
Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

Issued June 1988; Revised October 1990

1October 1990

INTRODUCTION
The PLS159A is a programmable logic
sequencer which consists of four dedicated
inputs, four bidirectional I/O’s, eight flip-flops,
thirty two 16-input AND gates, twenty
32-input OR gates, and a complement array.
Each flip-flop has a bidirectional I/O and may
be individually programmed as J-K or D
flip-flop, or switch between the two types
dynamically. The flip-flops will accept data
from the internal logic array or from the
bidirectional I/O, or they may be set or reset
asynchronously from the AND array. The
output polarity of the four bidirectional I/O’s
are programmable and the direction is
controlled by the AND array. Figure 1 is the
logic diagram of PLS159A.

PROGRAMMING THE PLS159A
The programming table is shown in Table 1
where there is a place for everything that is

shown in Figure 1. The program table is
basically divided into two main sections. The
left hand side of the table, section A,
represents the input side of the AND gates,
while the right hand side, section B,
represents the OR gates sections which
includes the flip-flops and the combinatorial
outputs B(0) to B(3). The flip-flops modes are
defined in section C and the output polarities
of the combinatorial outputs are defined in
section E. The programming symbols are
detailed in Figure 2.

As shown in Table 1, the programming table
is very similar to a truth table. Each column in
section A represents an input to the 32 AND
gates, and each row represents an AND gate
connecting to 17 inputs. Columns I0 to I3
represent the 4 dedicated inputs, I0 to I3.
Columns B(I)0 to B(I)3 represent the inputs of
the 4 bidirectional I/O, B0 to B3. Columns
Q(P)0 to Q(P)7 represent the feedback, F0 to

F7, from the flip-flops (the present state).
Column “C” represents the complement
array.

As shown in Figure 1, the outputs of the AND
gates are connected to an array of OR gates
which, in turn, are connected to either
flip-flops or output circuits. Columns Q(N)0 to
Q(N)7 represent the next state which the
flip-flops will be in. Columns B(O)0 to B(O)3
represent the combinatorial outputs B0 to B3.

Each row represents an AND gate with 17
inputs each of which may be true and/or
complement and is, therefore, a perfect
decoder. Referring to the programming
symbols in Figure 2, to implement the
equation

Z = A * B * C * D,

all one has to do is to enter one line as
shown in Table 2, term-0.

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 2

(LOGIC TERMS–T) (CONTROL TERMS)

NOTES:
1. All OR gate inputs with a blown link float to logic “0”.
2. All other gates and control inputs with a blown link float to logic “1”.
3. ⊕ denotes WIRE-OR.
4. Programmable connection.

2

3

4

5

19

6

7

8

9

I0

I1

I2

I3

B3

B2

B1

B0

F7

31 24 23 16 15 8 7 0

PB RB PA RA LB LA D3 D2 D1 D0

X3

X2

X1

X0

B3

B2

B1

B0

F7

F6

F5

F4

F3

F2

C

C

F1

F0

S3

S2

S1

S0

J Q

K

EA EB

CK’

18 F6J Q

K
CK’

17 F5J Q

K
CK’

16 F4J Q

K
CK’

15 F3J Q

K
CK’

14 F2J Q

K
CK’

13 F1J Q

K
CK’

12 F0J Q

K
CK’

1 CLKCK
FC

11 OE

M7

M6

M5

M4

M3

M2

M1

M0

P R

P R

Figure 1. PLS Logic Diagram

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 3

Table 1. PLS Program Table

012301234567

(OR)

Q(N) B(O)

POLARITYEAEBF/F MODE

0123456701230123

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

T
E
R
M

FC

C

AND

I B(I) Q(P)

PB

RB

D3

D2

D1

D0

PIN 5 4 3 2 9 8 7 6 19 18 17 16 15 14 13 12

LA

RA

PA

LB

9 8 7 619 18 17 16 15 14 13 12

R
E

M
A

R
K

S

P
LS

15
9A

REMARKS REMARKS

CODE NO.

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 4

Figure 2.

The PLS can be programmed by means of
Logic Programming equipment.

With Logic programming, the
AND/OR–EX-OR input connections
necessary to implement the desired logic
function are coded directly from the State
Diagram using the Program Tables on the
following pages.

