INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # 74HC/HCT4352 Dual 4-channel analog multiplexer/demultiplexer with latch Product specification File under Integrated Circuits, IC06 December 1990 ### 74HC/HCT4352 #### **FEATURES** - Wide analog input voltage range: ± 5 V. - Low "ON" resistance: 80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$ 70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$ 60Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$ • Logic level translation: to enable 5 V logic to communicate with \pm 5 V analog signals - Typical "break before make" built in - · Address latches provided - · Output capability: non-standard - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT4352 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4352 are dual 4-channel analog multiplexers/demultiplexers with common select logic. Each multiplexer has four independent inputs/outputs $(nY_0 \text{ to } nY_3)$ and a common input/output (nZ). The common channel select logics include two select inputs (S_0 and S_1), an active LOW enable input (\overline{E}_1), an active HIGH enable input (E_2) and a latch enable input (\overline{LE}). With \overline{E}_1 LOW and E_2 HIGH, one of the four switches is selected (low impedance ON-state) by S_0 and S_1 . The data at the select inputs may be latched by using the active LOW latch enable input (\overline{LE}). When \overline{LE} is HIGH, the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all analog switches are turned off. V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$, S $_1$, \overline{LE} , \overline{E}_1 and E $_2$). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ to nY $_3$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground). #### **QUICK REFERENCE DATA** $V_{EE} = GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | |-------------------------------------|---|---|-----|------|------| | STWIBOL | PARAMETER | CONDITIONS | нс | нст | UNII | | t _{PZH} / t _{PZL} | turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os} | $C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$ | 31 | 33 | ns | | t _{PHZ} / t _{PLZ} | turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os} | $V_{CC} = 5 V$ | 20 | 20 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per switch | notes 1 and 2 | 55 | 55 | pF | | Cs | max. switch capacitance | | | | | | | independent (Y) | | 5 | 5 | pF | | | common (Z) | | 12 | 12 | pF | #### Notes 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \}$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \} = \text{sum of outputs}$ C_L = output load capacitance in pF C_S = max. switch capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V # 74HC/HCT4352 ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |----------------|------------------------------------|---------------------------------| | 1, 6, 2, 5 | 2Y ₀ to 2Y ₃ | independent inputs/outputs | | 3, 14 | n.c. | not connected | | 7 | Ē₁ | enable input (active LOW) | | 8 | E ₂ | enable input (active HIGH) | | 9 | V _{EE} | negative supply voltage | | 10 | GND | ground (0 V) | | 11 | <u>LE</u> | latch enable input (active LOW) | | 13, 12 | S ₀ , S ₁ | select inputs | | 16, 18, 19, 15 | 1Y ₀ to 1Y ₃ | independent inputs/outputs | | 17, 4 | 1Z, 2Z | common inputs/outputs | | 20 | V _{CC} | positive supply voltage | # 74HC/HCT4352 ### **FUNCTION TABLE** | | I | NPUTS | CHANNEL ON | | | |----------------|----------------|-------|----------------|----------------|--| | E ₁ | E ₂ | LE | S ₁ | S ₀ | CHANNEL ON | | Н | Х | Х | Χ | Χ | none | | X | L | X | X | Х | none | | L | Н | Н | L | L | $nY_0 - nZ$ | | L | Н | Н | L | Н | $nY_1 - nZ$ | | L | Н | Н | Н | L | $nY_2 - nZ$ | | L | Н | Н | Н | Н | nY ₁ - nZ
nY ₂ - nZ
