Philips Semiconductors Programmable Logic Devices
___|

High speed 8-bit parallel to serial converter

Application Note

ANO045

INTRODUCTION

A common function in many systems is to
convert parallel data into a serial data stream.
A microcontroller may be programmed to shift
a byte in a register out to a port, but this is a
relatively slow procedure. A simple
pre-loadable shift register could perform the
basic conversion. However, for the function to
be complete, additional circuitry to perform
handshaking or control of the process is
required. The entire function can be made to
fit into a low cost Programmable Logic
Device (PLD), including control circuitry
tailored to meet specific application
requirements.

DESCRIPTION

Figure 1 shows the desired waveforms for a
typical implementation. First, a reset signal
initializes the system and this circuit. Next,
the parallel data to be serialized is applied to
the device, possibly from a parallel port of a
microcontroller, and a write strobe (WRS)
signal pulsed. The PLD then raises a flag
(BUSY) and puts the data, one bit at a time,
on an output (SDAT) under control of a clock
signal (CLK). Another output, (SCLK) is an
inverted copy of the transmitting clock,
ANDed with a control signal, so it only is
active when data is actually being sent. It can
be used by the receiving device to clock in
the serial data.

How does one get a PLD to perform such a

function? Preferably this design should fit into
a simple, low cost device such as a 22V10
type PLD. A 22V10 has ten outputs which
may be individually configured to be
registered or combinatorial. It is possible to
make a two input multiplexer circuit in front of
eight of the D-type flip-flops. It could then be
configured to shift data or load parallel data
upon a control signal and clock. However, to
provide the output control signal BUSY and
gate SCLK, a 3-hit counter will be required to
indicate when the last bit of data is shifted
out. That would bring the total registers in the
design up to eleven, one more than a 22V10
provides. Additionally, the write strobe (WRS)
is a short duration asynchronous signal, so
more circuitry is still required to synchronize it
with the transmitting clock (CLK).

Another method of serializing data is to use a
multiplexer (8 tol for this example) and a
counter. The counter controls which bit is to
be output from the multiplexer. A count of
zero connects input IDO to the output, a count
of one connects ID1, and so on. This will
work only if the parallel input data is held
stable throughout the serialization process.
For this example, the data is applied from
one port of a microcontroller and held stable
until after the BUSY signal transitions from
high-to-low, so a multiplexer will work for this
case. An 8-to-1 multiplexer will use only one
output, while the three-bit counter will use

three outputs of a 22V10, which leaves us
with six outputs for other functions. Let's use
this technique to implement this example.
Additional outputs are required for signals
BUSY, SCLK, and some currently unspecified
control signals.

A counter may be constructed very easily
using a SNAP syntax equation of:
“COUNT.D=COUNT#1H;". The “#” (pound)
symbol means addition, the “.D” signifies an
input to a D-type of flip-flop, and the “1H" is 1
hexadecimal. So the equation is simply
COUNT equals COUNT plus 1. The actual
equation in Figure 3 contains another term,
but more on that later. In addition to the D
inputs of the flip-flops, it is necessary to
describe the flip-flops clock and reset
connections. Those are listed in lines 57and
58 of Figure 3.

A multiplexer is also very easy to describe
using SNAP syntax Boolean equations. For
an 8-to-1 multiplexer with output SDAT and
inputs ID7-IDO it is:

SDAT = IDO * (COUNT==0H)
+ D1 * (COUNT==1H)
+ D2 * (COUNT==2H)
+ D3 * (COUNT==3H)
+ D4 * (COUNT==4H)
+ ID5 * (COUNT==5H)
+ ID6 * (COUNT==6H)
+ D7 * (COUNT==7H);

ID7..ID0 X

SCLK

SDAT

BUSY

ID7..1D0

WRS ————»»
CLK —— P

RESET ———®™

—— > SCLK
- SDAT

—— = BUSY

Figure 1. Desired Input and Output Waveforms

October 1993

Philips Semiconductors Programmable Logic Devices

Application Note

High speed 8-bit parallel to serial converter

ANO045

So far, we have a counter and multiplexer to
serialize the data. The process of
serialization begins with an asynchronous
pulse on the write strobe input (WRS). It is
therefore necessary to construct a latch to
capture the pulse and then use two registers
to synchronize the signal to the input clock.
Figure 2 shows the desired operation of two
intermediate signals Z and Z1. An extremely
simple latch can be made with the equation:
“Z = IWRS + Z". Once set with WRS low, it
could never be reset. An additional signal
named GATE, will be used as an extra term
in the latch to reset it. From the waveforms of
Figure 2, a table of the three signals may be
constructed.

