INTEGRATED CIRCUITS

DATA SHEET

74AHC1G125; **74AHCT1G125** Bus buffer/line driver; 3-state

Product specification Supersedes data of 2002 Mar 22 2002 Jun 06

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

FEATURES

- · Symmetrical output impedance
- · High noise immunity
- · ESD protection:
 - HBM EIA/JESD22-A114-A exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
 - CDM EIA/JESD22-C101 exceeds 1000 V.
- · Low power dissipation
- Balanced propagation delays
- · Very small 5-pin package
- · Output capability: standard
- Specified from -40 to +125 °C.

DESCRIPTION

The 74AHC1G/AHCT1G125 is a high-speed Si-gate CMOS device.

The 74AHC1G/AHCT1G125 provides one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (\overline{OE}) . A HIGH at \overline{OE} causes the output to assume a high-impedance OFF-state.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = $t_f \le 3.0$ ns.

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBUL	PARAMETER	CONDITIONS	AHC1G	AHCT1G	UNIT	
t _{PHL} /t _{PLH}	propagation delay A to Y	C _L = 15 pF; V _{CC} = 5 V	3.4	3.4	ns	
C _I	input capacitance		1.5	1.5	pF	
C _{PD}	power dissipation capacitance	C _L = 50 pF; f = 1 MHz; notes 1 and 2	9	11	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts.

2. The condition is $V_I = GND$ to V_{CC} .

FUNCTION TABLE

See note 1.

INP	INPUTS				
ŌĒ	Α	Y			
L	L	L			
L	Н	Н			
Н	X	Z			

Note

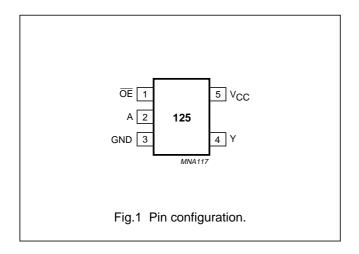
1. H = HIGH voltage level;

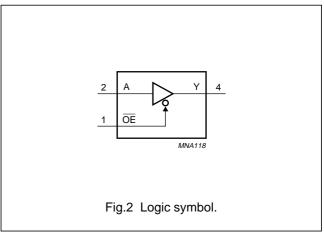
L = LOW voltage level;

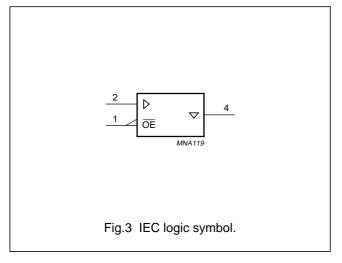
X = don't care;

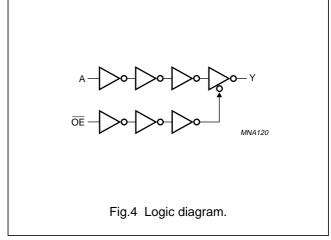
Z = high-impedance OFF-state.

Bus buffer/line driver; 3-state


74AHC1G125; 74AHCT1G125


ORDERING INFORMATION


TYPE NUMBER	TEMPERATURE	PACKAGES								
I TPE NOWBER	RANGE	PINS	PACKAGE	MATERIAL	CODE	MARKING				
74AHC1G125GW	-40 to +125 °C	5	SC-88A	plastic	SOT353	AM				
74AHCT1G125GW	-40 to +125 °C	5	SC-88A	plastic	SOT353	СМ				
74AHC1G125GV	-40 to +125 °C	5	SC-74A	plastic	SOT753	A25				
74AHCT1G125GV	-40 to +125 °C	5	SC-74A	plastic	SOT753	C25				


PINNING

PIN	SYMBOL	DESCRIPTION
1	ŌĒ	output enable input
2	A	data input A
3	GND	ground (0 V)
4	Υ	data output Y
5	V _{CC}	supply voltage

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	7	4AHC1	G	74	IG	UNIT	
STWIBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNII
V _{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
VI	input voltage		0	_	5.5	0	_	5.5	V
Vo	output voltage		0	_	V _{CC}	0	_	V _{CC}	V
T _{amb}	operating ambient temperature	see DC and AC characteristics per device	-40	+25	+125	-40	+25	+125	°C
t _r , t _f	input rise and fall times	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	_	_	100	_	_	_	ns/V
		V _{CC} = 5 ±0.5 V	_	_	20	_	_	20	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	٧
I _{IK}	input diode current	V _I < -0.5 V	_	-20	mA
I _{OK}	output diode current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}; \text{ note 1}$	_	±20	mA
Io	output source or sink current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	_	±25	mA
I _{CC}	V _{CC} or GND current		_	±75	mA
T _{stg}	storage temperature		-65	+150	°C
P _D	power dissipation per package	for temperature range from -40 to +125 °C	_	250	mW

