
Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

70

INTRODUCTION
Some state machine applications require a
state machine to wait for a number of clock
pulses to occur before some decision point is
reached. One common example of this is a
state machine that needs to analyze only
certain bits in a serial data stream. The state
machine may have to wait for a number of
serial data bits to transpire before pulsing a
load signal or proceeding into states to
actually check individual data bits for specific
preamble or header information.

SEQUENCER ARCHITECTURE
State machine implementations using JK
flip–flop based sequencer devices are
generally very efficiently implemented
because product terms (AND gates) are
required only to force a transition from one
state to the next. Product terms are not
required to hold the sequencer in a state, as
they are for D–type based devices. A JK
based state machine can wait forever in one
state for a specific parallel combination of
input signals to happen, using only one
product term to perform the comparison and
force a jump to a new state. In addition,
Philips sequencers have a PLA architecture
meaning that both the AND array and the OR
array have programmable connections. A
single product term may be connected to the
inputs of multiple state and/or output
registers. This feature allows for efficient
device resource utilization since any product
term may be connected to any buried or
output register. The product terms are not
fixed in their usage to a specific register or
output.

DESIGN METHODS
PLD software packages, such as Philips
SNAP, provide for different methods of design
entry. The easiest and usually best format for
state machines is, of course, a state equation
entry method. Figure 1 shows an example
using state equations. For JK based
sequencers, SNAP essentially translates

each ’IF’ statement into a product term in the
device. An OR function in the input condition
field of the ’IF’ statement will cause an
additional product term to be used.

A series of unconditional transitions to a new
state may be found in some state machine
designs where it is required to wait a certain
number of clock cycles before performing a
function. The example in Figure 1 shows a
simple state machine that runs continuously
through sixteen states and outputs a pulse on
output ’OUT1’ while in state ’F’. This state
machine is not waiting for any inputs, other
than the clock to occur. It is simply a counter.

COUNTER IMPLEMENTATION
For typical state machine implementations
with conditional transitions between states,
state equations produce efficient state
machines. However for implementing
counters, state equations may not produce
the most efficient implementation. JK
flip-flops have a feature whereby if both J and
K are active, after a clock, the output will
toggle or change state. This feature may be
used to implement counters very efficiently.
Combining the toggle feature of the flip-flops
with a PLA devices ability to connect a single
product term to multiple OR array inputs,
produces an implementation where only one
product term is needed for each bit in the
counter. A four bit counter may be
constructed using only four product terms!

The function described in Figure 1 is
duplicated in Figure 2, except the Figure 2
design uses a counter described with
Boolean equations. Only six product terms
were used compared to the sixteen used for
the design in Figure 1. Four product terms
were used for the counter and two to control
output pin OUT1. So, when a portion of a
state machine design is required to
unconditionally transition from one state to
the next, consider implementing a counter
using Boolean equations and merging it into
the state machine.
The example in Figure 2 only used Boolean
equations, no state equations. So, another

example is shown in Figure 3. This example,
using SNAP, illustrates the proper syntax for
connecting the outputs of a counter to the
inputs of a state machine. This example was
complied for a PLUS405 device. The state
machine will wait in each state until the
counter reaches a specified value. It then
transitions to the next state.

Complicating the design a bit more, Figure 4
shows another SNAP example. This is a
listing of a design that, in addition to using the
counter outputs as inputs to the state
machines, connects two outputs of the state
machine back to the counter. The outputs of
the state machine (actually two of the state
bits) can enable or disable counting, or reset
the counter. In this example the state vectors
were specially assigned such that state
register S1 must be LOW for the counter to
count. When state register S2 is HIGH, the
counter will be reset. Instead of using state
registers bits, additional outputs could have
been defined and connected to the counter.

Figure 5 shows a counter that counts from 0
to 12 and then resets. This example may be
easily modified to produce a counter that
counts to any value.

SUMMARY
The toggle feature of JK flip-flops together
with a product term sharing capability, found
in most Philips sequencer devices, may be
used to build counters using only one product
term per counter bit. If a state machine
design contains many unconditional
transitions, it is possible to reduce the
number of product terms required to
implement the design by separating the
design into a counter and state machine.
The counter portion should be described
using Boolean equations, when state
equations are preferred for the state
machines. The counter outputs may be used
as inputs to the state machine and some
state machines outputs or state bits may be
used to enable or reset the counter.

Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

71

Figure 1. SNAP State Equations

@PINLIST
clk i;
init i;
out1 o;

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

s[3..0].rst = /init; ”Use INIT function pin (19) to reset counter”
out1.rst = /init; ”and to reset output pin.”

@INPUT VECTORS
@OUTPUT VECTORS
[out1]jkffr
o0 = 0b;
o1 = 1b;

@STATE VECTORS
[s3,s2,s1,s0]jkffr
st0 = 0000b;
st1 = 0001b;
st2 = 0010b;
st3 = 0011b;
st4 = 0100b;
st5 = 0101b;
st6 = 0110b;
st7 = 0111b;
st8 = 1000b;
st9 = 1001b;
sta = 1010b;
stb = 1011b;
stc = 1100b;
std = 1101b;
ste = 1110b;
stf = 1111b;

@TRANSITIONS

while [st0]
 if [] then [st1]
while [st1]
 if [] then [st2]
while [st2]
 if [] then [st3]
while [st3]
 if [] then [st4]
while [st4]
 if [] then [st5]
while [st5]
 if [] then [st6]
while [st6]
 if [] then [st7]
while [st7]
 if [] then [st8]
while [st8]
 if [] then [st9]
while [st9]
 if [] then [sta]
while [sta]
 if [] then [stb]
while [stb]
 if [] then [stc]
while [stc]
 if [] then [std]
while [std]
 if [] then [ste]
while [ste]
 if [] then [stf] with [o1]
while [stf]
 if [] then [st0] with [o0]

Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

72

@PINLIST
clk i;
init i;
out1 o;
@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

”Simple four bit binary counter that”
”uses toggle feature of JK flip–flops.”
”Because of p–term sharing, only 4 p–terms”
”are needed to implement this counter.”

c0.j = 1;
c0.k = 1;
c1.j = c0;
c1.k = c0;
c2.j = c0 * c1;
c2.k = c0 * c1;
c3.j = c0 * c1 * c2;
c3.k = c0 * c1 * c2;

c[3..0].rst = /init; ”Use INIT function pin (19) to reset counter”
out1.rst = /init; ” and to reset output pin”

”In this example the counter is free–running.”
”Out1 will be high when the count is 1111B and”
”will be forced low when the counter transistions”
”from 1111 to 0000 binary or reset by pin 19.”

out1.j = c3*c2*c1*/c0;
out1.k = c3*c2*c1* c0;

@INPUT VECTORS
@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS

Figure 2. Counter Boolean Equations

Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

73

@PINLIST
clk i;
init i;
out1 o;
out2 o;

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

”Simple four bit binary counter”

c0.j = 1;
c0.k = 1;
c1.j = c0;
c1.k = c0;
c2.j = c0 * c1;
c2.k = c0 * c1;
c3.j = c0 * c1 * c2;
c3.k = c0 * c1 * c2;

c[3..0].rst = /init; ”Use INIT function pin (19) to reset counter”
s[1..0].rst = /init; ” and state registers”
out[2..1].rst = /init; ” and output pins”

@INPUT VECTORS
@OUTPUT VECTORS
[out1,out2]jkffr
 o0 = 0–b;
 o1 = 1–b;
 o2 = –0b;
 o3 = –1b;

@STATE VECTORS
[s1,s0]jkffr
st0 = 00b;
st1 = 01b;
st2 = 10b;
st3 = 11b;

@TRANSITIONS

 ”In this example the counter outputs are used”
 ” as inputs to the state machine”

 while [st0]
 if [c3*c2*c1*/c0] then [st1] with [o1] ”move to state 1 when counter goes”
 ”from E hex to F hex”
 while [st1]
 if [] then [st2] with [o0] ”upon next clock go to state 2 and”
 ”reset output”
 while [st2]
 if [/c3*c2*c1*/c0] then [st3] with [o3] ”wait here until count = 6 hex”
 ”then go to state 3 and set out2”
 while [st3]
 if [] then [st0] with [o2] ”goto state 0 and reset out2”

