INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # 74HC/HCT4053 Triple 2-channel analog multiplexer/demultiplexer Product specification File under Integrated Circuits, IC06 December 1990 ### 74HC/HCT4053 #### **FEATURES** • Low "ON" resistance: 80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$ 70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$ 60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$ - Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals - Typical "break before make" built in - · Output capability: non-standard - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT4053 are high-speed Si-gate CMOS devices and are pin compatible with the "4053" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4053 are triple 2-channel analog multiplexers/demultiplexers with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (nY $_0$ and nY $_1$), a common input/output (nZ) and three digital select inputs (S $_1$ to S $_3$). With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S_1 to S_3 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_1 to S_3 . V_{CC} and GND are the supply voltage pins for the digital control inputs (S₁, to S₃, and $\overline{E})$. The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ and nY $_1$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground). ### **QUICK REFERENCE DATA** $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$ | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | |-------------------------------------|--|--|-----|------|------| | STIVIBUL | PARAWETER | CONDITIONS | нс | нст | UNIT | | t _{PZH} / t _{PZL} | turn "ON" time | $C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$ | | | | | | Ē to V _{OS} | | 17 | 23 | ns | | | S _n to V _{OS} | | 21 | 21 | ns | | t _{PHZ} / t _{PLZ} | turn "OFF" time | | | | | | | Ē to V _{OS} | | 18 | 20 | ns | | | S _n to V _{OS} | | 17 | 19 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per switch | notes 1 and 2 | 36 | 36 | pF | | Cs | max. switch capacitance | | | | | | | independent (Y) | | 5 | 5 | pF | | | common (Z) | | 8 | 8 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where: }$$ f_i = input frequency in MHz; f_o = output frequency in MHz $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$ C_L = output load capacitance in pF; C_S = max. switch capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$ # 74HC/HCT4053 ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |-----------|-------------------------------------|----------------------------| | 2, 1 | 2Y ₀ to, 2Y ₁ | independent inputs/outputs | | 5, 3 | 3Y ₀ to, 3Y ₁ | independent inputs/outputs | | 6 | Ē | enable input (active LOW) | | 7 | V _{EE} | negative supply voltage | | 8 | GND | ground (0 V) | | 11, 10, 9 | S ₁ to S ₃ | select inputs | | 12, 13 | 1Y ₀ , 1Y ₁ | independent inputs/outputs | | 14, 15, 4 | 1Z to 3Z | common inputs/outputs | | 16 | V _{CC} | positive supply voltage | # 74HC/HCT4053 ### **APPLICATIONS** - Analog multiplexing and demultiplexing - Digital multiplexing and demultiplexing - Signal gating ### **FUNCTION TABLE** | INPU | JTS | CHANNEL ON | |------|-----|-------------| | Ē | Sn | CHANNEL ON | | L | L | $nY_0 - nZ$ | | L | Н | nY1 – nZ | | Н | × | none | #### Note H = HIGH voltage level L = LOW voltage level X = don't care # Triple 2-channel analog multiplexer/demultiplexer ### 74HC/HCT4053 #### **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V) | SYMBOL | PARAMETER | MIN. | MAX. | UNIT | CONDITIONS | |--------------------------------------|-----------------------------------|------|-------|------|---| | V _{CC} | DC