Note

^{1.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

DC CHARACTERISTICS

Family 74AHC1G

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

		TEST CONDITI	ONS	T _{amb} (°C)							
SYMBOL	PARAMETER		V _{CC}		25		-40 t	o +85	-40 to	0 +125	UNIT
		OTHER	(V)	MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.	
V _{IH}	HIGH-level input		2.0	1.5	_	_	1.5	_	1.5	_	V
	voltage		3.0	2.1	_	_	2.1	_	2.1	-	V
			5.5	3.85	_	_	3.85	_	3.85	_	V
V _{IL}	LOW-level input		2.0	_	_	0.5	_	0.5	-	0.5	V
	voltage		3.0	_	_	0.9	_	0.9	_	0.9	V
			5.5	_	_	1.65	_	1.65	_	1.65	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -50 \mu\text{A}$	2.0	1.9	2.0	-	1.9	-	1.9	_	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -50 \mu\text{A}$	3.0	2.9	3.0	-	2.9	_	2.9	-	V
	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -50 \mu\text{A}$	4.5	4.4	4.5	_	4.4	_	4.4	_	V	
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -4.0 \text{ mA}$	3.0	2.58	_	-	2.48	_	2.40	_	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -8.0 \text{ mA}$	4.5	3.94	_	-	3.8	-	3.70	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 50 \mu\text{A}$	2.0	_	0	0.1	_	0.1	_	0.1	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 50 \mu\text{A}$	3.0	_	0	0.1	-	0.1	_	0.1	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 50 \mu\text{A}$	4.5	_	0	0.1	_	0.1	_	0.1	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 4.0 \text{ mA}$	3.0	_	_	0.36	_	0.44	_	0.55	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 8.0 \text{ mA}$	4.5	_	_	0.36	_	0.44	_	0.55	V
l _{OZ}	3-state OFF-state current	$V_I = V_{CC}$ or GND	5.5	-	_	0.25	_	2.5	_	10	μА
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	-	_	0.1	_	1.0	_	2.0	μА
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	-	_	1.0	_	10	_	40	μА
Cı	input capacitance			_	1.5	10	_	10	_	10	pF

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

Family 74AHCT1G

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

		TEST CONDITIONS		T _{amb} (°C)							
SYMBOL	PARAMETER	071150	., .,		25		−40 t	o +85	-40 to	o +125	UNIT
		OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.	
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	_	_	2.0	_	2.0	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	_	0.8	_	0.8	_	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -50 \mu\text{A}$	4.5	4.4	4.5	_	4.4	_	4.4	_	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = -8.0 \text{ mA}$	4.5	3.94	_	_	3.8	_	3.70	_	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 50 \mu\text{A}$	4.5	_	0	0.1	_	0.1	_	0.1	V
		$V_I = V_{IH} \text{ or } V_{IL};$ $I_O = 8.0 \text{ mA}$	4.5	_	_	0.36	_	0.44	_	0.55	V
I _{OZ}	3-state OFF-state current	$V_I = V_{CC}$ or GND	5.5	_	_	0.25	_	2.5	_	10	μΑ
I _{LI}	input leakage current	$V_I = V_{IH}$ or V_{IL}	5.5	_	_	0.1	_	1.0	_	2.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	1.0	_	10	_	40	μΑ
Δl _{CC}	additional quiescent supply current per input pin	$\begin{aligned} &V_I = 3.4 \text{ V;} \\ &\text{other inputs at} \\ &V_{CC} \text{ or GND;} \\ &I_O = 0 \end{aligned}$	5.5	_	_	1.35	-	1.5	_	1.5	mA
Cı	input capacitance			_	1.5	10	_	10	_	10	pF

