
Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

23October 1993

INTRODUCTION
This application note describes two PLD
designs made with the PLC42VA12. Both
designs are controller functions for an
I2C-bus n-bit I/O expander. The first design is
a controller function for a n-bit I2C-bus Input
Expansion (I2C-bus Slave Transmitter
function) and the second one for a n-bit
I2C-bus Output Expansion (I2C-bus Slave
Receiver function).

The I2C-bus is a 2-way, 2-line communication
between different ICs or modules. The two
lines are a serial data line (SDA) and a serial
clock line (SCL). The designs provide remote
input or output expansion for our Philips
micro controller families via the two-line serial
bidirectional I2C-Bus. The I2C-Bus slave
address of the designs is equal to the
address of the PCF8574 (remote 8-bit I/O
expander). The I2C-Bus has been specified
for 100kHz, but the PLC42VA12 designs can
go up to 1MHz. This makes the designs
suitable as test vehicle for the new fast
I2C-Bus standard of 400 kHz.

The PLC42VA12 is the most powerfull PLD
device in a DIL-package of Philips
Semiconductors. The designs use almost all
resources and most of the features of the
PLC42VA12 e.g. combination of synchronous
and asynchronous logic, 3-State outputs
used as open collector outputs and a
combination of output flip-flops and state
flip-flops.

The design has been verified on a
bread-board. This board contains the two
PLC42VA12 controller designs, four
74HC165 devices, four 74HC595 devices
and all the circuitry necessary to read 32
DIP-switches and to control 32 LED’s.

This application note gives first a general
description of the designs. Then it describes
the characteristics of the I2C-Bus and some
basic functions (tricks) used in both designs.
You will find a detailed description of the
designs and the I2C-Bus protocols of the
controller functions in the sections entitled,
I2C-Bus Slave Transmitter Function and
I2C-Bus Slave Receiver Function. The
appendix, gives all the used design files in
the SNAP syntax. SNAP is the Philips
Semiconductors PLD design software
package. You will find the equation entry files
EQN, the simulation control files SCL and the
pinning files PIN. The last sheet gives the
schematic diagram of the bread-board.

GENERAL DESCRIPTION OF THE
DESIGNS
The two designs described in this report are
both controller functions for an I2C-Bus n-bit
I/O-expander. The designs were made on a
customer request to have a solution for his
problem to address via the I2C-Bus more
than 200 bits of inputs and outputs. With the
existing I2C-Bus devices the maximum
number of input and/or output bits is 16 x 8 =
128 (8 x PCF8574 + 8 x PCF8574A). The
designs work fully according to the I2C-Bus
specification at 100kHz.

When an I2C-Bus master device (e.g. a micro
controller) has to read data from or write data
to the remote I/O-expander devices PCF8574
and PCF8574A, it first sends the I2C-Bus
slave address of the device and then reads
or writes only one byte. The two controller
functions, the Slave-Receiver and the Slave
Transmitter, don t have this problem. For
these designs, the master sends the slave
address only once, and then reads or writes
one or multiple data-bytes. The master
device, decides the number of bytes. The
slave addresses used for the designs are
identical to the slave addresses of the
PCF8574 and PCF8574A devices.

The I2C-bus has been specified for a 100
kHz clock (SCL). With the internal maximum
system clock of 8 MHz, the two PLC42VA12
designs can go upto an I2C-bus clock of
1MHz. This makes the design suitable as test
vehicle for the new fast I2C-bus standard of
400 kbits/s. The speed is the only additional
specification point of this new I2C-bus
specification that can be met. The other new
specification points as Schmitt-trigger inputs
and slope control of the falling edges of the
SDA and SCL signals can not be met.

The PLC42VA12 has been chosen, because
of its special hardware features. These
features are not available in other PLD
devices available in a 24-pin DIL package
e.g. the PL22V10. Some of the used features
are:

• Combination of synchronous and
asynchronous logic.

• Combination of D-type flip-flops with
JK-type flip-flops.

• Flip-flops used as state registers. The
M-pins used as inputs and/or outputs.

• 3-State buffers used as open collector
outputs. The 3-State control-input of an I/O
Output buffer is used as logic input. The
input of that buffer is connected to the
ground.

The intention was, to put both the Slave
Transmitter and the Slave Receiver controller
in one device. Unfortunately, the resources of
the PLC42VA12 are not sufficient to
implement both designs in one device. As a
combination of a Slave Transmitter and a
Slave Receiver with a high number of inputs
and outputs is seldom requested, this should
not be a problem.

The first PLC42VA12 design is an I2C-bus
Slave Transmitter controller. With one or
multiple 74HC165 devices, it forms an
I2C-bus n-bit Input Expander. At one side the
controller fully controls the I2C-Bus Slave
Transmitter function, and at the other side it
generates the control signals for the
74HC165. The 74HC165 devices can be
cascaded to increase the number of inputs.
Chapter. I2C-Bus Slave Transmitter Function
gives a detailed description of the design.

The second design is an I2C-bus Slave
Receiver controller. With one or multiple
74HC595 devices it forms an I2C-bus n-bit
Output Expander. At one side the controller
fully controls the I2C-Bus Slave Receiver
function, and at the other side it generates
the control signals for the 74HC595. The
74HC595 devices can be cascaded to
increase the number of outputs. The section
entitled I2C-Bus Slave Receiver Function
describes in detail the design.

For design verification purposes, a
bread-board has been made. This board
contains all the devices to build a Slave
Transmitter with 32 inputs and a Slave
Receiver with 32 outputs. The main devices
of the board are:

• A PLC42VA12 with the Slave Transmitter
controller function,

• 4 PC74HC165 devices,

• 4 octal DIP-switches,

• A PLC42VA12 containing the Slave
Receiver controller function,

• 4 PC72HC595 devices,

• 32 LED’s.

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 24

CHARACTERISTICS OF THE
I2C-BUS
The I2C-bus is a 2-way, 2-line communication
between different ICs or modules. The two
lines are a serial data line (SDA) and a serial
clock line (SCL). Both lines must be
connected to a positive supply via a pull-up
resistor when connected to the output stages
of a device. Data transfer may be initiated
only when the bus is not busy.

Bit Transfer
One data bit is transferred during each clock
pulse. The data on the SDA line must remain
stable during the HIGH period of the clock

pulse as changes in the data line at this time
will be interpreted as control signals
(Figure 1, Bit Transfer). The maximum clock
frequency is 100 kHz.

Start and Stop Conditions
Both data and clock lines remain HIGH when
the bus is not busy. A HIGH-to-LOW
transition of the data line, while the clock is
HIGH is defined as the start condition (S). A
LOW-to-HIGH transition of the data line while
the clock is HIGH is defined as the stop
condition (P). Figure 2, Definition of Start and
Stop Conditions, gives the timing diagram.