supply voltage | -0.5 | +11.0 | V | | | ±I _{IK} | DC digital input diode current | | 20 | mA | for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$ | | ±I _{SK} | DC switch diode current | | 20 | mA | for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$ | | ±I _S | DC switch current | | 25 | mA | for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | | ±I _{EE} | DC V _{EE} current | | 20 | mA | | | ±I _{CC} ; ±I _{GND} | DC V _{CC} or GND current | | 50 | mA | | | T _{stg} | storage temperature range | -65 | +150 | °C | | | P _{tot} | power dissipation per package | | | | for temperature range: –40 to + 125 °C 74HC/HCT | | | plastic DIL | | 750 | mW | above + 70 °C: derate linearly with 12 mW/K | | | plastic mini-pack (SO) | | 500 | mW | above + 70 °C: derate linearly with 8 mW/K | | Ps | power dissipation per switch | | 100 | mW | | ### Note to ratings To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} . ### **RECOMMENDED OPERATING CONDITIONS** | SYMBOL | PARAMETER | | 74HC | ; | | 74H0 | т | UNIT | CONDITIONS | | |---------------------------------|--|-----------------|------|---------------------------|-----------------|------|-----------------|------|--|--| | STINIBUL | PARAMETER | min. | typ. | max. | min. | typ. | max. | UNIT | CONDITIONS | | | V _{CC} | DC supply voltage V _{CC} -GND | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | ٧ | see Figs 6 and 7 | | | V _{CC} | DC supply voltage V _{CC} -V _{EE} | 2.0 | 5.0 | 10.0 | 2.0 | 5.0 | 10.0 | V | see Figs 6 and 7 | | | VI | DC input voltage range | GND | | V_{CC} | GND | | V _{CC} | V | | | | Vs | DC switch voltage range | V _{EE} | | V_{CC} | V _{EE} | | V _{CC} | V | | | | T _{amb} | operating ambient temperature range | -40 | | +85 | -40 | | +85 | °C | see DC and AC | | | T _{amb} | operating ambient temperature range | -40 | | +125 | -40 | | +125 | °C | CHARACTERISTICS | | | t _r , t _f | input rise and fall times | | 6.0 | 1000
500
400
250 | | 6.0 | 500 | ns | $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$ | | # Triple 2-channel analog multiplexer/demultiplexer ## 74HC/HCT4053 Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4053. Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4053. #### DC CHARACTERISTICS FOR 74HC/HCT For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V | | | | | | T _{amb} | (°C) | | | | • | TEST (| CONDI | TIONS | 3 | |-----------------|---|------|-----------------------|------------------------|------------------|------------------------|-------------|------------------------|----------------------------|--------------------------|------------------------|---------------------------------|--|--| | | | | | 7 | 74HC/ | НСТ | | | | | | _ | | | | SYMBOL | PARAMETER | | + 25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | V _{EE}
(V) | Ι _S
(μ A) | V _{is} | V _I | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | | R _{ON} | ON resistance
(peak) | | -
100
90
70 | -
180
160
130 | | -
225
200
165 | | -
270
240
195 | Ω Ω Ω | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | 100
1000
1000
1000 | V _{CC}
to
V _{EE} | V _{IH}
or
V _{IL} | | R _{ON} | ON resistance
(rail) | | 150
80
70
60 | -
140
120
105 | | -
175
150
130 | | -
210
180
160 | Ω
Ω
Ω | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | 100
1000
1000
1000 | V _{EE} | V _{IH}
or
V _{IL} | | R _{ON} | ON resistance (rail) | | 150
90
80
65 | -
160
140
120 | | -
200
175
150 | | -
240
210
180 | Ω
Ω
Ω | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | 100
1000
1000
1000 | V _{CC} | V _{IH}
or
V _{IL} | | ΔR_{ON} | maximum ΔON resistance between any two channels | | 9
