Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver

With 3.6 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The 74VCX16245 is an advanced performance, non-inverting 16-bit transceiver. It is designed for very high-speed, very low-power operation in 1.8 V, 2.5 V or 3.3 V systems.

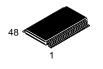
When operating at 2.5 V (or 1.8 V) the part is designed to tolerate voltages it may encounter on either inputs or outputs when interfacing to 3.3 V busses. It is guaranteed to be over–voltage tolerant to 3.6 V.

The VCX16245 is designed with byte control. It can be operated as two separate octals, or with the controls tied together, as a 16-bit wide function. The Transmit/Receive ($T/\overline{R}n$) inputs determine the direction of data flow through the bi-directional transceiver. Transmit (active–HIGH) enables data from A ports to B ports; Receive (active–LOW) enables data from B to A ports. The Output Enable inputs (\overline{OEn}), when HIGH, disable both A and B ports by placing them in a HIGH Z condition.

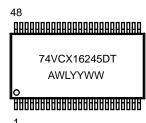
- Designed for Low Voltage Operation: $V_{CC} = 1.65-3.6 \text{ V}$
- 3.6 V Tolerant Inputs and Outputs
- High Speed Operation: 2.5 ns max for 3.0 to 3.6 V

3.0 ns max for 2.3 to 2.7 V 6.0 ns max for 1.65 to 1.95 V

• Static Drive: ±24 mA Drive at 3.0 V


±18 mA Drive at 2.3 V ±6 mA Drive at 1.65 V

- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When V_{CC} = 0 V
- Near Zero Static Supply Current in All Three Logic States (20 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds ±300 mA @ 125°C
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V



http://onsemi.com

MARKING DIAGRAM

TSSOP-48 DT SUFFIX CASE 1201

A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
74VCX16245DT	TSSOP	39 / Rail
74VCX16245DTR	TSSOP	2500 / Reel

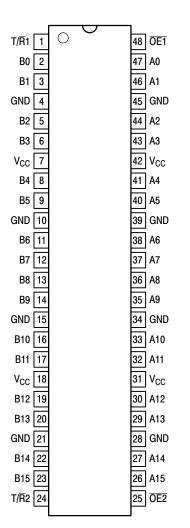
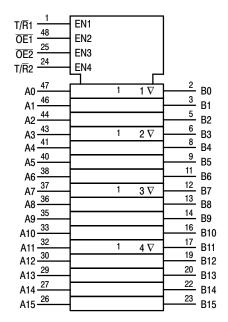



Figure 1. 48-Lead Pinout (Top View)

T/\bar{R}1 \[\text{OE1} \\ \frac{48}{\text{OE2}} \] \[\text{OE2} \\ \frac{25}{\text{OE2}} \] \[\text{OR of Eight} \] \[\text{One of Eight} \]

Figure 2. Logic Diagram

PIN NAMES

Pins	Function		
OEn T/Rn A0–A15 B0–B15	Output Enable Inputs Transmit/Receive Inputs Side A Inputs or 3–State Outputs Side B Inputs or 3–State Outputs		

Inp	uts	Outputs	Inputs OE2 T/R2		Outputs
OE1	T/R1	Outputs			Outputs
L	L	Bus B0:7 Data to Bus A0:7	L	L	Bus B8:15 Data to Bus A8:15
L	Н	Bus A0:7 Data to Bus B0:7	L	Н	Bus A8:15 Data to Bus B8:15
Н	Х	High Z State on A0:7, B0:7	Н	Х	High Z State on A8:15, B8:15

H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +4.6$		V
V _O	DC Output Voltage	$-0.5 \le V_O \le +4.6$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.; Outputs Active	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_O > V_{CC}$	mA
Io	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage Operating Data Retention Only	1.65 1.2	3.3 3.3	3.6 3.6	V
VI	Input Voltage	-0.3		3.6	V
Vo	Output Voltage (Active State) (3–State)	0 0		V _{CC} 3.6	V
I _{OH}	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V			-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0V – 3.6V			24	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 2.3V – 2.7V			-18	mA
I _{OL}	LOW Level Output Current, V _{CC} = 2.3V – 2.7V			18	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 1.65 – 1.95V			-6	mA
I _{OL}	LOW Level Output Current, V _{CC} = 1.65 – 1.95V			6	mA
T _A	Operating Free–Air Temperature			+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{IN} from 0.8V to 2.0V, V_{CC} = 3.0V	0		10	ns/V

^{1.} I_O absolute maximum rating must be observed.