In these Tables, the logic state or action of
all I/O, control, and state variables is
assigned a symbol which results in the
proper fusing pattern of corresponding
links defined as follows:

STATE

DON’T CARE

CODESTATE

I, B, Q

CODE

L

STATE

I, B, Q

CODESTATE

INACTIVE1, 2

CODE

O –H

(T, FC, L, P, R, D)n

I, B, Q

I, B, Q
I, B, Q

(T, FC, L, P, R, D)n

I, B, Q

I, B, Q
I, B, Q

(T, FC, L, P, R, D)n

I, B, Q

I, B, Q
I, B, Q

(T, FC, L, P, R, D)n

I, B, Q

I, B, Q
I, B, Q

“AND ARRAY – (I), (B), (Qp)

ACTION

TRANSPARENT

CODEACTION

PROPAGATE

CODE

•
ACTION

GENERATE5

CODEACTION

INACTIVE1, 3, 5

CODE

O –A

C

C

(Tn, FC)

C

C

(Tn, FC)

C

C

(Tn, FC)

C

C

(Tn, FC)

“COMPLEMENT” ARRAY – (C)

ACTION

TRANSPARENT

CODEACTION

PROPAGATE

CODE

• –

C

C

C

C

(Dn, Ln, Pn, Rn) (Dn, Ln, Pn, Rn)

“COMPLEMENT” ARRAY (cont.)

QJ

K

•

QJ

K

FC

ACTION

J–K OR D
(CONTROLLED)

CODE

A

FC

MM

ACTION

J–K

CODE

“OR” ARRAY – (MODE)

QJ

K

•

QJ

K

Tn

Tn STATUS

ACTIVE (Set)

CODE

A

Tn

M = DISABLED

INACTIVE (Reset)

CODE

M = ENABLED

Tn STATUS

“OR” ARRAY – (Q N = D-Type)

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 5

Figure 2 (cont.)

QJ

K

Tn

M = DISABLED

ACTION

HOLD

CODE

QJ

K

Tn

M = DISABLED

ACTION

RESET

CODE

L

QJ

K

Tn

M = DISABLED

ACTION

SET

CODE

QJ

K

Tn

ACTION

TOGGLE

CODE

O –H

M = DISABLED

“OR” ARRAY – (Q n = J-K Type)

Tn STATUS

INACTIVE

CODE

•
Tn STATUS

ACTIVE

CODE

A

Tn
P, R, S
(OR B)

Tn

POLARITY

LOW

CODE

L

POLARITY

HIGH

CODE

H

S
B

S
B

P, R, S
(OR B)

“OR” ARRAY – (S or B), (P), (R) “EX-OR” ARRAY – (B)

ACTION

DISABLE

CODEACTION

ENABLE 4

CODEACTION

CONTROL

CODEACTION

IDLE4

CODE

O –A

En

OE

En

OE

En

OE

En

OE

•

“OE ” ARRAY – (E)

NOTES:
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate (T, FC, L, P, R, D)n will be unconditionally inhibited if any one of the I, B, or Q link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates Tn, FC.
4. En = O and En = • are logically equivalent states, since both cause Fn outputs to be unconditionally enabled.
5. These states are not allowed for control gates (L, P, R, D)n due to their lack of “OR” array links.

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 6

Table 2. PLS Program Table

012301234567

(OR)

Q(N) B(O)

POLARITYEAEBF/F MODE

0123456701230123

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

T
E
R
M

FC

C

AND

I B(I) Q(P)

PB

RB

D3

D2

D1

D0

PIN 5 4 3 2 9 8 7 6 19 18 17 16 15 14 13 12

LA

RA

PA

LB

9 8 7 619 18 17 16 15 14 13 12

R
E

M
A

R
K

S

P
LS

15
9A

REMARKS REMARKS

CODE NO.

— H A•

L

O

H H H — — — — — — — — — — — —

— H — — — — — — — — — — — ——L

— — — — — — — — — — — — ——— ——

••

A •••

A •••

— ——
O O O

O

O O O O O O O O O O O O O
— — — — — — — — — — — ——

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — —

— — — — — —

—

—
LH

LH

A A A A

A

A

A

•••

•••
•••

O O O O O O O O

H H H H

A*B*C*D

/A*B*/C

“I”

“O”

“O”

A*/B

C*/D

A B C D W X Y Z

Z = A*B*C*D

Y = /A*B*/C

X = I

VIRGIN CONDITION

W = O

W = A*/B

W = C*/D

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 7

Notice that only I0 to I3 on the left hand side
and B(O)4 on the right hand side have entries
to implement the equation. All unused
columns are dashed out or dotted out.