8
6 | | | | | | Ω
Ω
Ω | 2.0
4.5
6.0
4.5 | 0
0
0
-4.5 | | V _{CC}
to
V _{EE} | V _{IH}
or
V _{IL} | #### Notes to the characteristics - At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages. - 2. For test circuit measuring R_{ON} see Fig.8. # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 ### DC CHARACTERISTICS FOR 74HC Voltages are referenced to GND (ground = 0 V) | | | | | | T _{amb} (| °C) | | | | TEST CONDITIONS | | | | |-----------------|--|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------|--------------------------|----------------|--|---| | | | | | | 74H | С | | | | | | | | | SYMBOL | PARAMETER | +25 | | −40 to +85 | | -40 to +125 | | UNIT | V _{CC} | V _{EE} | V _I | OTHER | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | V _{IH} | HIGH level input voltage | 1.5
3.15
4.2
6.3 | 1.2
2.4
3.2
4.7 | | 1.5
3.15
4.2
6.3 | | 1.5
3.15
4.2
6.3 | | V | 2.0
4.5
6.0
9.0 | | | | | V _{IL} | LOW level input voltage | | 0.8
2.1
2.8
4.3 | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | | 0.5
1.35
1.8
2.7 | V | 2.0
4.5
6.0
9.0 | | | | | ±l _l | input leakage
current | | | 0.1
0.2 | | 1.0
2.0 | | 1.0
2.0 | μΑ | 6.0
10.0 | 0 | V _{CC}
or
GND | | | ±Is | analog switch OFF-state current per channel | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.10) | | ±I _S | analog switch OFF-state current all channels | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$ (see Fig.10) | | ±I _S | analog switch
ON-state
current | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
(see Fig.11) | | I _{CC} | quiescent supply current | | | 8.0
16.0 | | 80.0
160.0 | | 160.0
320.0 | μΑ | 6.0
10.0 | 0 | V _{CC}
or
GND | $V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE} | # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | | | • | T _{amb} (| °C) | | | | Т | TEST CONDITIONS | | | | |-------------------------------------|------------------------------------|------|------|------|--------------------|----------|--------|------|------|------------------------|------------------------|----------------------------|--|--| | | | | | | 74H0 | C | | | | | | | | | | SYMBOL | PARAMETER | | +25 | | -40 1 | to +85 | -40 to | +125 | UNIT | V _{CC}
(V) | V _{EE}
(V) | OTHER | | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | | t _{PHL} / t _{PLH} | propagation delay | | 15 | 60 | | 75 | | 90 | ns | 2.0 | 0 | R _L = ∞; | | | | | V _{is} to V _{os} | | 5 | 12 | | 15 | | 18 | | 4.5 | 0 | $C_L = 50 pF$ | | | | | | | 4 | 10 | | 13 | | 15 | | 6.0 | 0 | (see Fig.18) | | | | | | | 4 | 8 | | 10 | | 12 | | 4.5 | -4.5 | | | | | t _{PZH} / t _{PZL} | turn "ON" time | | 60 | 220 | | 275 | | 330 | ns | 2.0 | 0 | $R_L = 1 \text{ k}\Omega;$ | | | | | E to V _{os} | | 20 | 44 | | 55 | | 66 | | 4.5 | 0 | $C_L = 50 \text{ pF}$ | | | | | | | 16 | 37 | | 47 | | 56 | | 6.0 | 0 | (see Figs 19, | | | | | | | 15 | 31 | | 39 | | 47 | | 4.5 | -4.5 | 20 and 21) | | | | t _{PZH} / t _{PZL} | turn "ON" time | | 75 | 220 | | 275 | | 330 | ns | 2.0 | 0 | $R_L = 1 \text{ k}\Omega;$ | | | | | S _n to V _{os} | | 25 | 44 | | 55 | | 66 | | 4.5 | 0 | $C_L = 50 \text{ pF}$ | | | | | | | 20 | 37 | | 47 | | 56 | | 6.0 | 0 | (see Figs 19, | | | | | | | 15 | 31 | | 39 | | 47 | | 4.5 | -4.5 | 20 and 21) | | | | t _{PHZ} / t _{PLZ} | turn "OFF" time | | 63 | 210 | | 265 | | 315 | ns | 2.0 | 0 | $R_L = 1 k\Omega;$ | | | | | E to Vos | | 21 | 42 | | 53 | | 63 | | 4.5 | 0 | $C_L = 50 \text{ pF}$ | | | | | | | 17 | 36 | | 45 | | 54 | | 6.0 | 0 | (see Figs 19, | | | | | | | 15 | 29 | | 36 | | 44 | | 4.5 | -4.5 | 20 and 21) | | | | t _{PHZ} / t _{PLZ} | turn "OFF" time | | 60 | 210 | | 265 | | 315 | ns | 2.0 | 0 | $R_L = 1 \text{ k}\Omega;$ | | | | | S _n to V _{os} | | 20 | 42 | | 53 | | 63 | | 4.5 | 0 | C _L = 50 pF | | | | | | | 16 | 36 | | 45 | | 54 | | 6.0 | 0 | (see Figs 19, | | | | | | | 15 | 29 | | 36 | | 44 | | 4.5 | -4.5 | 20 and 21) | | | # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 ### DC CHARACTERISTICS FOR 74HCT Voltages are referenced to GND (ground = 0 V) | | | | | • | T _{amb} (| °C) | | | | 1 | TEST CONDITIONS | | | | | |------------------|--|------|------|-------------|--------------------|---------------|-------------|----------------|------|------------------|-----------------|--|--|--|--| | SYMBOL | PARAMETER | | | | 74HC | T | | | UNIT | V | VEE | Vı | OTHER | | | | STWIBOL | PARAMETER | | +25 | | −40 to +85 | | -40 to +125 | | ONIT | V _{CC} | (V) | V _I | OTHER | | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | | | | V _{IH} | HIGH level input voltage | 2.0 | 1.6 | | 2.0 | | 2.0 | | V | 4.5
to
5.5 | | | | | | | V _{IL} | LOW level input voltage | | 1.2 | 0.8 | | 0.8 | | 0.8 | V | 4.5
to
5.5 | | | | | | | ±II | input leakage
current | | | 0.1 | | 1.0 | | 1.0 | μА | 5.5 | 0 | V _{CC}
or
GND | | | | | ±I _S | analog switch OFF-state current per channel | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
Fig.10 | | | | ±I _S | analog switch
OFF-state
current all
channels | | | 0.1 | | 1.0 | | 1.0 | μΑ | 10.0 | 0 | V _{IH}
or
V _{IL} | $ V_S = V_{CC} - V_{EE}$
Fig.10 | | | | ±I _S | analog switch
ON-state current | | | 0.1 | | 1.0 | | 1.0 | μА | 10.0 | 0 | V _{IH}
or
V _{IL} | $V_S = V_{CC} - V_{EE}$
Fig.11 | | | | I _{CC} | quiescent supply
current | | | 8.0
16.0 | | 80.0
160.0 | | 160.0
320.0 | μΑ | 5.5
5.0 | 0
-5.0 | V _{CC}
or
GND | $V_{is} = V_{EE}$
or V_{CC} ;
$V_{OS} = V_{CC}$
or V_{EE} | | | | Δl _{CC} | additional
quiescent supply
current per input
pin for unit load
coefficient is 1
(note 1) | | 100 | 360 | | 450 | | 490 | μА | 4.5
to
5.5 | 0 | V _{CC}
-2.1
V | other
inputs
at V _{CC} or
GND | | | ### Note to HCT types 1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |----------------|-----------------------| | S _n | 0.50 | | Ē | 0.50 | # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | | | | T _{amb} (| °C) | | | | Т | EST C | ONDITIONS | |-------------------------------------|--|------|----------|------------|--------------------|----------|-------------|----------|-----------------|------------------------|-----------|---| | | | | | | 74HC | T | | | UNIT | | | | | SYMBOL | PARAMETER | +25 | | -40 | −40 to +85 | | -40 to +125 | | V _{CC} | V _{EE}
(V) | OTHER | | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | | t _{PHL} / t _{PLH} | propagation delay V _{is} to V _{os} | | 5
4 | 12
8 | | 15
10 | | 18
12 | ns | 4.5
4.5 | 0
-4.5 | $R_L = \infty;$
$C_L = 50 \text{ pF}$
(see Fig.18) | | t _{PZH} / t _{PZL} | turn "ON" time
E to V _{os} | | 27
16 | 48
34 | | 60
43 | | 72
51 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21) | | t _{PZH} / t _{PZL} | turn "ON" time
S _n to V _{os} | | 25
16 | 48
34 | | 60
43 | | 72
51 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21) | | t _{PHZ} / t _{PLZ} | turn "OFF" time
Ē to V _{os} | | 24
15 | 44
31 | | 55
39 | | 66
47 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21) | | t _{PHZ} / t _{PLZ} | turn "OFF" time S_n to V_{os} | | 22
15 | 44
31 | | 55
39 | | 66
47 | ns | 4.5
4.5 | 0