WRS GATE V4 Z+

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

WRS,GATE
00 01 11 10

Z0 1 1 0

1 1 1 0 1

Z+ is the “next state” or what value output Z
should be, given the current inputs and the
current state of Z. From the table, a
Karnough map may be constructed (shown
above) and the equation
“Z=IWRS+Z*/GATE;" derived.

We have signal Z, which latches the input
strobe, but we need to synchronize it to the
input clock. That can be done with flip-flop Z1
and the following flip-flop, GATE, described
later. For Z1, the equation is simply:
“Z21.D=Z;" Z1 is clocked by the rising edge of
CLK. Z1's output will go high upon the rising
edge of CLK and Z high. It will go low upon a
rising edge of CLK and Z low.

According to the original waveforms of

Figure 1, a signal named BUSY is required to
occur after the falling edge of CLK following a
detected strobe (WRS). The internal D-type
flip-flops of a 22V10 can only be clocked on
the rising edge of the clock, so one of the
22V10's internal flip-flops cannot be used.
However a Boolean equation may be used to
describe this signal. The times and conditions
when this signal is to be high will be noted
from Figure 2 and a Boolean expression
generated. From Figure 2, at time T2, BUSY
should go high. Therefore, one term of the
equation for BUSY will be: “Z*Z1*/CLK".
When both Z and Z1 are high and CLK is low,
then BUSY will go high. This product term will
keep BUSY high until time T3.

At time T3, BUSY should remain high and
adding a product term of “BUSY*Z1” can
keep it high until time T5. This product term
actually becomes active long before time T3
arrives, so there will be no glitching of the
output. Adding yet another product term of
“BUSY*GATE” will keep BUSY high from just
after time T3, through time T5, until time T19.
Finally, one last product term of “BUSY*CLK”,
keeps it high until the falling edge of the

clock. The combined equation for BUSY is
shown in Figure 3 lines 38 through 41.

The last signal to be described is GATE. It is
used to control the gating of the inverted
clock output SCLK, and also control the
already described signals BUSY and Z.
GATE can use one of the flip-flops inside the
22V10, as it should only switch after the
rising edge of the input clock. It goes high
after the first rising edge of CLK after BUSY
goes high. Therefore, one of inputs to the
GATE flip-flop has to be BUSY. GATE should
go low after COUNT reaches seven, so the
equation can be “GATE.D = BUSY *
/(COUNT==7H);” The input to the GATE
flip-flop will be high when BUSY goes high
and COUNT is not equal to 7.

Signal GATE was also added to each of the
terms in the multiplexer equation and it was
added as a term in the counter equation. It
was added to the multiplexer so SDAT would
be low unless actual data was being sent . It
was added to the counter so the counter
would only count when GATE was high. This
design used nine of the ten possible 2210
outputs.The input RESET was added to
many of the equations to force a proper
initialization of the signals. From here it is just
a matter of typing the equations into SNAP,
running a simulation, and generating a
JEDEC file for downloading to a device
programmer. Figure 4 shows the SNAP
simulation results and Figure 5 shows the
associated simulation control language (SCL)
file.

CLK

WRS

BUSY

GATE

COUNT o

SCLK

SDAT

K DO X D1 X D2 X D3 X D4 X D5 X D6 X D7 X

Figure 2. Waveform Timing Relationships

October 1993

23

Philips Semiconductors Programmable Logic Devices

Application Note

High speed 8-bit parallel to serial converter

ANO045

23 |@ TRUTHTABLE I

1]
2" ”
3 |" High Speed 8-hit Parallel to Serial Converter ”
4"
5]
6 |@PINLIST
7 |CLK l; | \
8[ID[0..7] I _ |
9 |RESET I; "active low” CLK [1|CLK/IO
10 [WRS l; RESET [2|11
11 IDO [3]I2
12 |BUSY O; ID1[4]I3
13 |SCLK O; ID2 [5]14
14 |[SDAT O; ID3 [6]I5
15|C[0.2] O©O; D4 [7]i6
10 IGATE O_O, ID5 [8]17