nY ₃ - nZ | | L | Н | L | Х | Χ | (1) | | X | X | ↓ | Х | Χ | (2) | #### **Notes** - 1. Last selected channel "ON". - 2. Selected channels latched. H = HIGH voltage level L = LOW voltage level X = don't care \downarrow = HIGH-to-LOW $\overline{\text{LE}}$ transition ### **APPLICATIONS** - Analog multiplexing and demultiplexing - Digital multiplexing and demultiplexing - Signal gating # Dual 4-channel analog multiplexer/demultiplexer with latch ### 74HC/HCT4352 ### **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V) | SYMBOL | PARAMETER | MIN. | MAX. | UNIT | CONDITIONS | |---|-----------------------------------|------|-------|------|--| | V _{CC} | DC supply voltage | -0.5 | +11.0 | V | | | $\pm I_{IK}$ | DC digital input diode current | | 20 | mA | for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$ | | ±I _{SK} | DC switch diode current | | 20 | mA | for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$ | | ±I _S | DC switch current | | 25 | mA | for -0.5 V < V _S < V _{CC} + 0.5 V | | ±I _{EE} | DC V _{EE} current | | 20 | mA | | | ±I _{CC} ;
±I _{GND} | DC V _{CC} or GND current | | 50 | mA | | | T _{stg} | storage temperature range | -65 | +150 | °C | | | P _{tot} | power dissipation per package | | | | for temperature range: –40 to +125 °C 74HC/HCT | | | plastic DIL | | 750 | mW | above +70 °C: derate linearly with 12 mW/K | | | plastic mini-pack (SO) | | 500 | mW | above +70 °C: derate linearly with 6 mW/K | | Ps | power dissipation per switch | | 100 | mW | | #### Note 1. To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} . #### RECOMMENDED OPERATING CONDITIONS | CVMDOL | PARAMETER | | 74HC | ; | 7 | 74HC | Т | LINUT | CONDITIONS | |---------------------------------|--|-----------------|------|---------------------------|-----------------|------|-----------------|-------|--| | SYMBOL | PARAWETER | min. | typ. | max. | min. | typ. | max. | UNIT | CONDITIONS | | V _{CC} | DC supply voltage V _{CC} -GND | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | V | see Figs 6 and 7 | | V _{CC} | DC supply voltage V _{CC} -V _{EE} | 2.0 | 5.0 | 10.0 | 2.0 | 5.0 | 10.0 | V | see Figs 6 and 7 | | VI | DC input voltage range | GND | | V _{CC} | GND | | V _{CC} | V | | | Vs | DC switch voltage range | V _{EE} | | V_{CC} | V _{EE} | | V _{CC} | V | | | T _{amb} | operating ambient temperature range | -40 | | +85 | -40 | | +85 | °C | see DC and AC | | T _{amb} | operating ambient temperature range | -40 | | +125 | -40 | | +125 | °C | CHARACTERISTICS | | t _r , t _f | input rise and fall times | | 6.0 | 1000
500
400
250 | | 6.0 | 500 | ns | $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$ | # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4352. Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4352. #### DC CHARACTERISTICS FOR 74HC/HCT For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V | | | | | | T _{amb} (| °C) | | | | - | TEST C | ONDI | TIONS | ; | |-----------------|-----------------|------|------|------------|--------------------|-------------|------|------|-----------------|------------------------|---------------------------------|---|-----------------|-----------------| | SYMBOL | PARAMETER | | | 7 | 4HC/I | НСТ | | | UNIT | | | _ | | | | STIMBUL | PARAMETER | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | V _{EE}
(V) | l _S
(μ A) | Vis | Vı | | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | (-, | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | R _{ON} | ON resistance | | _ | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | Vcc | V_{IN} | | | (peak) | | 100 | 180 | | 225 | | 270 | Ω | 4.5 | 0 | 1000 | to | or | | | | | 90 | 160 | | 200 | | 240 | Ω | 6.0 | 0 | 1000 | V_{EE} | V_{IL} | | | | | 70 | 130 | | 165 | | 195 | Ω | 4.5 | -4.5 | 1000 | | | | R _{ON} | ON resistance | | 150 | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | V _{EE} | V _{IH} | | | (rail) | | 80 | 140 | | 175 | | 210 | Ω | 4.5 | 0 | 1000 | | or | | | | | 