System Configuration
A device generating a message is a
transmitter, a device receiving a message is
the receiver. The device that controls the
message is the master and the devices which
are controlled by the master are slaves.
Figure 3, System Configuration, gives a block
diagram of the system configuration.

Figure 1. Bit Transfer

SDA

SCL

Data Line
Stable:

Data Valid

Change
of Data
Allowed

Figure 2. Definition of Start and Stop Conditions

SDA

SCL

Start Condition Stop Condition

S P

SDA

SCL

MASTER
TRANSMITTER

RECEIVER

SLAVE
RECEIVER

SLAVE
TRANSMITTER

RECEIVER

SLAVE
TRANSMITTER

MASTER
TRANSMITTER

RECEIVER

Figure 3. System Configuration

SDA

SCL

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 25

Acknowledge
The number of data bytes transferred
between the start and the stop conditions
from transmitter to receiver is not limited.
Each byte of eight bits is followed by one
acknowledge bit. The acknowledge bit is a
HIGH level put on the bus by the transmitter
whereas the master generates an extra
acknowledge related clock pulse. A slave
receiver which is addressed must generate
an acknowledge after the reception of each
byte. Also a master must generate an
acknowledge after the reception of each byte
that has been clocked out of the slave
transmitter. The device that acknowledges
has to pull down the SDA line during the

acknowledge clock pulse, so that the SDA
line is stable LOW during the HIGH period of
the acknowledge related clock pulse. Setup
and hold times must be taken into account. A
master receiver must signal an end of data to
the transmitter by not generating an
acknowledge on the last byte that has been
clocked out of the slave. In this event the
transmitter must leave the data line HIGH to
enable the master to generate a stop
condition (see Figure 4, Acknowledgement
on the I2C-bus).

Formats
Data transfers follow the format shown in
Figure 5 Data formats of the I2C-bus. After

the START condition, the master sends the
slave address. This address is 7 bits long,
the eighth bit is a data direction bit (R/WN). A
zero indicates a transmission (WRITE) and a
one indicates a request for data (READ). A
master always terminates a data transfer by
a STOP condition. However, if a master still
wishes to communicate on the bus, it can
generate an other START condition and
address an other slave without first
generating a STOP condition. Various
combinations of read and write formats are
then possible within such a transfer.

clock pulse for
acknowledgement

start condition

SCL FROM
MASTER

DATA OUTPUT
BY TRANSMITTER

DATA OUTPUT
BY RECEIVER

S

Figure 4. Acknowledgement on the I 2C-Bus

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 26

Possible data transfer formats are:

a. Master transmitter to slave receiver. Direction is not changed.

S SLAVE ADDRESS R/WN A DATA 1 DATA nA A P

‘0’ (write)

data transferred
(n bytes + acknowledge)

b. Master reads slave immediately after first byte.

‘1’ (read)

S SLAVE ADDRESS R/WN A DATA 1 DATA nA A P

data transferred
(n bytes + acknowledge)

A = acknowledge
S = start
P = stop

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver
becomes a slave transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

read or write

S SLAVE ADDRESS R/WN A DATA A

(n bytes
+ ack.)

During a change of direction within a transfer, the START condition and the slave address are both repeated, but the R/W
bit reversed. Start, stop, slave addresses and R/W bits are generated by the master.

Figure 5. Data formats of the I 2C-Bus

SLAVE ADDRESSS R/WN A DATA A P

read or write

(n bytes
+ ack.)

direction of transfer may
change at this point.

COMMON BASIC FUNCTIONS
This section gives a number of common
basic functions used in the designs. The
report gives for each function the basic
diagram, the SNAP description and the timing
diagram if applicable. The following basic
circuits are described:

• Oscillator

• SCL Edge detection

• Start/Stop detection

Oscillator
The design has two clock options, the internal
oscillator and an external clock. For both
options, the clock input CLK is used. A HIGH
CLKEN input selects the internal oscillator

and a LOW input the external clock. Without
capacitor, we get the maximum frequency of
the internal clock of 8 MHz. This frequency
can be lowered by using a small capacitor C.
Figure 6 Oscillator shows the diagram and
the EQN file description of the oscillator.

SCL Edge Detection
The frequency of the system clock is much
higher than the I2C-bus clock (SCL). This
means, that most of the time the state
machine is waiting for the edges of the SCL
clock. This section describes the circuit that
detects the HIGH and the LOW going edge of
the SCL clock. The state machines
synchronizes on the output pulses SCLH and
SCLL.The detection network uses only two
flip flops and two AND gates. Figure 7 SCL

Timing Diagram SCL Edge Detection. gives
the timing diagram of the edge detector and
Figure 8 SCL Edge Detection. the diagram
and the description of the EQN file.

Start/Stop Detection
A HIGH-to-LOW transition of the data line,
while the clock is HIGH has been defined as
the start condition (S) of the I2C-bus. A
LOW-to-HIGH transition of the data line while
the clock is HIGH has been defined as the
stop condition (P). The easiest way to detect
this start and stop condition is using
asynchronous logic. The PLC42VA12 is very
suited for this kind of solutions. Figure 2,
Definition of Start and Stop Conditions, gives
the timing diagram of these conditions.

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 27

VCC

15k

RC

C

GND

GND

CLKEN

CLK

@PINLIST
RC B;
CLK B;
CLKEN I;

@LOGIC EQUATIONS
CLK.OW =CLKEN
RC.OE =CLK*CLKEN;
RC =GND;
CLK =RC;

Figure 6. Oscillator

CLK

SCL

SCLH

SCLL

Figure 7. SCL Timing Diagram SCL Edge Detection

D
SCLFF2

RST

D
SCLFF1

RST

SCLH

SCLL

@PINLIST
SCL I;
CLK B;
RESET I;

@LOGIC EQUATIONS
SCLFF1.D =SCL;
SCLFF1.RST =RESET;
SCLFF2.D =SCLFF1;
SCLFF2.RST =RESET;
SCLH =SCLFF1*/SCLFF2;
SCLL =/SCLFF1*SCLFF2;

SCL

CLK

RESET

Figure 8. SCL Edge Detection

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 28

D
STARTFF

RST

SCL

D
STOPFF

RST

STARTFF

STOPFF

SDA

RESET

@PINLIST
SCL I;
SDA B;
RESET I;

@LOGIC EQUATIONS
STARTFF.CLK =/SDA;
STARTFF.D =SCL;
STARTFF.RST =RESET;
STOPFF.CLK =SDA;
STOPFF.D =SCL;
STOPFF.RES =RESET;

Figure 9. Start/Stop Detection

I2C-BUS SLAVE TRANSMITTER
FUNCTION
The Slave Transmitter design provides
remote input expansion for our Philips
microcontroller families via the two-line serial
bidirectional I2C-Bus. The I2C-Bus slave
address is equal to the address of the
PCF8574 (remote 8-bit I/O expander). The
design will only acknowledge the read-mode.