. ID6 [9|18
18121 o ID7 [10]19
20 |@GROUPS WRS [11]110
21 [COUNT=[C2,C1,CO]; [1|2|GND
22

VCC|24]

1/09]23]
1/08|22] Z1
1/07|21] Z
1/06|20] SDAT
1/05[19] SCLK
1/04|18] GATE
1/03|17] C2
1/02|16] C1
1/01]15] CO

1/00|14] BUSY

111]13]

24 |@LOGIC EQUATIONS

25

26 | write strobe latch”

% Z = IWRS*reset+Z*/GATE*reset;

%g “first flip—flop to sychronize WRS to CLK”
g% Z1.D =27

33 |Z1.CLK = CLK;
34 |Z1.RST = reset;
35
36| "busy flag”
37
38 |BUSY = Z*Z1*/CLK*reset
39 + BUSY*Z1*reset

40 + BUSY*GATE*reset
41 + BUSY*CLK*reset;
42
43| "gate for control and 2nd synchronizing flip—flop”
44
45 |GATE.D = BUSY*/(COUNT==7H);
46 |GATE.CLK = CLK;

47 |GATE.RST = reset;

48
49
50 "output clock”
51
52 |SCLK = /CLK*GATE;
53
54 "3—bit up counter”
55
56 [COUNT.D = GATE==1* COUNT#1H; "count only when GATE is high”
57 |COUNT.CLK = CLK;

58 |COUNT.RST = reset;

59
60| "Multiplexer Equations”
61
62 |SDAT = IDO*(COUNT==0H)*GATE*reset "if GATE is low then output a low”
63 + ID1*(COUNT==1H)*GATE*reset

64 + ID2*(COUNT==2H)*GATE*reset

65 + ID3*(COUNT==3H)*GATE*reset

66 + ID4*(COUNT==4H)*GATE*reset

67 + ID5*(COUNT==5H)*GATE*reset

68 + ID6*(COUNT==6H)*GATE*reset

69 + ID7*(COUNT==7H)*GATE*reset;

70
71 |@INPUT VECTORS
72 |@OUTPUT VECTORS
73 |@STATE VECTORS
74 |@TRANSITIONS

75

Figure 3. SNAP Listing and Pin File

NOTE

: Line numbers are for reference only, they
are NOT part of the design file.

October 1993 24

Philips Semiconductors Programmable Logic Devices Application Note

High speed 8-bit parallel to serial converter ANO045
File: DELAY =0ns Marker = Ons Sec/Div = 200ns
SHIFT.RES
<Model> IS N Y e Y S N e Y S O N

CLK |IL
RESET|L | |-
WRS||H U
U
Busy||u|l | ———— L
GATE| U I—, I
scik |l ul |1 r-rr.rrrr—rr—rrr’—
U
SDAT| U] |C | | | |
—t - 4— —(7T— O
ceo | B> I R e e e e
U
Z [U]|L
]]]]]]
T T T T T T T T T T T T
200 600 1000 1400 1800 2200
Philips Semiconductors <C> 1993 MODE =1 F1:HELP, F10: EXIT
Figure 4. SNAP Simulation Waveforms
* QOutput of Waveform Version 1.90 *
* Date: 04/21/93 Time: 16:14:48 *
* Input File Name : SHIFT.SCL *
* Rule File Name : Scl Rule *
* Qutput File Name : SHIFT.SCL *
* *

P IDO, ID1, ID2, ID3, ID4, IDS, ID6, ID7, CLK, RESET, WRS, BUSY,
GATE, SCLK, SDAT, C[2..0], Z, Z1
PCO

S 0 (5890) IDO

S 1 (5890) ID1

S 0 (5890) ID2

S 0 (5890) ID3

S 1 (5890) ID4

S 0 (5890) ID5

S 1 (9200) ID6

S 0 (14290) ID7

S0 (100, 200, ETC) CLK

S 0 (80, 5600, 6000) RESET

S 1 (180, 240, 4000, 4200) WRS

SU time = 14290

F

Figure 5. SNAP Simulation SCL File

October 1993 25

	INTRODUCTION
	DESCRIPTION

