INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4053 Triple 2-channel analog multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4053

FEATURES

• Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4053 are high-speed Si-gate CMOS devices and are pin compatible with the "4053" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4053 are triple 2-channel analog multiplexers/demultiplexers with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (nY $_0$ and nY $_1$), a common input/output (nZ) and three digital select inputs (S $_1$ to S $_3$).

With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S_1 to S_3 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_1 to S_3 .

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₁, to S₃, and $\overline{E})$. The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ and nY $_1$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAWETER	CONDITIONS	нс	нст	UNIT
t _{PZH} / t _{PZL}	turn "ON" time	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$			
	Ē to V _{OS}		17	23	ns
	S _n to V _{OS}		21	21	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time				
	Ē to V _{OS}		18	20	ns
	S _n to V _{OS}		17	19	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	36	36	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		8	8	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where: }$$

 f_i = input frequency in MHz; f_o = output frequency in MHz

 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$

 C_L = output load capacitance in pF; C_S = max. switch capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

74HC/HCT4053

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ to, 2Y ₁	independent inputs/outputs
5, 3	3Y ₀ to, 3Y ₁	independent inputs/outputs
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
11, 10, 9	S ₁ to S ₃	select inputs
12, 13	1Y ₀ , 1Y ₁	independent inputs/outputs
14, 15, 4	1Z to 3Z	common inputs/outputs
16	V _{CC}	positive supply voltage

74HC/HCT4053

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

FUNCTION TABLE

INPU	JTS	CHANNEL ON
Ē	Sn	CHANNEL ON
L	L	$nY_0 - nZ$
L	Н	nY1 – nZ
Н	×	none

Note

H = HIGH voltage level
 L = LOW voltage level
 X = don't care

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: –40 to + 125 °C 74HC/HCT
	plastic DIL		750	mW	above + 70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above + 70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	;		74H0	т	UNIT	CONDITIONS	
STINIBUL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS	
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	٧	see Figs 6 and 7	
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7	
VI	DC input voltage range	GND		V_{CC}	GND		V _{CC}	V		
Vs	DC switch voltage range	V _{EE}		V_{CC}	V _{EE}		V _{CC}	V		
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS	
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$	

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4053.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4053.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					T _{amb}	(°C)				•	TEST (CONDI	TIONS	3
				7	74HC/	НСТ						_		
SYMBOL	PARAMETER		+ 25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	Ι _S (μ A)	V _{is}	V _I
		min.	typ.	max.	min.	max.	min.	max.						
R _{ON}	ON resistance (peak)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}
ΔR_{ON}	maximum ΔON resistance between any two channels		9 8 6						Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}

Notes to the characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear.
 Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°C)				TEST CONDITIONS			
					74H	С							
SYMBOL	PARAMETER	+25		−40 to +85		-40 to +125		UNIT	V _{CC}	V _{EE}	V _I	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±l _l	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±Is	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				•	T _{amb} (°C)				Т	TEST CONDITIONS			
					74H0	C								
SYMBOL	PARAMETER		+25		-40 1	to +85	-40 to	+125	UNIT	V _{CC} (V)	V _{EE} (V)	OTHER		
		min.	typ.	max.	min.	max.	min.	max.						
t _{PHL} / t _{PLH}	propagation delay		15	60		75		90	ns	2.0	0	R _L = ∞;		
	V _{is} to V _{os}		5	12		15		18		4.5	0	$C_L = 50 pF$		
			4	10		13		15		6.0	0	(see Fig.18)		
			4	8		10		12		4.5	-4.5			
t _{PZH} / t _{PZL}	turn "ON" time		60	220		275		330	ns	2.0	0	$R_L = 1 \text{ k}\Omega;$		
	E to V _{os}		20	44		55		66		4.5	0	$C_L = 50 \text{ pF}$		
			16	37		47		56		6.0	0	(see Figs 19,		
			15	31		39		47		4.5	-4.5	20 and 21)		
t _{PZH} / t _{PZL}	turn "ON" time		75	220		275		330	ns	2.0	0	$R_L = 1 \text{ k}\Omega;$		
	S _n to V _{os}		25	44		55		66		4.5	0	$C_L = 50 \text{ pF}$		
			20	37		47		56		6.0	0	(see Figs 19,		
			15	31		39		47		4.5	-4.5	20 and 21)		
t _{PHZ} / t _{PLZ}	turn "OFF" time		63	210		265		315	ns	2.0	0	$R_L = 1 k\Omega;$		
	E to Vos		21	42		53		63		4.5	0	$C_L = 50 \text{ pF}$		
			17	36		45		54		6.0	0	(see Figs 19,		
			15	29		36		44		4.5	-4.5	20 and 21)		
t _{PHZ} / t _{PLZ}	turn "OFF" time		60	210		265		315	ns	2.0	0	$R_L = 1 \text{ k}\Omega;$		
	S _n to V _{os}		20	42		53		63		4.5	0	C _L = 50 pF		
			16	36		45		54		6.0	0	(see Figs 19,		
			15	29		36		44		4.5	-4.5	20 and 21)		

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

				•	T _{amb} (°C)				1	TEST CONDITIONS				
SYMBOL	PARAMETER				74HC	T			UNIT	V	VEE	Vı	OTHER		
STWIBOL	PARAMETER		+25		−40 to +85		-40 to +125		ONIT	V _{CC}	(V)	V _I	OTHER		
		min.	typ.	max.	min.	max.	min.	max.							
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5					
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5					
±II	input leakage current			0.1		1.0		1.0	μА	5.5	0	V _{CC} or GND			
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10		
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10		
±I _S	analog switch ON-state current			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$V_S = V_{CC} - V_{EE}$ Fig.11		
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}		
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND		

Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
S _n	0.50
Ē	0.50

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				Т	EST C	ONDITIONS
					74HC	T			UNIT			
SYMBOL	PARAMETER	+25		-40	−40 to +85		-40 to +125		V _{CC}	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os}		27 16	48 34		60 43		72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 16	48 34		60 43		72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time Ē to V _{os}		24 15	44 31		55 39		66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os}		22 15	44 31		55 39		66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF$ f = 1 MHz see (Fig.12 and 15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF};$ $f = 1 \text{ MHz } (\overline{E} \text{ or } S_n,$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \text{ ns}$ (see Fig.17)
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Fig.13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 8	pF pF				

Notes to the AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

General note

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output

74HC/HCT4053

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

74HC/HCT4053

AC WAVEFORMS

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{IS}
t _{PZH}	V _{EE}	V _{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	<2 ns	6 ns
74HCT	3.0 V	1.3 V	<2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{IS}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	VEE
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	VEE
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	<2 ns	6 ns
74HCT	3.0 V	1.3 V	<2 ns	6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 $R_{T} = termination \ resistance \ should \ be \ equal \ to \ the \ output \ impedance \ Z_{O} \ of \ the \ pulse \ generator.$

 t_{r} = t_{f} = 6 ns; when measuring f_{max} , there is no constraint to t_{r} , t_{f} with 50% duty factor.

Fig.21 Input pulse definitions.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".