The design handles the full slave read mode
of the I2C-Bus and will generate the control
signals for the 74HC165, an 8-bit parallel-in /
serial-out shiftregister. This device is used to
read the parallel input data and convert this
into serial data. This data is written to the
I2C-Bus. The total number of 74HC165
devices is almost unlimited.

With the three address selection inputs, the
slave transmitter can be combined with
multiple PCF8574 devices.

The design has a build-in clock oscillator. The
section entitled Oscillator describes this
circuit. If an external clock is required, the
internal oscillator can be inhibited with the
CLKEN-input.

Figure 17, Slave Transmitter EQN File,
Figure 18, Slave Transmitter SCL File, and
Figure 19, Slave Transmitter PIN File, give
the design files. The sections SDA Control
Slave Transmitter, I2C-Bus protocol Slave
Transmitter and Interface with 74HC165 give
a detailed description of parts of the design.

SDA Control Slave Transmitter
The SDA data line of the I2C-bus is a
bidirectional line with a passive pull-up. This
asks for a bidirectional open collector I/O line.
As the PLC42VA12 has only 3-State I/Os, we
need one of the advantages of the
PLC42VA12 to get an open collector output.

IN a PLC42VA12 each OE-input can be used
as a logic input. With a LOW level (ground) at
the input, the output has a LOW level when
OE is true and is floating when OE is false.
These are the characteristics of an open
collector output.

Only one AND-gate controls the OE input of
a bidirectional I/O. The design asks for
multi-level logic. Figure 10 SDA Control Slave
Transmitter shows how this input can be
controlled by multi-level logic. The inputs
ACKNOW, DATIN and SDAIN are auxiliary
outputs of the PLC42VA12, used as inputs of
the SDA control.

I2C-Bus protocol Slave
Transmitter
The section entitled Formats describes the
general data formats of the I2C-Bus protocol.
Figure 11 I2C-Bus Protocol Slave Transmitter
gives the protocol for this design. After a start
condition, the master sends the slave
address of the device. This 7 bits address
consists of a fixed part and a programmable
part. The first four bits are fixed (0100) and
the three least significant bits are
programmable. Three hardware address pins
determine the final slave address. Up to 8
devices (or PCF8574) may be addressed by
the master. After the slave address and a
HIGH R/WN bit, the slave generates an
acknowledge. At the next LOW SCL, the
slave may start sending the first data byte.
This byte will be acknowledged by the
master. Also the next bytes will be
acknowledged by the master. As after the
acknowledge pulse the slave controls the
SDA-line, the master can not generate a stop
condition. The only way for a master to
terminate a transmission, is not to
acknowledge the last byte n. Then, the slave

transmitter will release the SDA-line and the
master can generate a stop condition.

Interface with 74HC165
The 74HC/HCT165 is an 8-bit parallel load or
serial-in shift register with complementary
serial outputs (Q7 and Q7N) available from
the last stage. When the parallel load (PLN)
input is LOW, parallel data from the D0 to D7
inputs are loaded into the register
asynchronously. When PLN is HIGH, data
enters the register serially at the DS input
and shifts one place to the right with each
positive-going clock transition. This feature
allows parallel-to-serial converter expansion
by tying the Q7 output to the DS input of the
succeeding stage.

The CLOUT output of the PLC42VA12
controls the clock of the 74HC165 and the
PLOADN output controls the PLN input. The
Q7 output of the 74HC165 is the data input
DATIN of the PLC42VA12.

With this setup, the most significant bit of the
data is the first bit that will be sent from the
slave to the master. Figure 11 I2C-Bus
Protocol Slave Transmitter gives the timing
diagram of this interface.

When the slave address and the read bit
have been detected, the controller generates
the parallel load pulse PLOADN. After
sending the firs bit (most significant bit of the
transmission) it generates the first shift pulse
CLOCKOUT. At the end of the first byte, the
master generates an acknowledge. The
second byte starts with a shift pulse
CLOCKOUT. At each next LOW SCL level,
this pulse is repeated. If at the end of the byte
the master sends an acknowledge, then the
next byte will be sent. A not acknowledge
stops the procedure.

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 29

ACKNOW

DATIN

SDAEN

SDAOE

SDA

GND

@PINLIST
SDA B;
ACKNOW I;
DATIN I;
SDAEN O;
SDAOE O;

@LOGIC EQUATIONS
SDA =GND;
SDA.OE =SDAOE;
SDAOE =ACKNOW+

(/DATIN*SDAEN)

Figure 10. SDA Control Slave Transmitter

S 0 1 0 0 A2 A1 A0 1 A ADATA 1 DATA n 1 P

Start condition ‘1’ Read Acknowledge from slave Acknowledge from master

Not acknowledge from master
end of transmission.

Stop condition

Address from master Data from slave Data from slave

Figure 11. I 2C-bus Protocol Slave Transmitter

SCL

SDA

DATIN

PLOADN

Figure 12. Interface with 74HC165

CLOCKOUT

S 0 1 0 0 0 0 1 1 A 1 1 1 1 1 1 1 1 A 1 1 0 0 1 1 0 0 NA

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 30

I2C-BUS SLAVE RECEIVER
FUNCTION
The slave receiver design provides remote
output expansion for our Philips micro
controller families via the two-line serial
bidirectional I2C-bus. The I2C-bus slave
address is equal to the address of the
PCF8574 (remote 8-bit I/O expander). The
design will only acknowledge the write-mode.

The design handles the full slave write mode
of the I2C-Bus and will generate the control
signals for the 74HC595, an 8-bit serial-in /
parallel-out shiftregister. This device is used
to write the serial from the I2C-bus input to,
and convert this into parallel data. The total
number of 74HC595 devices is almost
unlimited.

With the three address selection inputs, the
slave receiver can be combined with multiple
PCF8574 devices.

The design has a build-in clock oscillator. The
section entitled Oscillator describes this
circuit. If an external clock is required, the
internal clock can be inhibited with the

CLKEN-input. Figure 20, Slave Receiver
EQN File, Figure 21, Slave Receiver SCL
File, and Figure 22, Slave Receiver PIN File
give the design files. The sections SDA
Control Slave Receiver, Set-Reset Flip-Flop,
I2C-Bus protocol Slave Receiver and
Interface with 74HC595 give a detailed
description of parts of the design.