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°0	C to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	1.65V ≤ V _{CC} < 2.3V	0.65 x V _{CC}		V
		2.3V ≤ V _{CC} ≤ 2.7V	1.6		
		2.7V < V _{CC} ≤ 3.6V	2.0		
V _{IL}	LOW Level Input Voltage (Note 2.)	1.65V ≤ V _{CC} < 2.3V		0.35 x V _{CC}	V
		2.3V ≤ V _{CC} ≤ 2.7V		0.7	
		2.7V < V _{CC} ≤ 3.6V		0.8	
V _{OH}	HIGH Level Output Voltage	$1.65V \le V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} - 0.2		V
		V _{CC} = 1.65V; I _{OH} = -6mA	1.25		
		$V_{CC} = 2.3V; I_{OH} = -6mA$	2.0		
		V _{CC} = 2.3V; I _{OH} = −12mA	1.8		
		V _{CC} = 2.3V; I _{OH} = -18mA	1.7		
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		V _{CC} = 3.0V; I _{OH} = -18mA	2.4		
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2		
V _{OL}	LOW Level Output Voltage	$1.65V \le V_{CC} \le 3.6V; I_{OL} = 100\mu A$		0.2	V
		V _{CC} = 1.65V; I _{OL} = 6mA		0.3	
		V _{CC} = 2.3V; I _{OL} = 12mA		0.4	
		V _{CC} = 2.3V; I _{OL} = 18mA		0.6	
		V _{CC} = 2.7V; I _{OL} = 12mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 18mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 24mA		0.55	
IĮ	Input Leakage Current	$1.65V \le V_{CC} \le 3.6V; \ 0V \le V_I \le 3.6V$		±5.0	μΑ
I _{OZ}	3–State Output Current	$1.65V \le V_{CC} \le 3.6V$; $0V \le V_O \le 3.6V$; $V_I = V_{IH}$ or V_{IL}		±10	μΑ
I _{OFF}	Power-Off Leakage Current	$V_{CC} = 0V$; V_I or $V_O = 3.6V$		10	μΑ
I _{CC}	Quiescent Supply Current (Note 3.)	$1.65V \le V_{CC} \le 3.6V$; $V_I = GND$ or V_{CC}		20	μΑ
		$1.65V \le V_{CC} \le 3.6V; \ 3.6V \le V_{I}, \ V_{O} \le 3.6V$		±20	μΑ
Δ l _{CC}	Increase in I _{CC} per Input	$2.7V < V_{CC} \le 3.6V$; $V_{IH} = V_{CC} - 0.6V$		750	μΑ

^{2.} These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS (Note 4.; $t_R = t_F = 2.0$ ns; $C_L = 30$ pF; $R_L = 500\Omega$)

					Lin	nits			
					T _A = -40°	C to +85°C			
			V _{CC} = 3.0	OV to 3.6V	V _{CC} = 2.3	3V to 2.7V	V _{CC} = 1.6	65 to1.95V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	0.8 0.8	2.5 2.5	1.0 1.0	3.0 3.0	1.5 1.5	6.0 6.0	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	0.8 0.8	3.8 3.8	1.0 1.0	4.9 4.9	1.5 1.5	9.3 9.3	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	0.8 0.8	3.7 3.7	1.0 1.0	4.2 4.2	1.5 1.5	7.6 7.6	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 5.)			0.5 0.5		0.5 0.5		0.75 0.75	ns

^{4.} For C_L = 50pF, add approximately 300ps to the AC maximum specification.

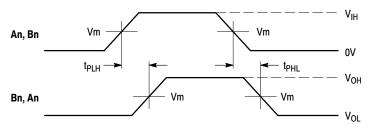
^{3.} Outputs disabled or 3-state only.

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

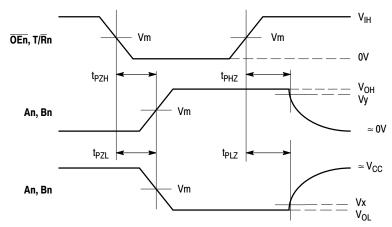
			T _A = +25°C	
Symbol	Characteristic	Condition	Тур	Unit
V _{OLP}	Dynamic LOW Peak Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	0.25	V
	(Note 6.)	$V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	0.6]
		$V_{CC} = 3.3V$, $C_L = 30pF$, $V_{IH} = V_{CC}$, $V_{IL} = 0V$	0.8]
V _{OLV}	Dynamic LOW Valley Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.25	V
	(Note 6.)	$V_{CC} = 2.5V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.6]
		$V_{CC} = 3.3V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	-0.8	1
V _{OHV}	Dynamic HIGH Valley Voltage	$V_{CC} = 1.8V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	1.5	V
	(Note 7.)	V _{CC} = 2.5V, C _L = 30pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.9	1
		$V_{CC} = 3.3V, C_L = 30pF, V_{IH} = V_{CC}, V_{IL} = 0V$	2.2	1

^{6.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is


CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	Note 8.	6	pF
C _{OUT}	Output Capacitance	Note 8.	7	pF
C _{PD}	Power Dissipation Capacitance	Note 8., 10MHz	20	pF

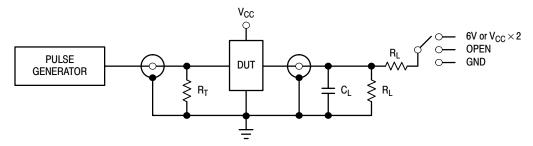
^{8.} $V_{CC} = 1.8$, 2.5 or 3.3V; $V_{I} = 0$ V or V_{CC} .


measured in the LOW state.

7. Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH–to–LOW or LOW–to–HIGH. The remaining output is measured in the HIGH state.

WAVEFORM 1 - PROPAGATION DELAYS

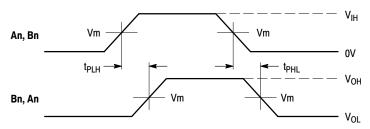
 t_R = t_F = 2.0ns, 10% to 90%; f = 1MHz; t_W = 500ns



WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES

 $t_R = t_F = 2.0$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns

Figure 3. AC Waveforms


	V _{CC}		
Symbol	3.3V ±0.3V	2.5V ±0.2V	1.8V ±0.15V
V _{IH}	2.7V	V _{CC}	V _{CC}
V _m	1.5V	V _{CC} /2	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V
V _y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V$; 1.8V $\pm 0.15V$
t _{PZH} , t _{PHZ}	GND

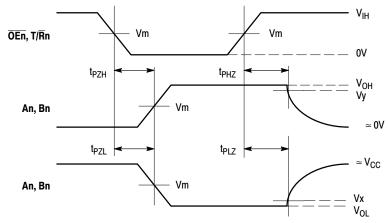
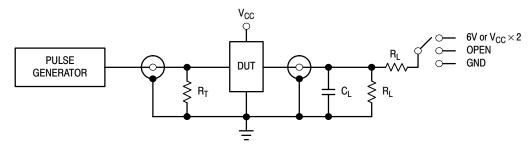

 $C_L=30 pF$ or equivalent (Includes jig and probe capacitance) $R_L=500\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

Figure 4. Test Circuit

WAVEFORM 3 - PROPAGATION DELAYS

 t_R = t_F = 2.0ns, 10% to 90%; f = 1MHz; t_W = 500ns



WAVEFORM 4 - OUTPUT ENABLE AND DISABLE TIMES

 $t_R = t_F = 2.0$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns

Figure 5. AC Waveforms

	V _c	V _{CC}		
Symbol	3.3V ±0.3V	2.7V		
V _{IH}	2.7V	2.7V		
V _m	1.5V	1.5V		
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V		
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V		

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V$; $1.8 \pm 0.15V$
t _{PZH} , t _{PHZ}	GND

C_L = 50pF or equivalent (Includes jig and probe capacitance)

 $R_L = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

Figure 6. Test Circuit

AC CHARACTERISTICS ($t_R = t_F = 2.0 \text{ns}$; $C_L = 50 \text{pF}$; $R_L = 500 \Omega$)

			V _{CC} = 3.0V to 3.6V		V _{CC} = 2.7V		1
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	3	1.0 1.0	3.0 3.0		3.6 3.6	ns
t _{PZH}	Output Enable Time to High and Low Level	4	1.0 1.0	4.4 4.4		5.4 5.4	ns
t _{PHZ}	Output Disable Time From High and Low Level	4	1.0 1.0	4.1 4.1		4.6 4.6	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 9.)			0.5 0.5		0.5 0.5	ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

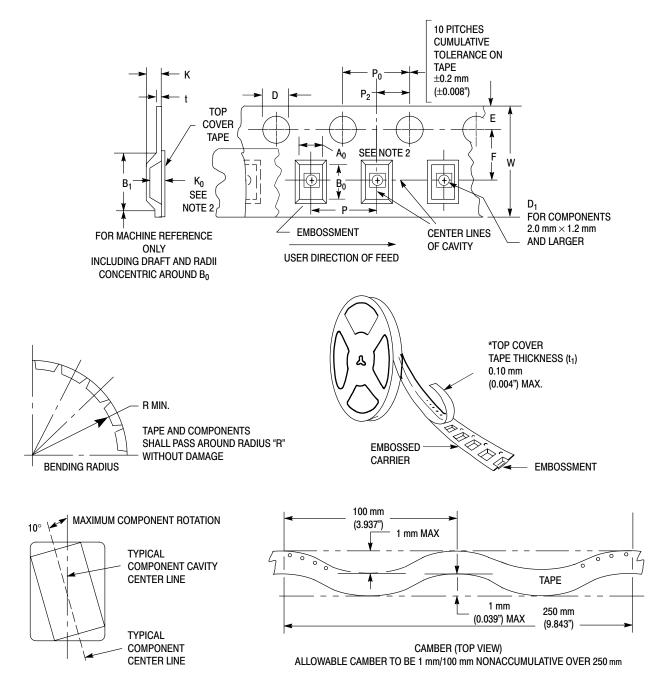


Figure 7. Carrier Tape Specifications

EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)

