer
accordingly.

To avoid interrupts between each byte, the interrupt han-
dler would need to release the slave A HS line from the inter-
rupt input signal. As seen in Table 1, some of the byte
transfers are more timely than others; therefore, releasing
the HS line could be advantageous. At the end of the inter-
rupt handler routine, the HS line can again be enabled to
interrupt the master.

Since the HS line is identical in the MC143120 and
MC143150, either chip can be used if memory requirements
permit.

CONCLUSION

Use of the parallel I/O interface has tremendous value for
coprocessors, gateways, and routers.

Various considerations come into play when interfacing to
microprocessors not covered in this application note. The
concepts are the same for all foreign processors; however,
the timing issues should be closely considered.

The timing diagrams, in Figures 8, 9, and 10 should
be useful in determining the specific hardware needed for
each application.

HC32**

HC11

IRQ
ADDRESS BUS

E

ADDRESS
DECODER*

MC143150
NEURON CHIP

* The address decoder can be an HC138 depending on application memory map.
** Either an OR gate or a NOR gate can be used as IRQ is configured as an edge detect interrupt in this example.

Figure 19. N EURON CHIP Generates Interrupt to HC11 Master
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********************************************************************************* 
* Example 5 
* Conceptual partial program using the slave B N EURON C HIP address bus  
* to generate an interrupt to the HC11 master. Note that slave A 
* can also be utilized.
* 
**********************************************************************************
#define MAX_ 10 //buffer size is 10
#define INTRPT_ADRS ???? //interrupt addrs; application dependent 
IO_0 parallel slave_b p_bus;

unsigned int * intrpt ;   //interrupt from N EURON––IRQ
unsigned char maxin=10, len_out=7;  //# of bytes buffers

struct parallel_io   //structure for transmitting data
{

unsigned char len;
unsigned char buf[MAX_];

}pio;

when (reset)     
{
 intrpt = (int*)INTRPT_ADRS; //assign interrupt ptr to addrs
 }

when (...)   //N EURON C HIP has recvd data to transmit 
{
 intrpt = 1;   //enable IRQ
}

when(io_in_ready(p_bus)) //N EURON C HIP must recv token from master
{

pio.len = maxin;
io_in(p_bus,&pio);   
io_out_request(p_bus); //N EURON C HIP has token, request to output

}
 
when (io_out_ready(p_bus)) 
{

.     

. //store data into pio structure

.
pio.len = len_out;
io_out(p_bus,&pio);   //output the data 

}

Figure 20. Example 5 — N EURON C Code for a N EURON CHIP Slave B
to Generate an Interrupt Signal to the Master