SDA Control Slave Receiver
In the Slave Receiver protocol of the I2C-Bus,
mainly the master controls the SDA-line. The
Slave Receiver uses the SDA-line only for
generating an acknowledge pulse. This is
done after receiving its slave address with a
write condition and all the following data
bytes. Figure 13, SDA Control Slave
Receiver gives the diagram and the
description of the EQN-file.

Set-Reset Flip-Flop
The PLC42VA12 has 10 internal flip-flops. As
the design needs an additional D-latch, this
one has to be built out of gates. Figure 14,
Set-Reset Flip-Flop Slave Receiver, gives the
diagram and the equation file description of

this function. In this example the signal STO7
is defined as an input, but in the final design
this is a auxiliary output of the device.

I2C-Bus protocol Slave Receiver
The section entitled Formats describes the
general format of the I2C-Bus protocol.
Figure 14, Set-Reset Flip-Flop Slave
Receiver, gives the protocol for this design.
After a start condition, the master sends the
slave address of the device. This 7 bits
address consists of a fixed part and a
programmable part. The first four bits are
fixed (0100) and the three least significant
bits are programmable. Three hardware
address pins determine the final slave
address. Up to 8 devices (or PCF8574) may
be addressed by the master. After the slave
address and a LOW R/WN bit, the slave
generates an acknowledge. At the next LOW
SCL, the master starts sending the first data
byte. This byte will be acknowledged by the
slave. Also the next bytes will be
acknowledged by the slave. The master
terminates a transmission, by sending a stop
condition or a restart condition.

SDA

ACKNOW

GND

@PINLIST
SDA B;
ACKNOW I;

@LOGIC EQUATIONS
SDA =GND;
SDA.OE =ACKNOW

Figure 13. SDA Control Slave Receiver

Figure 14. Set-Reset Flip-Flop Slave Receiver

SDA

STO7 DATA7
@PINLIST
SDA B;
ST07 I;
DATA7 O;

@LOGIC EQUATIONS
DATA7 = ((STO7*SDA)+

(DATA7*/ST07))

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 31

Interface with 74HC595
The 74HC/HCT595 is an 8-stage serial shift
register with a storage register and 3-State
outputs. The shift register and storage
register have separate clocks.

Data is shifted on the positive-going
transitions of the SHCP input. The data in
each register transfers to the storage register
on a positive going transition of the STCP
input. The shift register has a serial input
(DS) and a serial standard output (Q7) for
cascading. All 8 shift registers have an
asynchronous reset (active LOW). The
storage register has 8 parallel 3-State bus
driver outputs. Data in the storage registers
at the output whenever the output enable
input (OEN) is LOW.

Four outputs of the PLC42VA12 control the
inputs of the 74HC595. The RESOUT output
the MRN input, CLKSTO the STCP input,
CLKSHFT the SHCP and the DATOUT the
DS input.

The I2C-Bus sends first the most significant
bit of the transmission. Figure 16 I2C-Bus

Interface with 74HC595 gives the timing
diagram of this interface.

To set all outputs of the 74HC595 to a
defined level, after power-on, the controller
generates first a reset pulse at the RESOUT
output and then a clock pulse CLKSTO for
the storage register.

After a the slave address and the write bit
(LOW) have been detected, during the next
HIGH period of the SCL line there are three
options. At the SDA line there can be the
most significant bit of new data, the master
generates a restart condition or the master
generates a stop condition. This is also the
case after each acknowledge.

This implies, that this first data bit must be
stored. At the next LOW period of the SCL
line we know whether we had data or
restart/stop condition. If it was data, then we
have to put this data at the DATOUT output
and generate a clock pulse at the CLKSHFT
output. At the next 7 HIGH periods of the

SCL-line, data is valid and the controller
generates a clock at the CLKSHFT output. At
the end of the transmission, the master
generates a stop condition or a restart. Then
the stored data will be transferred to the
storage register by a clock pulse at the
CLKSTO output.

BREAD-BOARD I 2C-BUS I/O
EXPANDER
For design verification purposes, a
bread-board has been designed. The board
contains all the devices to build an I2C-Bus
Slave Transmitter with 32 inputs and an
I2C-Bus Slave Receiver with 32 outputs. The
inputs can be set HIGH or LOW by 4 octal
DIP-switches. The outputs are examined by
32 LED’s. Figure 23, Schematic Diagram
Bread-Board, gives the complete diagram of
the bread-board.

The board has been designed for design
verification only.

S 0 1 0 0 A2 A1 A0 0 A ADATA 1 DATA n A P

Start condition ‘0’ write Acknowledge from slave Acknowledge from slave

Not acknowledge from slave

end of transmission
Stop condition

Address from master Data from master Data from master

Figure 15. I 2C-bus Protocol Slave Receiver

SCL

SDA

DATOUT

CLKSHFT

Figure 16. Interface with 74HC595

CLKSTO

S 0 1 0 0 0 0 1 0 A 1 1 1 1 1 1 1 1 A 0 1 1 1 0 0 0 1 A P

RESOUT

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 32

”

* *
* Equation Entry File *
* *
* Project : IIC *
* Function : IIC–bus Slave Transmitter *
* *
* File Name : IICTRANS.EQN *
* Design file : IICTRANS.SCL *
* Pin File : IICTRANS.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorj *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

”
@PINLIST
CLK B; ”System clock”
RC B; ”RC input internal clock”
CLKEN I; ”Clock selection input”
SCL I; ”IIC–BUS clock”
SDA B; ”IIC–BUS data”
RESET I; ”System reset”
ADD0 I; ”Address selection line”
ADD1 I; ”Address selection line”
ADD2 I; ”Address selection line”
DATIN I; ”Data from input shift–register”
CLOCKOUT O; ”Clock to input shift–register”
PLOADN O; ”Parallel load to input shift–register”
SDAOE O; ”Enable line SDA I/O”
SDAEN O; ”Enable condition SDA caused by data”
ACKNOW O; ”Acknowledge data”
STATEST O; ”Reset start and stop FF”

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS
CLK.OE = CLKEN ;
RC.OE = CLK*CLKEN;
RC = GND ;
CLK = RC ;
STARTFF.CLK = /SDA ;
STARTFF.D = SCL ;
STARTFF.RST = STATEST ;
SCLFF1.D = SCL ;
SCLFF1.RST = RESET ;
SCLFF2.D = SCLFF1 ;
SCLFF2.RST = RESET ;
SCLH = SCLFF1*/SCLFF2 ;
SCLL = /SCLFF1*SCLFF2 ;
Q0.RST = RESET ;
Q1.RST = RESET ;
Q2.RST = RESET ;
Q3.RST = RESET ;
Q4.RST = RESET ;
Q5.RST = RESET ;
SDA = GND ;
SDA.OE = SDAOE ;
PLOADN = /PLOAD ;
SDAOE = ACKNOW + (/DATIN*SDAEN) ;