Tape Size	B ₁ Max	D	D ₁	E	F	к	Р	P ₀	P ₂	R	Т	w
24mm	20.1mm (0.791")	1.5 + 0.1mm -0.0 (0.059 +0.004" -0.0)	1.5mm Min (0.060")	1.75 ±0.1 mm (0.069 ±0.004")	11.5 ±0.10 mm (0.453 ±0.004")	11.9 mm Max (0.468")	16.0 ±0.1 mm (0.63 ±0.004")	4.0 ±0.1 mm (0.157 ±0.004")	2.0 ±0.1 mm (0.079 ±0.004")	30 mm (1.18")	0.6 mm (0.024")	24.3 mm (0.957")

- 1. Metric Dimensions Govern-English are in parentheses for reference only.
- 2. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

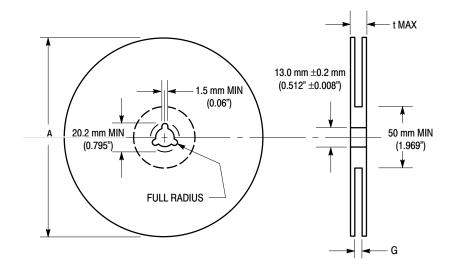


Figure 8. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max	
24 mm	360 mm	24.4 mm + 2.0 mm, -0.0	30.4 mm	
	(14.173")	(0.961" + 0.078", -0.00)	(1.197")	

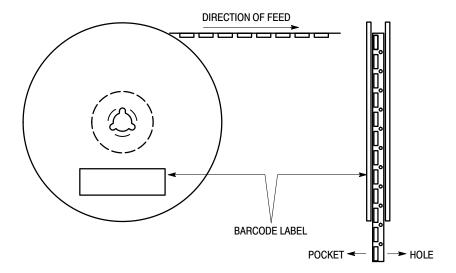


Figure 9. Reel Winding Direction

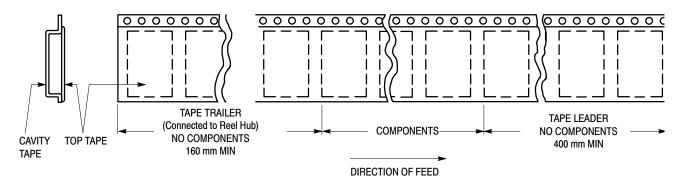
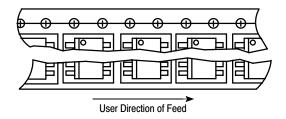
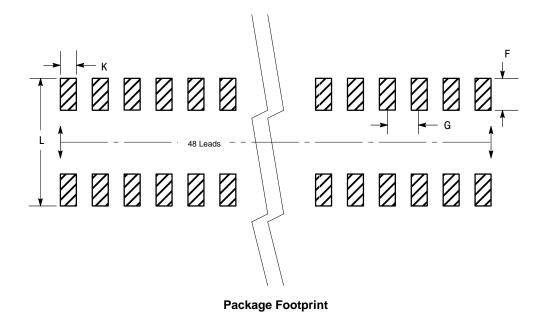
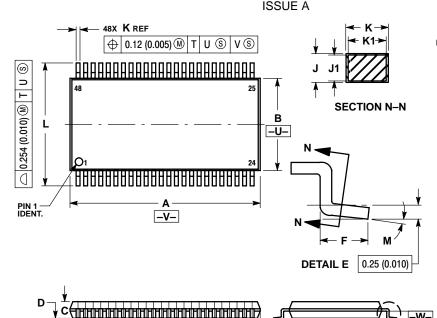


Figure 10. Tape Ends for Finished Goods


Figure 11. Reel Configuration

http://onsemi.com

PACKAGE DIMENSIONS

TSSOP DT SUFFIX CASE 1201-01

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- T 14.5WI, 1962.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD FLASH, PROTRUSIONS OR GATE
 BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSIONS A AND B ARE TO BE
 DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	12.40	12.60	0.488	0.496	
В	6.00	6.20	0.236	0.244	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.50	BSC	0.0197 BSC		
Н	0.37	0.37			
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.17	0.27	0.007	0.011	
K 1	0.17	0.23	0.007	0.009	
Г	7.95	8.25	0.313	0.325	
M	0 °	8 °	0 °	8 °	

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

DETAIL E

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

0.076 (0.003)

SEATING PLANE

-T-

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.