-4.5 | $R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21) | # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 # Triple 2-channel analog multiplexer/demultiplexer ### 74HC/HCT4053 ### ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT ### Recommended conditions and typical values GND = 0 V; T_{amb} = 25 °C | SYMBOL | PARAMETER | typ. | UNIT | V _{CC} (V) | V _{EE} (V) | V _{is(p-p)} (V) | CONDITIONS | |--------------------|---|--------------|------------|---------------------|---------------------|--------------------------|---| | | sine-wave distortion
f = 1 kHz | 0.04
0.02 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14) | | | sine-wave distortion
f = 10 kHz | 0.12
0.06 | %
% | 2.25
4.5 | -2.25
-4.5 | 4.0
8.0 | $R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14) | | | switch "OFF" signal feed-through | -50
-50 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | $R_L = 600 \Omega; C_L = 50 pF$
f = 1 MHz see (Fig.12 and 15) | | | crosstalk between
any two switches/
multiplexers | -60
-60 | dB
dB | 2.25
4.5 | -2.25
-4.5 | note 1 | $R_L = 600 \Omega; C_L = 50 pF;$
f = 1 MHz (see Fig.16) | | V _(p-p) | crosstalk voltage between
control and any switch
(peak-to-peak value) | 110
220 | mV
mV | 4.5
4.5 | 0
-4.5 | | $R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF};$
$f = 1 \text{ MHz } (\overline{E} \text{ or } S_n,$
square-wave between V_{CC}
and GND, $t_r = t_f = 6 \text{ ns}$
(see Fig.17) | | f _{max} | minimum frequency response (–3dB) | 160
170 | MHz
MHz | 2.25
4.5 | -2.25
-4.5 | note 2 | $R_L = 50 \Omega$; $C_L = 10 pF$
(see Fig.13 and 14) | | Cs | maximum switch capacitance independent (Y) common (Z) | 5
8 | pF
pF | | | | | ### Notes to the AC characteristics - 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω). - 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω). #### **General note** V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output ## 74HC/HCT4053 # Triple 2-channel analog multiplexer/demultiplexer # 74HC/HCT4053 # 74HC/HCT4053 ### **AC WAVEFORMS** # Triple 2-channel analog multiplexer/demultiplexer ### 74HC/HCT4053 ### **TEST CIRCUIT AND WAVEFORMS** #### **Conditions** | TEST | SWITCH | V _{IS} | |------------------|-----------------|-----------------| | t _{PZH} | V _{EE} | V _{CC} | | t _{PZL} | V _{CC} | V_{EE} | | t _{PHZ} | V _{EE} | V_{CC} | | t _{PLZ} | V _{CC} | V_{EE} | | others | open | pulse | | | AMPLITUDE | V _M | t _r ; t _f | | |--------|-----------------|----------------|-----------------------------------|-------| | FAMILY | | | f _{max} ;
PULSE WIDTH | OTHER | | 74HC | V _{CC} | 50% | <2 ns | 6 ns | | 74HCT | 3.0 V | 1.3 V | <2 ns | 6 ns | C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator. $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r , t_f with 50% duty factor. Fig.20 Test circuit for measuring AC performance. ### **Conditions** | TEST | SWITCH | V _{IS} | |------------------|-----------------|-----------------| | t _{PZH} | V _{EE} | V_{CC} | | t _{PZL} | V _{CC} | VEE | | t _{PHZ} | V _{EE} | V_{CC} | | t _{PLZ} | V _{CC} | VEE | | others | open | pulse | | | AMPLITUDE | V _M | t _r ; t _f | | |--------|-----------------|----------------|-----------------------------------|-------| | FAMILY | | | f _{max} ;
PULSE WIDTH | OTHER | | 74HC | V _{CC} | 50% | <2 ns | 6 ns | | 74HCT | 3.0 V | 1.3 V | <2 ns | 6 ns | C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). $R_{T} = termination \ resistance \ should \ be \ equal \ to \ the \ output \ impedance \ Z_{O} \ of \ the \ pulse \ generator.$ t_{r} = t_{f} = 6 ns; when measuring f_{max} , there is no constraint to t_{r} , t_{f} with 50% duty factor. Fig.21 Input pulse definitions. # Triple 2-channel analog multiplexer/demultiplexer 74HC/HCT4053 ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".