Figure 17. Equation Entry File Slave Transmitter (1 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 33

@INPUT VECTORS

@OUTPUT VECTORS
 [ACKNOW, CLOCKOUT, PLOAD, SDAEN]
ACK = 1 – – – B;
CLKOUT = – 1 – 1 B;
SDAENA = – – – 1 B;
PLOUT = – – 1 1 B;

@STATE VECTORS
 [Q5, Q4, Q3, Q2, Q1, Q0] JKFFR
INITL = 00 H;
INIT = 3F H;
WAIT = 3E H;
WAIT1 = 3D H;
ADDBIT6 = 01 H;
ADDBIT5 = 02 H;
ADDBIT4 = 03 H;
ADDBIT3 = 04 H;
ADDBIT2 = 05 H;
ADDBIT1 = 06 H;
ADDBIT0 = 07 H;
RWBIT = 08 H;
READMOD = 09 H;
ACKBITR = 0A H;
READ7L = 0B H;
READ7C = 10 H;
READ7 = 11 H;
READ6C = 12 H;
READ6 = 13 H;
READ5C = 14 H;
READ5 = 15 H;
READ4C = 16 H;
READ4 = 17 H;
READ3C = 18 H;
READ3 = 19 H;
READ2C = 1A H;
READ2 = 1B H;
READ1C = 1C H;
READ1 = 1D H;
READ0C = 1E H;
READ0 = 1F H;
ACKPLS = 20 H;
ACKPLSW = 21 H;

@TRANSITIONS
WHILE [INITL]
 IF [] THEN [INIT]
WHILE [INIT]
 IF [] THEN [WAIT]
WHILE [WAIT] WITH [STATEST]
 IF [STARTFF] THEN [WAIT1]
WHILE [WAIT1] WITH [STATEST]
 IF [] THEN [ADDBIT6]
WHILE [ADDBIT6]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT5]
WHILE [ADDBIT5]
 IF [SCLH*/SDA] THEN [WAIT]
 IF [SCLH*SDA] THEN [ADDBIT4]
WHILE [ADDBIT4]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT3]
WHILE [ADDBIT3]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT2]
WHILE [ADDBIT2]
 IF [SCLH*/((SDA*ADD2)+(/SDA*/ADD2))] THEN [WAIT]
 IF [SCLH*((SDA*ADD2)+(/SDA*/ADD2))] THEN [ADDBIT1]

Figure 17. Equation Entry File Slave Transmitter (2 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 34

WHILE [ADDBIT1]
 IF [SCLH*/((SDA*ADD1)+(/SDA*/ADD1))] THEN [WAIT]
 IF [SCLH*((SDA*ADD1)+(/SDA*/ADD1))] THEN [ADDBIT0]
WHILE [ADDBIT0]
 IF [SCLH*/((SDA*ADD0)+(/SDA*/ADD0))] THEN [WAIT]
 IF [SCLH*((SDA*ADD0)+(/SDA*/ADD0))] THEN [RWBIT]
WHILE [RWBIT]
 IF [SCLH*SDA] THEN [READMOD]
 IF [SCLH*/SDA] THEN [WAIT]
WHILE [READMOD]
 IF [SCLL] THEN [ACKBITR]
WHILE [ACKBITR] WITH [ACK]
 IF [SCLL] THEN [READ7L]
WHILE [READ7L] WITH [PLOUT]
 IF [] THEN [READ7]
WHILE [READ7C] WITH [CLKOUT]
 IF [] THEN [READ7]
WHILE [READ7] WITH [SDAENA]
 IF [SCLL] THEN [READ6C]
WHILE [READ6C] WITH [CLKOUT]
 IF [] THEN [READ6]
WHILE [READ6] WITH [SDAENA]
 IF [SCLL] THEN [READ5C]
WHILE [READ5C] WITH [CLKOUT]
 IF [] THEN [READ5]
WHILE [READ5] WITH [SDAENA]
 IF [SCLL] THEN [READ4C]
WHILE [READ4C] WITH [CLKOUT]
 IF [] THEN [READ4]
WHILE [READ4] WITH [SDAENA]
 IF [SCLL] THEN [READ3C]
WHILE [READ3C] WITH [CLKOUT]
 IF [] THEN [READ3]
WHILE [READ3] WITH [SDAENA]
 IF [SCLL] THEN [READ2C]
WHILE [READ2C] WITH [CLKOUT]
 IF [] THEN [READ2]
WHILE [READ2] WITH [SDAENA]
 IF [SCLL] THEN [READ1C]
WHILE [READ1C] WITH [CLKOUT]
 IF [] THEN [READ1]
WHILE [READ1] WITH [SDAENA]
 IF [SCLL] THEN [READ0C]
WHILE [READ0C] WITH [CLKOUT]
 IF [] THEN [READ0]
WHILE [READ0] WITH [SDAENA]
 IF [SCLL] THEN [ACKPLS]
WHILE [ACKPLS]
 IF [SCLH*/SDA] THEN [ACKPLSW]
 IF [SCLH*SDA] THEN [WAIT]
WHILE [ACKPLSW]
 IF [SCLL] THEN [READ7C]

Figure 17. Equation entry file slave transmitter (3 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 35

* *
* Simulation Control Language File *
* *
* Project : IIC *
* Function : IIC–bus Slave Transmitter *
* *
* File Name : IICTRANS.SCL *
* Design file : IICTRANS.EQN *
* Pin File : IICTRANS.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorj *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

*
 P CLK, RESET, SCL, SDA, DATIN, SDAEN, CLOCKOUT, PLOADN, ACKNOW,
STARTFF, STATEST, Q0, Q1, Q2, Q3, Q4,
RC, CLKEN, ADD0, ADD1, ADD2, VCC
* SCLH, SCLL,
 PCO
*** Initialisation ***
 BUSI SDA
 BUSI CLK
 BUSO RC
 S 0 (50, 100, ETC)CLK
 S 0 (75)RESET
 S 0 (500, 1000, ETC)SCL
 ST 1 (DATIN)
 ST 1 (VCC)
 ST 1 (SDA)
 ST 0 (CLKEN)
 ST 001 (ADD2, ADD1, ADD0)
 SU TIME = 1225

*** Generate start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** receive device address with read (01000011). ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+4000
 ST 1 (SDA)
 SU TIME = *+2000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

*** Transmit 8 bits data word 11111111 ***
 ST 1 (DATIN)
 SU TIME = *+8000

*** Generate acknowledge from master ***
 BUSI SDA
 ST 0 (SDA)
 SU TIME = *+1000

Figure 18. .SCL File Slave Transmitter (1 of 2)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 36