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

AC CHARACTERISTICS

Type 74AHC1G125

 $GND = 0 \ V; \ t_r = t_f \leq 3.0 \ ns.$

	TEST CONDITI	ONS	T _{amb} (°C)							
PARAMETER	WAVEFORMS	CL		25		−40 to +85		-40 t	0 +125	UNIT
		(pF)	MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.	
3.6 V; note 1		•	•		1			•	•	
propagation delay A to Y	see Figs 5 and 7	15	_	4.7	8.0	1.0	9.5	1.0	11.5	ns
propagation delay OE to Y	see Figs 6 and 7	15	-	5.0	8.0	1.0	9.5	1.0	11.5	ns
propagation delay OE to Y	see Figs 6 and 7	15	_	6.0	9.7	1.0	11.5	1.0	12.5	ns
propagation delay A to Y	see Figs 5 and 7	50	_	6.6	11.5	1.0	13.0	1.0	14.5	ns
propagation delay OE to Y	see Figs 6 and 7	50	_	6.9	11.5	1.0	13.0	1.0	14.5	ns
propagation delay OE to Y	see Figs 6 and 7	50	_	8.3	13.2	1.0	15.0	1.0	16.5	ns
5.5 V ; note 2			•							
propagation delay A to Y	see Figs 5 and 7	15	_	3.4	5.5	1.0	6.5	1.0	7.0	ns
propagation delay OE to Y	see Figs 6 and 7	15	_	3.6	5.1	1.0	6.0	1.0	6.5	ns
propagation delay OE to Y	see Figs 6 and 7	15	_	4.1	6.8	1.0	8.0	1.0	8.5	ns
propagation delay A to Y	see Figs 5 and 7	50	-	4.8	7.5	1.0	8.5	1.0	9.5	ns
propagation delay OE to Y	see Figs 6 and 7	50	-	4.9	7.5	1.0	8.5	1.0	9.5	ns
propagation delay OE to Y	see Figs 6 and 7	50	_	5.7	8.8	1.0	10.0	1.0	11.0	ns
	3.6 V; note 1 propagation delay A to Y propagation delay OE to Y 5.5 V; note 2 propagation delay A to Y propagation delay OE to Y	PARAMETER 3.6 V; note 1 propagation delay A to Y propagation delay OE to Y propagation delay OE to Y propagation delay A to Y propagation delay See Figs 6 and 7 5.5 V; note 2 propagation delay See Figs 6 and 7 A to Y propagation delay See Figs 6 and 7 A to Y propagation delay See Figs 6 and 7 propagation delay See Figs 6 and 7	### WAVEFORMS 3.6 V; note 1 propagation delay see Figs 5 and 7 15 propagation delay see Figs 6 and 7 15 propagation delay see Figs 6 and 7 15 propagation delay see Figs 6 and 7 15 propagation delay see Figs 5 and 7 50 propagation delay see Figs 6 and 7 50 propagation delay see Figs 6 and 7 50 propagation delay see Figs 6 and 7 50 propagation delay see Figs 5 and 7 15 propagation delay see Figs 6 and 7 50 propagation delay see Figs 6 and 7 50	PARAMETER WAVEFORMS CL (pF) MIN. 3.6 V; note 1 propagation delay A to Y propagation delay OE to Y propagation delay A to Y propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — 5.5 V; note 2 propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 15 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 — propagation delay See Figs 6 and 7 50 —	PARAMETER WAVEFORMS C _L (pF) 25 MIN. TYP. 3.6 V; note 1 propagation delay A to Y see Figs 5 and 7 15 - 4.7 propagation delay DE to Y see Figs 6 and 7 15 - 5.0 propagation delay DE to Y see Figs 6 and 7 50 - 6.6 propagation delay DE to Y see Figs 6 and 7 50 - 8.3 5.5 V; note 2 propagation delay A to Y see Figs 6 and 7 15 - 3.4 propagation delay DE to Y see Figs 6 and 7 15 - 4.1 propagation delay A to Y see Figs 6 and 7 50 - 4.8 propagation delay DE to Y see Figs 6 and 7 50 - 4.8 propagation delay See Figs 6 and 7 50 - 4.8 propagation delay See Figs 6 and 7	PARAMETER 25 WAVEFORMS CL (pF) MIN. TYP. MAX. 3.6 V; note 1 propagation delay A to Y see Figs 5 and 7 15 - 4.7 8.0 propagation delay DE to Y see Figs 6 and 7 15 - 5.0 8.0 propagation delay A to Y see Figs 6 and 7 50 - 6.0 9.7 propagation delay DE to Y see Figs 6 and 7 50 - 6.6 11.5 5.5 V; note 2 propagation delay See Figs 5 and 7 15 - 3.4 5.5 propagation delay See Figs 6 and 7 15 - 3.6 5.1 propagation delay See Figs 6 and 7 50 - 4.8 7.5 propagation delay See Figs 6 and 7 50 - 4.8 7.5 propagation delay See Figs 6 and 7 50 - 4.8 7.5	PARAMETER	PARAMETER WAVEFORMS CL (pF) MIN. TYP. MAX. MIN. MAX.	PARAMETER WAVEFORMS CL (PF) CL (PF) MIN. TYP. MAX. MIN. MAX. MIN. 3.6 V; note 1 Propagation delay A to Y Propagation delay See Figs 5 and 7 15 - 4.7 8.0 1.0 9.5 1.0 Propagation delay See Figs 6 and 7 15 - 5.0 8.0 1.0 9.5 1.0 Propagation delay See Figs 6 and 7 15 - 6.0 9.7 1.0 11.5 1.0 Propagation delay See Figs 6 and 7 50 - 6.6 11.5 1.0 13.0 1.0 Propagation delay See Figs 6 and 7 50 - 6.9 11.5 1.0 13.0 1.0 Propagation delay See Figs 6 and 7 50 - 8.3 13.2 1.0 15.0 1.0 S.5 V; note 2 Propagation delay See Figs 6 and 7 15 - 3.4 5.5 1.0 6.5 1.0 Propagation delay See Figs 6 and 7 15 - 3.6 5.1 1.0 6.0 1.0 Propagation delay See Figs 6 and 7 15 - 4.1 6.8 1.0 8.0 1.0 Propagation delay See Figs 6 and 7 15 - 4.1 6.8 1.0 8.0 1.0 Propagation delay See Figs 6 and 7 50 - 4.8 7.5 1.0 8.5 1.0 Propagation delay See Figs 6 and 7 50 - 4.9 7.5 1.0 8.5 1.0 Propagation delay See Figs 6 and 7 50 - 4.9 7.5 1.0 8.5 1.0 Propagation delay See Figs 6 and 7 50 - 5.7 8.8 1.0 10.0 1.0	PARAMETER WAVEFORMS CL (pF) 25

