
Philips Semiconductors Programmable Logic Products

AN046Quick PLA

5September 1993

INTRODUCTION
The PLUS153-10 is available in a 20-pin DIP
or 20-pin PLCC package. The PLUS173-10
is available in a 24-pin DIP or 28-pin PLCC
package. Both parts have tPD no greater
than 10ns.

Both parts provide 32 wide input product
terms, whose outputs may be tied to the
inputs of the sum terms (OR gates) below.
There are no restrictions on this interconnect
— any or all product terms may feed any or
all sum terms. Thus each OR term can
accept from 1 to 32 inputs without leaving the
chip for a signal “wrap around”. All ten
outputs are bi-directional, so they may be
traded off as inputs are used. Finally, each
output may be polarity configured
(exclusive-OR fused) and each is
independently 3-Stateable from a separate
product term (each) which is identical to the
rest.

Although slightly slower (from pin to pin) than
7.5ns 20L8 structures, the following example
demonstrates a simple case of how a 10ns
PLA can be faster than a 7.5ns PAL.

Example 1: Glue Collection
This first example is an illustration of
compressing glue logic. Figure 1 shows a
piece of logic which performs one of two
operations on two 8-bit numbers. These may
come from different registers in a system, or
be from two halves of a 16-bit bus. The goal
is to perform the input operations (compare
the bytes in one mode or multiplex one bit out
in the other) in 10ns. Using MSI parts, this
could have been done except there is no 16
to 1 MUX available in the 74F device series.
There is a 74150 device available, but it has
a propagation delay of 17ns. So this will not
work. Figure 1 shows the solution using the
7.5ns PAL devices. Unfortunately, because
architecture provides only seven product
terms per sum term (16L8-7) multiple signal
passes are required. This results in a
solution needing over 20ns. It might be
conjectured that a 15ns 22V10 could make it
with 16 product terms on some outputs, but
doing the MUX would only provide the output
at “point 1” in 15ns. Additional time is
needed to make the final out signal. A 10ns
22V10 could not make spec, with an
additional 74F32 adding 4ns. Figure 3 shows
the preferred solution — a single PLUS173
generating the final function in 10ns. Figures
4 and 5 show the pinout and SNAP equations
for this solution.

Example 2: Cache Update Inhibit
Key to modern microsystem design has been
simple, fast RISC processors with quick
cache and single cycle high performance
operation. Unfortunately even using the new
cache control chips, exception handling
results in clumsy designs. This may be one
of the reasons simple, direct-mapped caches
have also become popular. Exception
handling is often resolving transactions which
occur with data items that are non-cacheable.
This occurs in a number of ways — first,
EPROMs, I/O devices and special state
registers are not cacheable items, so they will
never be put into a cache memory. What
happens when a non-cacheable item is
referenced? The cache controller will miss
and begin to update the cache. The
transaction must be terminated before it
overlays an I/O device onto the least recently
used cache address.

The way to deal with the transaction overlay
problem is straightforward — recognize all
non-cacheable transactions and intercept
them before the controller cleans house.
How big of a problem is this? Figure 6 shows
what might be an average engineering
workstation. Each device (disk controller,
LAN controller, keyboard, printer, etc.) usually
has several internal registers each occupying
a unique address. With two disks, a LAN,
modem and printer, a system could instantly
exceed 16 distinct I/O registers. It is best to
assume a large number. Enter the PLA —
the PLUS173 — for such a system. Each
product term can be scattered all over
memory if needed and decodes summed into
a single output signal generating a composite
inhibit. This process takes less than 10ns for
up to 32 devices. Using a 20L8-7 requires
trading off resolution (number of address bits
resolved) and feeding through the chip
multiple times, expanding to 13 devices in
two passes (at 15ns for a 7.5ns device).
Using a PLA keeps the RISC design very
clean and fast.

Example 3: Interfacing Mixed
Memory Types
Other sections of a microprocessor system
can use the summation of a large number of
decoded terms. For instance, the interrupt
request, DMA request and the cycle
extension WAIT line are contenders for a
large number of decoded and summed
inputs. Some are asserted low and some
high so polarity control is vital. Some require

a 3-State or open collector resistive pull-up,
so the PLA enable fits well. These are
situations where attention signals come into
the processor.

It is not always necessary for the CPU to
operate at full speed. Operating the CPU at
a slower speed brings about a more
economical and compact system. This is due
to higher costs associated with fast memory
and greater board area for wide memory
configurations.