*** Transmit 8 bits data word 11001100 ***
 BUSO SDA
 ST 1 (DATIN)
 SU TIME = *+2000
 ST 0 (DATIN)
 SU TIME = *+2000
 ST 1 (DATIN)
 SU TIME = *+2000
 ST 0 (DATIN)
 SU TIME = *+2000

*** Generate no acknowledge from master (end of transmition) ***
 BUSI SDA
 ST 1 (SDA)
 SU TIME = *+1000

*** Wait for new start condition ***
 SU TIME = *+3000

*** Generate new start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** receive device address with write (01000010). ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+4000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+1000

*** Wait for new start condition ***
 SU TIME = *+3000

*** Generate new start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** Receive wrong device address (0110000). ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+2000
 ST 0 (SDA)
 SU TIME = *+6000

*** Test internal clock ***
 BUSO CLK, RC
 ST 1 (CLK)
 ST 1 (CLKEN)
 SU TIME = *+ 1000
 F

Figure 18. .SCL File Slave Transmitter (2 of 2)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 37

* *
* Pinning File *
* *
* Project : IIC *
* Function : IIC–bus Slave Transmitter *
* *
* File Name : IICTRANS.EQN *
* Design file : IICTRANS.SCL *
* Pin File : IICTRANS.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorje *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

”

Device =C42VA12
Pin2 =RESET
Pin3 =ADD0
Pin4 =ADD1
Pin5 =ADD2
Pin8 =CLKEN
Pin9 =SCL
Pin10 =SDA
Pin11 =CLOCKOUT
Pin14 =CLK
Pin15 =RC
Pin18 =DATIN
Pin19 =ACKNOW
Pin20 =SDAOE
Pin21 =SDAEN
Pin22 =STATEST
Pin23 =PLOADN

Figure 19. .PIN File Slave Transmitter

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 38

”

* *
* Equation Entry File *
* *
* Project : IIC *
* Function : IIC–bus Slave Receiver *
* *
* File Name : IICRECEI.EQN *
* Design file : IICRECEI.SCL *
* Pin File : IICRECEI.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorj *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

”
@PINLIST
CLK B; ”System clock”
RC B; ”RC input internal clock”
CLKEN I; ”Clock selection input”
SCL I; ”IIC–BUS clock”
SDA B; ”IIC–BUS data”
RESET I; ”System reset”
ADD0 I; ”Address selection line”
ADD1 I; ”Address selection line”
ADD2 I; ”Address selection line”
CLKSHFT O; ”Clock to output shift–register”
CLKSTO O; ”Parallel load into output register”
DATOUT O; ”Data to output shift register”
DATA7 O; ”Output data RSFF bit7”
STO7 O; ”Store pulse DATA7 FF”
OUT7 O; ”Enable DATA7 FF data”
RESOUT O; ”Reset output shift register”
ACKNOW O; ”Acknowledge data”
STATEST O; ”Reset start and stop FF”

@GROUPS
@TRUTHTABLE
@LOGIC EQUATIONS
CLK.OE = CLKEN ;
RC.OE = CLK*CLKEN;
RC = GND ;
CLK = RC ;
STARTFF.CLK = /SDA ;
STARTFF.D = SCL ;
STARTFF.RST = STATEST ;
STOPFF.CLK = SDA ;
STOPFF.D = SCL ;
STOPFF.RST = STATEST ;
SCLFF1.D = SCL ;
SCLFF1.RST = RESET ;
SCLFF2.D = SCLFF1 ;
SCLFF2.RST = RESET ;
SCLH = SCLFF1*/SCLFF2 ;
SCLL = /SCLFF1*SCLFF2 ;
DATA7 = ((STO7*SDA)+DATA7*/STO7) ;
Q0.RST = RESET ;
Q1.RST = RESET ;
Q2.RST = RESET ;
Q3.RST = RESET ;
Q4.RST = RESET ;
Q5.RST = RESET ;

SDA = GND ;
SDA.OE = ACKNOW ;
DATOUT = (SDA*/OUT7) + (DATA7*OUT7) ;
RESOUT = /RESOUTN ;

Figure 20. Equation Entry File Slave Receiver (1 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 39

@INPUT VECTORS

@OUTPUT VECTORS
 [CLKSHFT, CLKSTO, RESOUTN, STATEST, STO7, OUT7]
CLKSHIFT = 1 – – – – – B;
CLKSTOR = – 1 – 1 – – B;
RESO = – – 1 – 1 – B;
STATST = – – – 1 – – B;
STASTO7 = – – – 1 1 – B;
OUTBIT7 = – – – – – 1 B;
OUTCLK7 = 1 – – – – 1 B;

@STATE VECTORS
 [Q5, Q4, Q3, Q2, Q1, Q0] JKFFR
INITL = 00 H;
INIT = 3F H;
INIT1 = 3E H;
INIT2 = 3D H;
WAIT = 3C H;
WAIT1 = 3B H;
ADDBIT6 = 01 H;
ADDBIT5 = 02 H;
ADDBIT4 = 03 H;
ADDBIT3 = 04 H;
ADDBIT2 = 05 H;
ADDBIT1 = 06 H;
ADDBIT0 = 07 H;
RWBIT = 08 H;
WRIDMOD = 09 H;
ACKBITTR = 0A H;
TESTSTA = 0B H;
TESTSTA1 = 0C H;
TESTSTA2 = 0D H;
OUTB7 = 0E H;
CLKB7 = 0F H;
WRID6 = 10 H;
WRID6C = 11 H;
WRID5 = 12 H;
WRID5C = 13 H;
WRID4 = 14 H;
WRID4C = 15 H;
WRID3 = 16 H;
WRID3C = 17 H;
WRID2 = 18 H;
WRID2C = 19 H;
WRID1 = 1A H;
WRID1C = 1B H;
WRID0 = 1C H;
WRID0C = 1D H;

@TRANSITIONS
WHILE [INITL]
 IF [] THEN [INIT]
WHILE [INIT]
 IF [] THEN [INIT1]
WHILE [INIT1] WITH [RESO]
 IF [] THEN [INIT2]
WHILE [INIT2] WITH [CLKSTOR]
 IF [] THEN [WAIT]
WHILE [WAIT] WITH [STATST]
 IF [STARTFF] THEN [WAIT1]
WHILE [WAIT1] WITH [STATST]
 IF [] THEN [ADDBIT6]
WHILE [ADDBIT6]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT5]
WHILE [ADDBIT5]
 IF [SCLH*/SDA] THEN [WAIT]
 IF [SCLH*SDA] THEN [ADDBIT4]