Notes

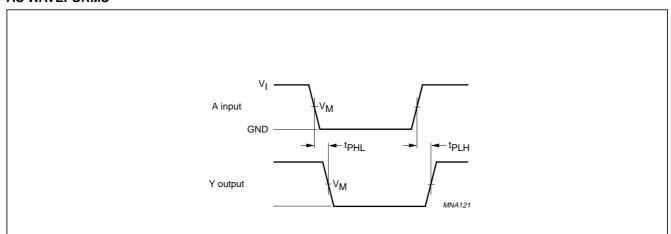
1. All typical values are measured at V_{CC} = 3.3 V.

2. All typical values are measured at V_{CC} = 5.0 V.

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

Type 74AHCT1G125

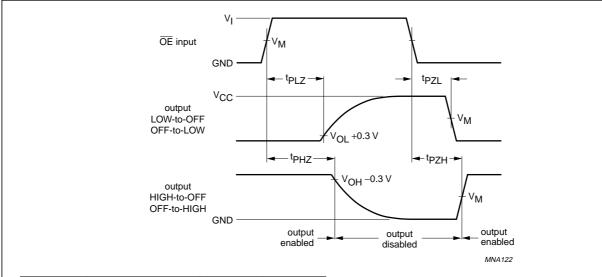

 $GND = 0 \ V; \ t_r = t_f \leq 3.0 \ ns.$

		TEST CONDITIONS		T _{amb} (°C)							
SYMBOL	PARAMETER	WAVEFORMO	CL		25		-40 to +85		-40 to +125		UNIT
		WAVEFORMS	(pF)	MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.	
V _{CC} = 4.5 to	5.5 V ; note 1										
t _{PHL} /t _{PLH}	propagation delay A to Y	see Figs 5 and 7	15	_	3.4	5.5	1.0	6.5	1.0	7.0	ns
t _{PZH} /t _{PZL}	propagation delay OE to Y	see Figs 6 and 7	15	_	3.9	5.1	1.0	6.0	1.0	6.5	ns
t _{PHZ} /t _{PLZ}	propagation delay OE to Y	see Figs 6 and 7	15	_	4.5	6.8	1.0	8.0	1.0	8.5	ns
t _{PHL} /t _{PLH}	propagation delay A to Y	see Figs 5 and 7	50	_	4.8	7.5	1.0	8.5	1.0	9.5	ns
t _{PZH} /t _{PZL}	propagation delay OE to Y	see Figs 6 and 7	50	_	5.1	7.5	1.0	8.5	1.0	9.5	ns
t _{PHZ} /t _{PLZ}	propagation delay OE to Y	see Figs 6 and 7	50	_	6.1	8.8	1.0	10.0	1.0	11.0	ns