70 | 120 | | 150 | | 180 | Ω | 6.0 | 0 | 1000 | | V_{IL} | | | | | 60 | 105 | | 130 | | 160 | Ω | 4.5 | -4.5 | 1000 | | | | R _{ON} | ON resistance | | 150 | _ | | _ | | _ | Ω | 2.0 | 0 | 100 | V _{CC} | V_{IH} | | | (rail) | | 90 | 160 | | 200 | | 240 | Ω | 4.5 | 0 | 1000 | | or | | | | | 80 | 140 | | 175 | | 210 | Ω | 6.0 | 0 | 1000 | | V_{IL} | | | | | 65 | 120 | | 150 | | 180 | Ω | 4.5 | -4.5 | 1000 | | | | ΔR_{ON} | maximum ΔON | | _ | | | | | | Ω | 2.0 | 0 | | Vcc | V_{IH} | | | resistance | | 9 | | | | | | Ω | 4.5 | 0 | | to | or | | | between any two | | 8 | | | | | | Ω | 6.0 | 0 | | VEE | V_{IL} | | | channels | | 6 | | | | | | Ω | 4.5 | -4.5 | | | | #### Notes - At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages. - 2. For test circuit measuring R_{ON} see Fig.8. # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 ### DC CHARACTERISTICS FOR 74HC Voltages are referenced to GND (ground = 0 V) | | | | | | T _{amb} (| °C) | | | | 1 | EST (| CONDI | TIONS | |-----------------|---|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------|--------------------------|-----------------|--|---| | SYMBOL | DADAMETER | | | | 74H0 | ; | | | UNIT | | | | | | STIMBOL | PARAMETER | | +25 | | −40 to +85 | | -40 to +125 | | UNII | V _{CC} | V _{EE} | Vı | OTHER | | | | min. | typ. | max. | min. | max. | min. | max. | | (*) | (,, | | | | V _{IH} | HIGH level input
voltage | 1.5
3.15
4.2
6.3 | 1.2
2.4
3.2
4.7 | | 1.5
3.15
4.2
6.3 | | 1.5
3.15
4.2
6.3 | | V | 2.0
4.5
6.0
9.0 | | | | | V _{IL} | LOW level input
voltage | | 0.8
2.1
2.8
4.3 | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | V | 2.0
4.5
6.0
9.0 | | | | | ±I _I | input leakage
current | | | 0.1
0.2 | | 1.0
2.0 | | 1.0
2.0 | μА | 6.0
10.0 | 0 | V _{CC}
or
GND | | | ±I _S | analog switch
OFF-state
current per
channel | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$
- V_{EE}
(see
Fig.10) | | ±I _S | analog switch
OFF-state
current all
channels | | | 0.2 | | 2.0 | | 2.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$
- V_{EE}
(see
Fig.10) | | ±I _S | analog switch
ON-state
current | | | 0.2 | | 2.0 | | 2.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$ $-V_{EE}$ (see Fig.11) | | Icc | quiescent
supply current | | | 8.0
16.0 | | 80.0
160.0 | | 160.0
320.0 | μΑ | 6.0
10.0 | 0 | V _{CC}
or
GND | $V_{iS} = V_{EE}$ or V_{CC} ; V_{os} $= V_{CC}$ or V_{EE} | # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | 1 | EST C | ONDITIONS | |-------------------------------------|--|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------|--------------------------|---------------------|---| | SYMBOL | PARAMETER | | | | 74H0 | | 1 | | UNIT | V | \ \v | | | | | | +25 | | -40 t | to +85 | −40 t | o +125 | | V _{CC} | V _{EE} | OTHER | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | t _{PHL} / t _{PLH} | propagation
delay
V _{is} to V _{os} | | 17
6
5
5 | 60
12
10
8 | | 75
15
13
10 | | 90
18
15
12 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18) | | t _{PZH} / t _{PZL} | $\begin{array}{c} \text{turn "ON" time} \\ \overline{\underline{E}}_1; \ \underline{E}_2 \ \text{to} \ V_{os} \\ \overline{LE} \ \text{to} \ V_{os} \end{array}$ | | 99
36
29
25 | 325
65
55
46 | | 405
81
69
58 | | 490
98
83
69 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PZH} / t _{PZL} | turn "ON" time S_n to V_{os} | | 99
36
29
25 | 325
65
55
46 | | 405
81
69
58 | | 490
98
80
69 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PHZ} / t _{PLZ} | $\begin{array}{c} \text{turn "OFF" time} \\ \overline{E}_1; \ E_2 \ \text{to V}_{os} \\ \overline{\text{LE}} \ \text{to V}_{os} \\ \end{array}$ | | 58
21
17
21 | 200
40
34
40 | | 250
50
43
50 | | 300
60
51
60 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PHZ} / t _{PLZ} | turn "OFF" time
S _n to V _{os} | | 63
23
18
24 | 200
40
34
40 | | 250
50
43
50 | | 300
60
51