To implement the equation

Y=/A * B * /C,

enter one line as shown in Table 2, term-2
where the entry “H” represents the
non-inverting input buffer while the entry “L”
represents the inverting buffer. To have the
AND gate to be unconditionally “High”, dash
out all the inputs of that particular AND gate
as shown in Table 2, term-4. The virgin
condition of the device, as shipped from the
factory, has all connections intact, which
means that the inverting and the
non-inverting buffers of the same inputs are
connected together. Such connection will
cause the AND gate to be unconditionally
“Low” as shown in Table 2, terms 6 and 7.
The unconditional High and Low states are
normally useful only internally and seldom
brought out to the output pins.

To implement the equation

W=A * /B+C * /D,

enter one line for A * /B and another line for
C * /D as shown in Table 2, terms 9 and 10.
Use one line to AND something together; use
different lines to OR something together —
one line per item to be OR’ed.

All the pins which are labelled B’s are
bidirectional I/O pins. Their input buffers are
represented by the B(I) columns on the left
hand side of the programming table. An “H”
entry represents the non-inverting buffer and
an “L” entry represents the inverting buffer.
Their output buffers are represented by the
B(O) columns on the right hand side of the
table. An “A” entry means that the output is
active (connected to the AND gates); a “.”

entry means that the output is inactive (not
connected). The outputs may be
programmed to be inverting or noninverting.
The polarity of each output is determined by
its exclusive OR gate (Figure 1 and Figure 2).
To have a non-inverting output, enter an “H”
in the section labelled “POLARITY” (Table 1,
Section E). To have an inverting output, enter
an “L”. For example, Table 3, terms -0 and -2
implement the equation

Z=/(A * B) and Y=A * B

respectively. The above two equations may
also be implement by term-4 which uses the
same AND gate to drive two OR gates.

Besides being able to have programmable
Active-High or Active-Low output, the
programmable output polarity feature also
low output, the programmable output polarity
feature also allows the user to minimize his
AND term utilization by converting his logic
equation into other forms such as conversion
by De Morgan Theorem.

For example, the equation

X=A+B+C+D

takes four AND terms to implement as shown
in Table 3, terms 6 to 9. By using De Morgan
Theorem, the same equation is changed to

/W=/A * /B * /C * /D

The result is as shown in term 11 — a saving
of three AND terms. The output buffers are
disabled in their virgin states so that they all
behave as inputs. The buffers are enabled or
disabled by their corresponding Control AND
terms D0 to D3 (see Figure 1). The Control
AND terms are represented in the
programming table on the last four rows on
the left hand side. Dashing out all the inputs
will cause the output buffer to be
unconditionally enabled, whereas a “0” (zero)

will cause the buffer to be unconditionally
disabled. The buffers may also be controlled
by a logical condition, e.g. A * /B * /C, etc.

There are eight flip-flops on the chip each of
which may be programmed as a J/K or a D
flip-flop, or they may be programmed to
switch dynamically. As shown in Figure 1,
each flip-flop is a J/K to begin with. A 3-State
inverter is connected in between the J and K
inputs of each flip-flop, which when enabled
by the AND gate FC, will cause the flip-flop to
function as a D flip-flop. The inverters are
enabled by FC through fuses M0 to M7. A “.”
in the F/F Mode entry of the programming
table means that particular fuse is to be
disconnected and that particular flip-flop is to
be J/K. An “A” entry will leave the M fuses
intact, which allow the flip-flop to be D or J/K
as controlled by the output of FC (see
Figure 2, “OR” ARRAY — (MODE)). The
inputs to the flip-flops are represented by the
programming table as the next state,
Q(N)0 to 7 since their inputs are from the OR
array. The outputs of these registers are
connected to their respective 3-State
inverting output buffers, four of which are
controlled by EA and the other four by EB. A
“.” in EA will enable outputs F0 to F3,
whereas a “–” will disable them. An “A” will
allow the output buffers to be controlled by
/OE, pin 11. Table 4, terms 0, 1 and 3
represent the following equations

Q0: J=A * C+/B * /E eq. 1

Q0: K=A * /C eq. 2

Notice that the J input in equation 1 is
represented by the “H” entry in terms-0 and
1, column Q(N)0 while the K input in equation
2 is represented by the “L” entry in term-3,
column Q(N)0. An undefined input, J or K, is
considered “Low”.