Figure 20. Equation Entry File Slave Receiver (2 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 40

WHILE [ADDBIT4]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT3]
WHILE [ADDBIT3]
 IF [SCLH*SDA] THEN [WAIT]
 IF [SCLH*/SDA] THEN [ADDBIT2]
WHILE [ADDBIT2]
 IF [SCLH*/((SDA*ADD2)+(/SDA*/ADD2))] THEN [WAIT]
 IF [SCLH*((SDA*ADD2)+(/SDA*/ADD2))] THEN [ADDBIT1]
WHILE [ADDBIT1]
 IF [SCLH*/((SDA*ADD1)+(/SDA*/ADD1))] THEN [WAIT]
 IF [SCLH*((SDA*ADD1)+(/SDA*/ADD1))] THEN [ADDBIT0]
WHILE [ADDBIT0]
 IF [SCLH*/((SDA*ADD0)+(/SDA*/ADD0))] THEN [WAIT]
 IF [SCLH*((SDA*ADD0)+(/SDA*/ADD0))] THEN [RWBIT]
WHILE [RWBIT]
 IF [SCLH*/SDA] THEN [WRIDMOD]
 IF [SCLH*SDA] THEN [WAIT]
WHILE [WRIDMOD]
 IF [SCLL] THEN [ACKBITTR]
WHILE [ACKBITTR] WITH [ACKNOW]
 IF [SCLL] THEN [TESTSTA]
WHILE [TESTSTA] WITH [STATST]
 IF [SCLH] THEN [TESTSTA1]
WHILE [TESTSTA1] WITH [STASTO7]
 IF [] THEN [TESTSTA2]
WHILE [TESTSTA2] WITH [STATST]
 IF [STARTFF] THEN [INIT2]
 IF [STOPFF] THEN [INIT2]
 IF [SCLL] THEN [OUTB7]
WHILE [OUTB7] WITH [OUTBIT7]
 IF [] THEN [CLKB7]
WHILE [CLKB7] WITH [OUTCLK7]
 IF [] THEN [WRID6]
WHILE [WRID6]
 IF [SCLH] THEN [WRID6C]
WHILE [WRID6C] WITH [CLKSHIFT]
 IF [] THEN [WRID5]
WHILE [WRID5]
 IF [SCLH] THEN [WRID5C]
WHILE [WRID5C] WITH [CLKSHIFT]
 IF [] THEN [WRID4]
WHILE [WRID4]
 IF [SCLH] THEN [WRID4C]
WHILE [WRID4C] WITH [CLKSHIFT]
 IF [] THEN [WRID3]
WHILE [WRID3]
 IF [SCLH] THEN [WRID3C]
WHILE [WRID3C] WITH [CLKSHIFT]
 IF [] THEN [WRID2]
WHILE [WRID2]
 IF [SCLH] THEN [WRID2C]
WHILE [WRID2C] WITH [CLKSHIFT]
 IF [] THEN [WRID1]
WHILE [WRID1]
 IF [SCLH] THEN [WRID1C]
WHILE [WRID1C] WITH [CLKSHIFT]
 IF [] THEN [WRID0]
WHILE [WRID0]
 IF [SCLH] THEN [WRID0C]
WHILE [WRID0C] WITH [CLKSHIFT]
 IF [] THEN [WRIDMOD]

Figure 20. Equation Entry File Slave Receiver (3 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 41

* *
* Simulation Control Language File *
* *
* Project : IIC *
* Function : IIC–bus Slave Receiver *
* *
* File Name : IICRECEI.SCL *
* Design file : IICRECEI.EQN *
* Pin File : IICRECEI.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorj *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

 P CLK, RESET, SCL, SDA, DATOUT, CLKSHFT, CLKSTO, RESOUT, ACKNOW,
STATEST, DATA7, OUT7, STO7, STARTFF, STOPFF, Q0, Q1, Q2, Q3, Q4, Q5,
RC, CLKEN, ADD0, ADD1, ADD2, VCC
* SCLH, SCLL,
 PCO
*** Initialisation ***
 BUSI SDA
 BUSI CLK
 BUSO RC
 S 0 (50, 100, ETC)CLK
 S 0 (75)RESET
 S 0 (500, 1000, ETC)SCL
 ST 1 (VCC)
 ST 1 (SDA)
 ST 0 (CLKEN)
 ST 001 (ADD2, ADD1, ADD0)
 SU TIME = 1225

*** Generate start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** receive device address with write (01000010) ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+4000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+1000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

*** Receive 8 bits data word 11111111 ***
 BUSI SDA
 ST 1 (SDA)
 SU TIME = *+8000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

Figure 21. .SCL file slave receiver (1 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 42

*** Receive 8 bits data word 11001100 ***
 BUSI SDA
 ST 1 (SDA)
 SU TIME = *+2000
 ST 0 (SDA)
 SU TIME = *+2000
 ST 1 (SDA)
 SU TIME = *+2000
 ST 0 (SDA)
 SU TIME = *+2000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

*** Receive 8 bits data word 01110001 ***
 BUSI SDA
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+3000
 ST 0 (SDA)
 SU TIME = *+3000
 ST 1 (SDA)
 SU TIME = *+1000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

*** Generate new start condition ***
 BUSI SDA
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** receive device address with read (01000011) ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+4000
 ST 1 (SDA)
 SU TIME = *+2000

*** Wait for new start condition ***
 SU TIME = *+3000

*** Generate new start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500

*** receive device address with write (01000010) ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+4000
 ST 1 (SDA)
 SU TIME = *+1000
 ST 0 (SDA)
 SU TIME = *+1000

*** Generate acknowledge from slave ***
 BUSO SDA
 SU TIME = *+1000

Figure 21. .SCL File Slave Receiver (2 of 3)

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 43

*** Generate stop condition ***
 ST 0 (SDA)
 SU TIME = *+500
 ST 1 (SDA)
 SU TIME = *+500
*** Wait for new start condition ***
 SU TIME = *+3000
*** Generate new start condition ***
 ST 1 (SDA)
 SU TIME = *+500
 ST 0 (SDA)
 SU TIME = *+500
*** receive wrong device address (0110000). ***
 ST 0 (SDA)
 SU TIME = *+1000
 ST 1 (SDA)
 SU TIME = *+2000
 ST 0 (SDA)
 SU TIME = *+6000
*** Test internal clock ***
 BUSO CLK, RC
 ST 1 (CLK)
 ST 1 (CLKEN)
 SU TIME = *+ 1000
 F

Figure 21. .SCL File Slave Receiver (3 of 3)