60 | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{su} | set-up time
S _n to LE | 90
18
15
18 | 17
6
5
9 | | 115
23
20
23 | | 135
27
23
27 | | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.20) | | t _h | hold time
S _n to LE | 5
5
5
5 | -6
-2
-2
-3 | | 5
5
5
5 | | 5
5
5
5 | | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.20) | | t _W | LE minimum
pulse width
HIGH | 80
16
14
16 | 11
4
3
4 | | 100
20
17
20 | | 120
24
20
24 | | ns | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20) | # Dual 4-channel analog multiplexer/demultiplexer with latch 74HC/HCT4352 ### **DC CHARACTERISTICS FOR 74HCT** Voltages are referenced to GND (ground = 0) | | | | | - | T _{amb} (° | C) | | | | | TEST | CONDI | TIONS | |------------------|--|------|------|-------------|---------------------|---------------|------|----------------|------|------------------|-----------------|--|---| | SYMBOL | PARAMETER | | | | 74HC | Т | | | UNIT | | | | | | STWIBUL | PARAMETER | +25 | | | -40 t | -40 to +85 | | -40 to +125 | | V _{CC} | V _{EE} | VI | OTHER | | | | min. | typ. | max. | min. | max. | min. | max. | | (', | (-, | | | | V _{IH} | HIGH level input voltage | 2.0 | 1.6 | | 2.0 | | 2.0 | | V | 4.5
to
5.5 | | | | | V_{IL} | LOW level input voltage | | 1.2 | 0.8 | | 0.8 | | 0.8 | V | 4.5
to
5.5 | | | | | ±l _I | input leakage
current | | | 0.1 | | 1.0 | | 1.0 | μА | 5.5 | 0 | V _{CC}
or
GND | | | ±I _S | analog switch
OFF-state
current per
channel | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$
- V_{EE}
(see
Fig.10) | | ±I _S | analog switch OFF-state current all channels | | | 0.2 | | 2.0 | | 2.0 | μА | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$
- V_{EE}
(see
Fig.10) | | ±I _S | analog switch
ON-state current | | | 0.2 | | 2.0 | | 2.0 | μА | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC}$
- V_{EE}
(see
Fig.11) | | I _{CC} | quiescent supply
current | | | 8.0
16.0 | | 80.0
160.0 | | 160.0
320.0 | μА | 5.5
5.0 | 0
-5.0 | V _{CC}
or
GND | $V_{\text{iS}} = V_{\text{EE}}$ or V_{CC} ; $V_{\text{os}} = V_{\text{CC}}$ or V_{EE} | | Δl _{CC} | additional
quiescent supply
current per
input pin for unit
load coefficient
is 1 (note 1) | | 100 | 360 | | 450 | | 490 | μА | 4.5
to
5.5 | 0 | V _{CC}
- 2.1
V | other
inputs at
V _{CC} or
GND | ### Note to HCT types 1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |--------------------------|-----------------------| | \overline{E}_1 , E_2 | 0.50 | | Sn | 0.50 | | <u>LE</u> | 1.5 | # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITION | | | |-------------------------------------|---|-----------------------|----------|----------|------------|------------|----------|-------------|------|-----------------|-----------------|---| | CVMDOL | DADAMETED | | | | 74HC | T | | | UNIT | | | | | SYMBOL | PARAMETER | +25 | | | -40 | -40 to +85 | | -40 to +125 | | V _{CC} | V _{EE} | OTHER | | | | min. | typ. | max. | min. | max. | min. | max. | | (*) | (•) | | | t _{PHL} / t _{PLH} | propagation delay V _{is} to V _{os} | | 6
5 | 12
8 | | 15
10 | | 18
12 | ns | 4.5
4.5 | 0
-4.5 | $R_L = \infty;$
$C_L = 50 \text{ pF}$
(see Fig.18) | | t _{PZH} / t _{PZL} | turn "ON" time \overline{E}_1 ; E_2 to V_{os} \overline{LE} to V_{os} | | 38
28 | 65
46 | | 81
58 | | 98
69 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PZH} / t _{PZL} | turn "ON" time
S _n to V _{os} | | 38
27 | 65
46 | | 81
58 | | 98
69 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PHZ} / t _{PLZ} | $\begin{array}{c} \text{turn "OFF" time} \\ \overline{E}_1 \text{ to V}_{os} \\ \overline{\text{LE}} \text{ to V}_{os} \end{array}$ | | 20
20 | 40
40 | | 50
50 | | 60
60 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{PHZ} / t _{PLZ} | turn "OFF" time \overline{E}_2 , S_n to V_{os} | | 25
25 | 43
43 | | 54
54 | | 65
65 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.19) | | t _{su} | set-up time