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 8

Table 3. PLS Program Table

012301234567

(OR)

Q(N) B(O)

POLARITYEAEBF/F MODE

0123456701230123

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

T
E
R
M

FC

C

AND

I B(I) Q(P)

PB

RB

D3

D2

D1

D0

PIN 5 4 3 2 9 8 7 6 19 18 17 16 15 14 13 12

LA

RA

PA

LB

9 8 7 619 18 17 16 15 14 13 12

R
E

M
A

R
K

S

P
LS

15
9A

REMARKS REMARKS

CODE NO.

— A•H H — — — — — — — — — — — —

— — — — — — — — — — — — —

— — — — — — — — — — — — ———

••

A •••

A••

— — — — — — — — — — — — — ——

— — — — — — — —

— — — — — — — —

— — — — — — — —

— — — — — — — —
— — — — — — — —
— — — — — — — —— — — — — — — —

— — — — — — — —

— — — — —

— — — — —

—

—

A
A
A

•••
•••
•••

L H H L

A*B

A

B

D

AB W X Y Z

Z = /(A*B)

Y = A*B

— —

H H— —

H H

— — — — — — — —— — — — — —— C
—

— —

— —

—

H
H

H
H

— — — — — — — —— — — —— L LLL

A*B

A*B

/A*/B*/C*/D

A

— — — — — — — — A •••

— — — — — — — — A •••

Z = /(A*B)
Y = A*B

X = A+B+C+D

W= /(/A*/B*/C*/D)

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 9

Table 4. PLS Program Table

012301234567

(OR)

Q(N) B(O)

POLARITYEAEBF/F MODE

0123456701230123

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

T
E
R
M

FC

C

AND

I B(I) Q(P)

PB

RB

D3

D2

D1

D0

PIN 5 4 3 2 9 8 7 6 19 18 17 16 15 14 13 12

LA

RA

PA

LB

9 8 7 619 18 17 16 15 14 13 12

R
E

M
A

R
K

S

P
LS

15
9A

REMARKS REMARKS

CODE NO.

— H H — — — — — — — — — — — —
— — — — — — — — — — — — —

— — — — — — — — — — — — ——

— — — — — — — — — — — — — ——

— — — — — — —
— — — — — — —

— — — — — — —

— — — — — — —
— — — — — — —

— — — — — — — —— — — —— ••••

A*C

/A*/B*/C

E

A B

J = A*C+/B*/E——
—

H

—
—
H

— — — — — — — —— — — ——

/B*/E

A• ••

— — — — — — —

••• A • • •

LL —

L —

L LL

— — — — — — — — — — — — — ——
— — — — — — — —— — — ——

E—
—
H

L LL

— — — —
— — — — — — —— — — —— — — — —

— — — — — —— — — —— — — — —

— — — — — — — —— — — —— — — — —

H

HH

A*/C

/A*/B*/C

H

H

L

— — — — — — —

— — — — — — —

•••• A• ••

H
H

O
O

O

K = A*/C

D = /A*/B*/C+E

C D

D = /A*/B*/C+E

T = I
T = Q5

T = Q5*Q6

00

01

11

2A

02

Figure 3.

:W

C*/D:X

A*B:Z

C:X

C*/D:X,Y

A*/B:Y

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 10

A D flip-flop may be implemented by first
entering an “A” in F/F MODE. Then enter “0”
in the row FC, which will unconditionally
enable the 3-State inverter between the J and
K inputs. The following logic equation may be
implemented as shown in Table 4, term 5

Q1: D=/A * /B * /C+E.

Notice that the entries in term 5, columns
Q(N)0 to 7 are “A” and “.” instead of “H” and
“L” as in the case of J/K flip-flops. The entry
“A” will cause the fuse connecting to the “K”
input to be disconnected and the “J” fuse to
be intact. Whereas the entry “.” will cause
both fuses to be disconnected. This feature
enables the user to quickly recognize the
mode in which the flip-flops are operating
without having to go through the control
terms. Some commercially available device
programmers in the market may not have the
software capability to implement this feature,
in which case an “H” and a “–” may be used
in place of “A” and “.” respectively as shown
in Table 4, terms 8 and 9.