Figure 3. Counter Connected to State Machine

Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

74

@PINLIST
clk i; out1 o;
in1 i; out2 o;
init i;

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

”Four bit binary counter”
”controlled by state machine state register bits”

c0.j = /s1*/s2; ”Counter will be forced to 0000 upon”
c0.k = /s1; ”clock and state bit s2 high.”
c1.j = /s1 * c0 * /s2; ”Counter won’t count unless state”
c1.k = /s1 * c0; ”register s1 is low. (won’t count”
c2.j = /s1 * c0 * c1 * /s2; ”in state st1)”
c2.k = /s1 * c0 * c1;
c3.j = /s1 * c0 * c1 * c2 * /s2;
c3.k = /s1 * c0 * c1 * c2;

c[3..0].rst = /init; ”Use INIT function pin (19) to reset counter”
s[2..0].rst = /init; ” and state registers”
out[2..1].rst = /init; ” and output pins”

@INPUT VECTORS
@OUTPUT VECTORS
[out1,out2]jkffr
 o0 = 0–b;
 o1 = 1–b;
 o2 = –0b;
 o3 = –1b;

@STATE VECTORS
[s2,s1,s0]jkffr
st0 = 000b; ”Note the special state assignments to”
st1 = –10b; ”simplify one state bit connections to”
st2 = –01b; ”the counter.”
st3 = 111b;

@TRANSITIONS

 ”In this example the counter outputs are used”
 ”as inputs to the state machine and some of the”
 ”state register bits S2 and S1 control the operation”
 ”of the counter.”

 while [st0]
 if [/c3*c2*/c1*c0] then [st1] with [o1] ”move to state 1 when counter goes”
 ”from 5 hex to 6 hex”
 while [st1]
 if [in1] then [st2] with [o0] ”when input ’in1 = high’ go to state 2 but”
 ”hold counter at 6 while waiting for in1”
 while [st2]
 if [c3*/c2*/c1*/c0] then [st3] with [o3] ”wait here until count = 8 hex”
 ”then go to state 3 and set out2”
 while [st3]
 if [] then [st0] with [o2] ”goto state 0 and reset out2”
 ”and counter”

Figure 4. Counter Enable and Reset Functions Controlled

Philips Semiconductors Programmable Logic Products Application Note

AN050Implementing Counters in Sequencer Devices

75

@PINLIST
clk i;
ignd i;
init i;
out1 o;

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS

”Four bit binary counter”
”modified to count from”
”0 to 11 and then reset.”

c0.j = nor;
c0.k = nor;
c1.j = nor * c0;
c1.k = nor * c0;
c2.j = nor * c0 * c1;
c2.k = (nor * c0 * c1) + count12;
c3.j = nor * c0 * c1 * c2;
c3.k = (nor * c0 * c1 * c2) + count12;

count12 = c3*c2*/c1*/c0;
nor = /(count12+ignd);

”When count=11, then output NOR is LOW, disabling the product terms”
”that cause the counter to count. Another product term (count12)”
”connects to the registers of the counter that are HIGH K–inputs,”
”forcing it to all zeros upon the next clock. These connections may”
”be modified to alter the upper count limit.”

c[3..0].rst = /init; ”Use INIT function pin (19) to reset counter”
out1.rst = /init; ” and to reset output pin”

”In this example the counter is free–running.”
”Out1 will be high when the count is 1100B and”
”will be forced low when the counter transistions”
”from 1100 to 0000 binary or reset by pin 19.”

out1.j = c3*/c2*c1*c0;
out1.k = c3*c2*/c1*/c0;

”For SNAP 1.90 to implement this design in a minimum number of product
 terms, two passes through the merger are necessary. First, generate a
 netlist normally – running NETCONV and MERGER. Then, highlight equations
 in the MERGER box to extract the equations from the netlist. Run the
 extracted equations through the minimizer (EQNGEN). Run through NETCONV
 (Minimized) and MERGER again to produce a minimized netlist. The design
 may then be compiled for the device.”
@INPUT VECTORS
@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS

Figure 5. Modulo-n Counter

	INTRODUCTION
	SEQUENCER ARCHITECTURE
	DESIGN METHODS
	COUNTER IMPLEMENTATION
	SUMMARY