S _n to $\overline{\text{LE}}$ | 16
18 | 7
9 | | 20
23 | | 24
27 | | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.20) | | t _h | hold time
S _n to LE | 5
5 | -1
-1 | | 5
5 | | 5
5 | | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$
$C_L = 50 \text{ pF}$
(see Fig.20) | | t _W | LE minimum pulse width HIGH | 16
16 | 3 4 | | 20
20 | | 24
24 | | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20) | # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 Fig.9 Typical R_{ON} as a function of input voltage V_{is} for V_{is} = 0 to $V_{CC} - V_{EE}$. 74HC/HCT4352 #### ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT ### Recommended conditions and typical values GND = 0 V; T_{amb} = 25 °C | SYMBOL | PARAMETER | typ. | UNIT | V _{CC} (V) | V _{EE} (V) | V _{is(p-p)} (V) | CONDITIONS | |--------------------|---|--------------|------------|---------------------|---------------------|--------------------------|---| | | sine-wave distortion
f = 1 kHz | 0.04
0.02 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14) | | | sine-wave distortion
f = 10 kHz | 0.12
0.06 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
(see Fig.14) | | | switch "OFF" signal feed-through | -50
-50 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | $R_L = 600 \ \Omega; \ C_L = 50 \ pF$
f =1 MHz (see Figs 12 and 15) | | | crosstalk between
any two switches/
multiplexers | -60
-60 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | $R_L = 600 \Omega; C_L = 50 pF;$
f = 1 MHz (see Fig.16) | | V _(p-p) | crosstalk voltage between
control and any switch
(peak-to-peak value) | 110
220 | mV
mV | 4.5
4.5 | 0
-4.5 | | $\begin{aligned} R_L &= 600 \ \Omega; \ C_L = 50 \ \text{pF}; \\ f &= 1 \ \text{MHz} \ (\overline{E}_1, \ E_2 \ \text{or} \ S_n, \\ \text{square-wave between} \ V_{CC} \ \text{and} \\ \text{GND,} \ t_r &= t_f = 6 \ \text{ns}) \\ \text{(see Fig.17)} \end{aligned}$ | | f _{max} | minimum frequency response (–3dB) | 160
170 | MHz
MHz | 2.25
4.5 | -2.25
-4.5 | note 2 | $R_L = 50 \Omega$; $C_L = 10 pF$
(see Figs 13 and 14) | | Cs | maximum switch capacitance independent (Y) common (Z) | 5
12 | pF
pF | | | | | #### **Notes** - 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω). - 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω). V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output. # Dual 4-channel analog multiplexer/demultiplexer with latch # 74HC/HCT4352 Fig.13 Typical frequency response. Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response. Fig.15 Test circuit for measuring switch "OFF" signal feed-through. Fig.16 Test circuits for measuring crosstalk between any two switches/multiplexers. (a) channel ON condition; (b) channel OFF condition. # 74HC/HCT4352 ### **AC WAVEFORMS** Fig.18 Waveforms showing the input (V_{is}) to output (V_{os}) propagation delays. turn-OFF times. # **Dual 4-channel analog** multiplexer/demultiplexer with latch ### 74HC/HCT4352 #### **TEST CIRCUIT AND WAVEFORMS** **Conditions** t_{PLZ} others **SWITCH TEST** ۷is V_{EE} V_{CC} t_{PZH} V_{CC} V_{EE} t_{PZL} V_{EE} V_{CC} t_{PHZ} V_{CC} open V_{EE} pulse V_{CC} < 2 ns 6 ns 74HC 50% 74HCT 3.0 V 1.3 V < 2 ns 6 ns load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). termination resistance should be equal to the output impedance Z_O of the pulse generator. t_f = 6 ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor. Fig.21 Test circuit for measuring AC performance. load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). termination resistance should be equal to the output impedance Z_O of the pulse generator. $t_f = 6$ ns; when measuring t_{max} , there is no constraint on t_r , t_f with 50% duty factor. Fig.22 Input pulse definitions. # Dual 4-channel analog multiplexer/demultiplexer with latch 74HC/HCT4352 ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".