Some software routines where slower
performance may be acceptable include
power up initialization, diagnostic routines, or
some exception routines. When speed is
critical, an 8-bit bus is the most economical
and compact because of readily available
byte wide PROMs and RAMs. The 68030 is
easily interfaced to 8-, 16- or 32-bit ports
because it dynamically interprets the port
size during each bus cycle. Figure 7 shows
an example of interfacing both a slow 200ns
8-bit EPROM and a fast 35ns 32-bit RAM to a
68030. A PLUS173-10 was chosen for its
high speed and large number of inputs and
outputs. The EPROM occupies memory
space 0–32K while the RAM occupies
addresses 64–128K. Note that because not
all of the upper memory address bits were
decoded, the memory arrays will also appear
at other addresses.

Figure 1.

8-BIT

COMPARE

74F521

A

B

SELECT

MODE
OUT

8

8

74F32

PROBLEM:
16-bit Data Compare / MUX

Mode 1: Compare two 8-bit fields

Mode 2: Select 1 of 16 bits

Must be fast!

SOLUTION 1:

16-BIT

MUX
74150

TO ONE

Philips Semiconductors Programmable Logic Products

Quick PLA

September 1993 6

Figure 2.

PAL 1

A[0..7]

B[0..7]

SELECT

8

8

SOLUTION 2: MAKE IT OUT OF PALs

PAL 2

PAL 3

MODE OUT

4 4

20L8-7.5

16L8-7.5

16L8-7.5

8

8
4

3 WASTED I/O PINS FOR FEEDBACK

2 WASTED I/O PINS

2 WASTED I/O PINS

3) 7.5 PALs
1) 20L8-7.5
2) 16L8-7.5

COMPARE FUNCTION:

tPD = 7.5 (1st PASS — #1)
= 7.5 (2nd PASS — #1)

= 7.5 (3rd PASS — #3)

= 22.5ns

MUX FUNCTION:

tPD = 7.5 (1st PASS — #2 or 3)
= 7.5 (2nd PASS — #2 or 3)

= 7.5 (3rd PASS — #3)

= 22.5ns

GATE EFFICIENCY:

30 PALs
40 GATES USED

152 GATES WASTED

RESULT:

NOT FAST ENOUGH; SLOWER THAN 74F
SOLUTION

Figure 3.

A[0..7]

B[0..7]

8

8

SOLUTION 3: MAKE IT OUT OF A PLUS173D

tPD = 10ns
1 PACKAGE

COMPARE FUNCTION:

16 PRODUCT TERMS

MUX FUNCTION:

16 PRODUCT TERMS

GATE EFFICIENCY:

1 PLA
32 GATES USED

NO GATES WASTED

RESULT:

THE BEST SOLUTION; ONE PACKAGE

S[0..3]

MODE

4

INVERTERS:

INCLUDED

ORS:

INCLUDED

PLUS173-10 OUT

Figure 4. Comparator/MUX
Pin Program

I0

I1

I2

I3

I4

I5

I6

I7

I8

GND

B9

B8

B7

B6

B5

B4

B3

B2

B1

VCC

N Package

A0

A1

A2

A3

A4

A5

A6

A7

B0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15B1

B2

S3

S2

S1

S0

MODE

B7

B6

B5

B4

OUT

B3

I9

I10 B0

I11

Figure 6. Cache Update Inhibit Using a PLA

CACHE
RAM

UPDATE

MISS

UPDATE INHIBIT

TO I/O DEVICES

TO MAIN MEMORY
CACHE/CONTROLLER

TAG
COMPARE

PLA

32-BIT
MICROPROCESSOR

ADDRESS BUS

HIT

DISK 1
1

2

3

32

DISK 2

LAN

PRINTER

UPDATE INHIBIT

ADDRESS 1

ADDRESS 2

ADDRESS 3

ADDRESS n

Philips Semiconductors Programmable Logic Products

Quick PLA

September 1993 7

Figure 5. SNAP Equation Listing

@PINLIST
a[0..7] i;
b[0..7] i;
s[0..3] i;
MODE i;

@GROUPS
sel = s[0..3];