Of course, the term FC may have inputs
instead of zeros and dashes, in which case
the flip-flop modes are controlled dynamically.

When both the J and K inputs are “1’s”, the
flip-flop will toggle. A simple 3-bit counter
may be implemented using only AND terms
as shown in Table 4 terms 11, 12 and 13. The
logic equations for the three flip-flops are as
the following:

Q5: T=1; (Q5 toggles
unconditionally)

Q6: T=Q5; (Q6 toggles when
Q5=1)

Q7: T=Q5 * Q6; (Q7 toggles
when Q5 *

Q6=1)

The above equations represent an octal
up-counter. However, since the outputs of the
flip-flops are inverted, the counting sequence
of the outputs is that of a down-counter.

The flip-flops may be asynchronously set and
reset by the Control AND terms PA/PB and
RA/RB respectively. As shown in Figure 1,
PA and RA controls flip-flops F0 to F3, while
PB and RB control F4 to F7.

In order to save the number of input pins, the
eight flip-flops may be synchronously loaded
directly from their own output pins. To use
this feature, EA and/or EB must be
programmed “A” or “–” so that the output
buffers may be disabled before loading. As
shown in Figure 1, every flip-flop has an
OR/NOR gate the input of which is directly
connected to the output pin and the outputs
of the OR/NOR are connected to the K and J
inputs respectively. This OR/NOR gate
inverts the input and feeds it to the flip-flop in
a “wire-OR” fashion. Therefore, when loading
data directly into the flip-flops from the output
pins, caution must be exercised to insure that
the inputs from the OR array does not
interfere with the data being loaded. For
example, if the data being loaded is a “1” on
the output pin, the J input will be a “0” and the
K input will be a “1”. If, at the same time, a “1”

is present at the J-input from the OR array,
the flip-flop will see “1’s” in both J and K
inputs. It will toggle as a result. The OR/NOR
gates are enabled by the Control AND terms
LA and LB. LA controls flip-flops F0 to F3 and
LB controls F4 to F7.

All Control AND terms function and are
programmed in the same manner as the
other AND terms. The only difference is that
the Control AND terms are not connected to
the OR array.

The outputs of the flip-flops may be fed back
into the AND array as the present state,
Q(P). The output of the AND array into the
OR array and the inputs to the flip-flops is the
next state, Q(N). As an example, Figure 3 is
a state machine implemented in a PLS159A
as shown in Table 5, terms 0 to 6.

Philips Semiconductors Programmable Logic Devices Application Note

AN15PLS159A primer

October 1990 11

Table 5. PLS Program Table

012301234567

(OR)

Q(N) B(O)

POLARITYEAEBF/F MODE

0123456701230123

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

T
E
R
M

FC

C

AND

I B(I) Q(P)

PB

RB

D3

D2

D1

D0

PIN 5 4 3 2 9 8 7 6 19 18 17 16 15 14 13 12

LA

RA

PA

LB

9 8 7 619 18 17 16 15 14 13 12

R
E

M
A

R
K

S

P
LS

15
9A

REMARKS REMARKS

CODE NO.

— H H — — — —
— — — — —

—— — — — — — — —

— — — — — ——
— — — —— •

A B

——
—

—
—

H
A ••

••• • • •

L

L

— — — — — — — —— — — —— — — — —

H

H
L

C D

HH HH••• •

L LL L LL LL

HL LL L LL L— H
HL LL H LL L

—H L LL L LL LL
L LL L LL LH

— — — — — — — —— — — —— — — — —
— — — — — — — —— — — —— — — — —
— — — — — — — —— — — —— — — — —

— — — — — —— H L LL L LL LHL

W X Y Z

•• A•
A •• •

A • • •

L LL L LL L

L LL H LL L
LL H L H L H

A •• •
•

L LL L LL LH

HL LL L LL L
A• AHL LL L LL L

	INTRODUCTION
	PROGRAMMING THE PLS159A
	Table 1. PLS Program Table
	Table 2. PLS Program Table
	Table 3. PLS Program Table
	Table 4. PLS Program Table
	Table 5. PLS Program Table