Note

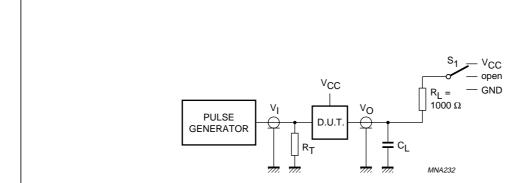
1. All typical values are measured at V_{CC} = 5.0 V.

AC WAVEFORMS



FAMILY	V _I INPUT REQUIREMENTS	V _M INPUT	V _M OUTPUT	
AHC1G	GND to V _{CC}	50% V _{CC}	50% V _{CC}	
AHCT1G	GND to 3.0 V	1.5 V	50% V _{CC}	

Fig.5 The input (A) to output (Y) propagation delays.


Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

FAMILY	V _I INPUT REQUIREMENTS	V _M INPUT	V _M OUTPUT	
AHC1G	GND to V _{CC}	50% V _{CC}	50% V _{CC}	
AHCT1G	GND to 3.0 V	1.5 V	50% V _{CC}	

Fig.6 The 3-state enable and disable times.

TEST	S ₁
t _{PLH} /t _{PHL}	open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND

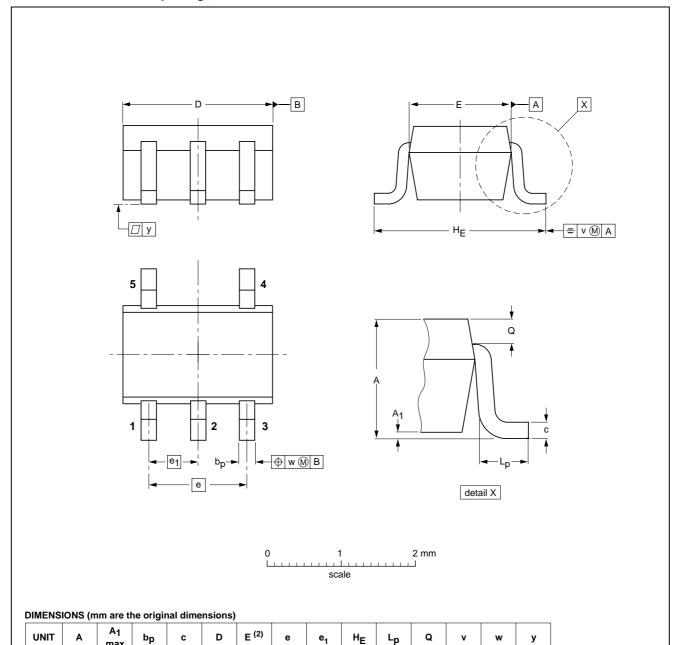
Definitions for test circuit:

 C_L = load capacitance including jig and probe capacitance (see Chapter "AC characteristics").

 R_L = load resistance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.7 Load circuitry for switching times.


Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

PACKAGE OUTLINES

Plastic surface mounted package; 5 leads

SOT353

OUTLINE	UTLINE REFERENCES		EUROPEAN	100115 0 4 75		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT353			SC-88A			97-02-28

0.65

0.45 0.15 0.25 0.15

0.2

0.1

2002 Jun 06 10

0.25 0.10 2.2 1.8 1.35 1.15

1.3

0.30

0.20

1.1 0.8

mm

0.1

Product specification Philips Semiconductors

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

02-04-16

Plastic surface mounted package; 5 leads

SOT753

JEITA

SC-74A

2002 Jun 06 11

IEC

SOT753

JEDEC

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ⁽¹⁾	SOLDERING METHOD		
PACKAGE	WAVE	REFLOW ⁽²⁾	
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable	
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ⁽³⁾	suitable	
PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable	

Notes

- 1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Bus buffer/line driver; 3-state

74AHC1G125; 74AHCT1G125

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

SCA74

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/06/pp16

Date of release: 2002 Jun 06

Document order number: 9397 750 09706

Let's make things better.

Philips Semiconductors