@TRUTHTABLE
@LOGIC EQUATIONS

@INPUT VECTORS

@OUTPUT VECTORS
@STATE VECTORS
@TRANSITIONS

OUT o;

comp = a0 * b0 /mode
+ /a0 * b0 /mode
+ a1 * b1 /mode

+ /a1 * b1 /mode
+ a2 * b2 /mode
+ /a2 * b2 /mode
+ a3 * b3 /mode

+ /a3 * b3 /mode
= a4 * b4 /mode
+ /a4 * b4 /mode

+ a5 * b5 /mode
+ /a5 * b5 /mode
+ a6 * b6 /mode

+ /a6 * b6 /mode
+ a7 * b7 /mode
+ /a7 * b7 /mode;

mux = a0 * (sel == 0h) * mode
+ a1 * (sel == 1h) *

mode + a2 * (sel == 2h) * mode
+ a3 * (sel == 3h) * mode
+ a4 * (sel == 4h) * mode

+ a5 * (sel == 5h) * mode
+ a6 * (sel == 6h) * mode
+ a7 * (sel == 7h) * mode

= b0 * (sel == 8h) * mode
+ b1 * (sel == 9h) * mode
+ b2 * (sel == Ah) * mode
+ b3 * (sel == Bh) * mode

+ b4 * (sel == Ch) * mode
+ b5 * (sel == Dh) * mode
+ b6 * (sel == Eh) * mode

+ b7 * (sel == Fh) * mode;

out = mux + comp;

Philips Semiconductors Programmable Logic Products

Quick PLA

September 1993 8

Figure 7. Example Interfacing Mixed Memory T ypes

20MHz
CLOCK

GENERATION

CLK

Q0 D1 Q1

F174
D2
Q2

MR Q3 D3

MC68030

CLK

D0–D31

A0–A31

AS

SIZ0

SIZ1
RW

STERM
DSACK0

AS
A31

A30

A19

A18

A17

A16

A1

A0

SIZ0

SIZ1

RW

RMCS

DSTRT

UUCS

UMCS

LMCS

LLCS

EPCS

ACK0

ACK1

PLUS173-10

74F32

A0–A14

D31–D24 8
D

27C256
32KX8

EPROM

EN

74F244

32

32

A2–A15

D Q

W E

TWO
16Kx4

SRAMs

D Q

W E

TWO
16Kx4

SRAMs

D Q

W E

TWO
16Kx4

SRAMs

D Q

W E

TWO
16Kx4

SRAMs

+

EPROM SEL

DLYIN

Philips Semiconductors Programmable Logic Products

Quick PLA

September 1993 9

Figure 8. Equations for PLUS173 Shown in Figure 7

I0

I1

I2

I3

I4

I5

I6

I7

I8

GND

B9

B8

B7

B6

B5

B4

B3

B2

B1

VCC

N Package

DLYIN

NAS

A31

A30

A19

A18

A17

A16

A1

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15A0

SIZ0

NRMCS

DSTRT

NUUCS

NUMCS

NLMCS

NLLCS

NEPCS

NACK1

NACK0

RW

SIZ1

I9

I10 B0

I11

DECODER FOR INTERFACING SRAMa AND EPROMs TO AN MC68030. THIS DESIGN IS FOR A PLUS173 DEVICE

@PINLIST
dlyin i;
nas i;
a[31..30] i;
a[19..16] i;

@LOGIC EQUATIONS

a[1..0] i;

“EPROM enable”

siz0 i;
siz1 i;
rw i;
nrmcs o;
dstrt o;
nuucs o;
numcs o;
nlmcs o;
nllcs o;
nepcs o;
nack[1..0] o
;

nepcs = / (/a31 * /a30 * /a19 * / a18 * /a17 * / a16 * / nas;

“start shift register during EPROM access”
dstrt = / (/a31 * /a30 * /a19 * / a18 * /a17 * / a16 * / nas;

“DSACKO after 4 clock cycles for EPROM access”
nack0 = / (dlyin);

“immediate STERM upon RAM access”
nack1 = / (/a31 * /a30 * /a19 * /a18 * /a17 * /a16);

“Byte select signals for RAM writes”
nuucs = / (/a0 * /a1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31);

+ / a1 * /siz0 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31
nuucs = / (a0 * /a1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31

+ / a1 * /siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31);

+ / a1 * /siz0 * /siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31
nlmcs = / (/a0 * /a1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31

+ / a1 * siz0 * /siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31

+ / a1 * a0 * /siz0 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31);

+ a0 * siz0 * siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31
nllcs = / (a0 * a1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31

+ / siz0 * /siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31
+ / a1 * siz1 * /rw * a16 * /a17 * /18 * /a19 * /a30 * /a31);

nrmcs = / (/rw * a16 * /a17 * /18 * /a19 * /a30 * /a31);

	INTRODUCTION
	Example 1: Glue Collection
	Example 2: Cache Update Inhibit
	Example 3: Interfacing Mixed Memory Types