* *
* Pinning File *
* *
* Project : IIC *
* Function : IIC–bus Slave Receiver *
* *
* File Name : IICRECEI.SCL *
* Design file : IICRECEI.EQN *
* Pin File : IICRECEI.PIN *
* *
* Date : March 1993 *
* Designer : Aloys Schatorje *
* Company : Philips Semiconductors *
* Department : PCALE *
* Place : Eindhoven *
* Country : The Netherlands *
* *

”

Device =C42VA12
Pin2 =RESET
Pin3 =ADD0
Pin4 =ADD1
Pin5 =ADD2
Pin8 =CLKEN
Pin9 =SCL
Pin10 =SDA
Pin11 =CLKSHFT
Pin14 =CLK
Pin15 =RC
Pin16 =DATOUT
Pin17 =CLKSTO
Pin18 =RESOUT
Pin19 =ACKNOW
Pin20 =OUT7
Pin21 =DATA7
Pin22 =STATEST
Pin23 =STO7

Figure 22. .PIN File Slave Receiver

Philips Semiconductors Programmable Logic Devices Application Note

AN036I2C bus expander

October 1993 44

1
6

1
5

1
4

1 3
1

2
1

1
1

0
9

1
2

3
4

5
6

7
8

S
W

 D
IP

–8

T
D

A
T

I
6

5
4

1
3

1
4

1
3

1
2

1
1 0

T
P

LD
0

T
C

LK
0

H
G

F
E

D
C

B
A

S E R

1
1

5
2

I
C

N
L

H
K Q

Q
H

H

7
9

U
1

74
H

C
16

5

G
N

D
10

kG
N

D

S
1

V
C

C

10
k

1
6

1
5

1
4

1 3
1

2
1

1
1

0
9

1
2

3
4

5
6

7
8

S
W

 D
IP

–8

6
5

4
1

3
1

4
1

3
1

2
1

1 0

H
G

F
E

D
C

B
A

S E R

1
1

5
2

IC N
L

H
K Q

Q
H

H

7
9

U
2

74
H

C
16

5

G
N

D
10

kG
N

D

S
2

V
C

C

10
k

1
6

1
5

1
4

1 3
1

2
1

1
1

0
9

1
2

3
4

5
6

7
8

S
W

 D
IP

–8

6
5

4
1

3
1

4
1

3
1

2
1

1 0

H
G

F
E

D
C

B
A

S E R

1
1

5
2

I
C

N
L

H
K Q

Q
H

H

7
9

U
3

74
H

C
16

5

G
N

D
10

kG
N

D

S
3

V
C

C

10
k

1
6

1
5

1
4

1 3
1

2
1

1
1

0
9

1
2

3
4

5
6

7
8

S
W

 D
IP

–8

6
5

4
1

3
1

4
1

3
1

2
1

1 0

H
G

F
E

D
C

B
A

S E R

1
1

5
2

I
C

N
L

H
K Q

Q
H

H

7
9

U
4

74
H

C
16

5

G
N

D
10

kG
N

D

S
4

V
C

C

10
k

2 I3 I4 I5 I6 I7I0
/C

LK

U
6

87654321

I8 B
0

B
1

11109

M
7

M
6

M
5

M
4

M
3

M
2

M
9

1617181920212223

M
1

M
0

I9
/O

E
N

131415

I1
M

8

JP
1

JU
M

P
E

R

D
A

T
IN

A
C

K
N

O
W

S
D

A
O

E
S

D
A

E
N

S
TA

T
E

S
T

P
LO

A
D

N

C
LK

R
C

A
D

D
2

A
D

D
1

R
E

S
E

T
A

D
D

0

S
D

A
S

C
L

C
LK

E
N

I2 I3 I4 I5 I6 I7I0
/C

LK

U
7

87654321

I8 B
0

B
1

11109

M
7

M
6

M
5

M
4

M
3

M
2

M
9

1617181920212223

M
1

M
0

I9
/O

E
N

131415

I1
M

8

R
E

S
O

U
T

A
C

K
N

O
W

O
U

T
7

D
A

TA
7

S
TA

T
E

S
T

S
T

O
7

C
LK

R
C

A
D

D
2

A
D

D
1

R
E

S
E

T
A

D
D

0

S
D

A
S

C
L

C
LK

E
N

D
A

TA
O

U
T

C
LK

S
T

0

G
N

D

G
N

D

G
N

D
C

1 C

R
62

V
C

C

R

G
N

D
C

2 C

R
63

V
C

C

R

1 4

U
5

1 1
1 0

1 2
1 3G
N

D 74
H

C
59

5

5
1

2
1

3
4

5
6

7
9

C
LK

E
N

R
E

S
E

T
C

LK

1 4

U
8

1 1
1 0

1 2
1 3G
N

D 74
H

C
59

5

5
1

2
1

3
4

5
6

7
9

1 4

U
9

1 1
1 0

1 2
1 3G
N

D 74
H

C
59

5

5
1

2
1

3
4

5
6

7
9

1 4

U
10

1 1
1 0

1 2
1 3G
N

D 74
H

C
59

5

5
1

2
1

3
4

5
6

7
9

R
R

E
S

0
R

R
C

L0

R
S

C
L0

R
D

A
T

0

S
R

G
S

S
E

K

R
R C L

R C L K

C L K

Q A
Q C

Q B
Q D

Q E
Q G

Q F
Q H

Q H ’

S
R

G
S

S
E

K

R
R C L

R C L K

C L K

Q A
Q C

Q B
Q D

Q E
Q G

Q F
Q H

Q H ’

S
R

G
S

S
E

K

R
R C L

R C L K

C L K

Q A
Q C

Q B
Q D

Q E
Q G

Q F
Q H

Q H ’

S
R

G
S

S
E

K

R
R C L

R C L K

C L K

Q A
Q C

Q B
Q D

Q E
Q G

Q F
Q H

Q H ’

S
C

L
S

D
A

V
C

C

V
C

C

R
65

10
k

R
64 10
k

V
C

C

C
LO

C
K

O
U

T

P
LC

42
V

A
12

C
LK

S
H

F
T

P
LC

42
V

A
12

39
0

D
O

39
0

D
31

IIC
-B

us
 S

la
ve

-T
ra

ns
m

itt
er

IIC
-B

us
 S

la
ve

--
R

ec
ei

ve
r

Figure 23. Schematic Bread-Board

S H / L D

S H / L D

S H / L D

S H / L D

	INTRODUCTION
	GENERAL DESCRIPTION OF THE DESIGNS
	CHARACTERISTICS OF THE I 2 C-BUS
	COMMON BASIC FUNCTIONS
	I 2 C-BUS SLAVE TRANSMITTER FUNCTION
	I 2 C-BUS SLAVE RECEIVER FUNCTION
	BREAD-BOARD I 2 C-BUS I/O EXPANDER

