INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Nov 20 IC23 Data Handbook

1998 Feb 25

Philips Semiconductors

74ABT16245B 74ABTH16245B

FEATURES

- 16-bit bidirectional bus interface
- Power-up 3-State
- \bullet Multiple V_{CC} and GND pins minimize switching noise
- 3-State buffers
- Output capability: +64 mA/-32mA
- Latch-up protection exceeds 500mA per JEDEC Std 17
- Live insertion/extraction permitted
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200V per Machine Model
- 74ABTH16245B incorporates bus hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

QUICK REFERENCE DATA

DESCRIPTION

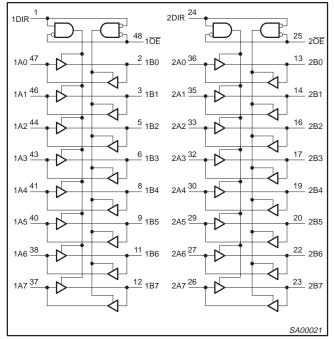
The 74ABT16245B high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT16245B device is a dual octal transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features two Output Enable $(1\overline{OE}, 2\overline{OE})$ inputs for easy cascading and two Direction (1DIR, 2DIR) inputs for direction control.

Two options are available, 74ABT16245B which does not have the bus hold feature and the 74ABTH16245B which incorporates the bus hold feature.

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	$C_L = 50 pF; V_{CC} = 5V$	2.0 2.3	ns
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } V_{CC}$	4	pF
C _{I/O}	I/O pin capacitance	$V_{O} = 0V \text{ or } V_{CC}$; 3-State	7	pF
I _{CCZ}	Quiescent supply current	Outputs disabled; V _{CC} =5.5V	500	μΑ
I _{CCL}	Quescent supply current	Output Low; V _{CC} =5.5V	10	mA

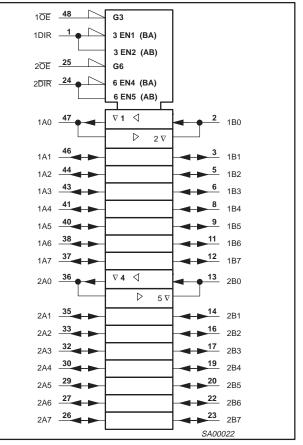
ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABT16245B DL	BT16245B DL	SOT370-1
48-Pin Plastic TSSOP Type II	–40°C to +85°C	74ABT16245B DGG	BT16245B DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ABTH16245B DL	BH16245B DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH16245B DGG	BH16245B DGG	SOT362-1

74ABT16245B 74ABTH16245B

PIN CONFIGURATION

		7
1DIR	1	48 1 <u>0</u> E
1B0	2	47 1A0
1B1	3	46 1A1
GND	4	45 GND
1B2	5	44 1A2
1B3	6	43 1A3
VCC	7	42 V _{CC}
1B4	8	41 1A4
1B5	9	40 1A5
GND	10	39 GND
1B6	11	38 1A6
1B7	12	37 1A7
2B0	13	36 2A0
2B1	14	35 2A1
GND	15	34 GND
2B2	16	33 2A2
2B3	17	32 2A3
VCC	18	31 V _{CC}
2B4	19	30 2A4
2B5	20	29 2A5
GND	21	28 GND
2B6	22	27 2A6
2B7	23	26 2A7
2DIR	24	25 2 0E
	L	SA00020


LOGIC SYMBOL

PIN DESCRIPTION

SYMBOL	PIN NUMBER	NAME AND FUNCTION
1DIR, 2DIR	1, 24	Direction control inputs (Active-High)
1A0 – 1A7, 2A0 – 2A7	47, 46, 44, 43 41, 40, 38, 37 36, 35, 33, 32 30, 29, 27, 26	Data inputs/outputs (A side)
1B0 – 1B7 2B0 – 2B7	2, 3, 5, 6 8, 9, 11, 12 13, 14, 16, 17 19, 20, 22, 23	Data inputs/outputs (B side)
1 <u>0</u> , 2 <u>0</u>	48, 25	Output enables
GND	4, 10, 15, 21 28, 34, 39, 45	Ground (0V)
V _{CC}	7, 18, 31, 42	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

74ABT16245B 74ABTH16245B

FUNCTION TABLE

INP	JTS	INPUTS/C	OUTPUTS
nOE	nDIR	nAx	nBx
L	L	A = B	Inputs
L	Н	Inputs	B = A
н	Х	Z	Z

H = High voltage level

L = Low voltage level

X = Don't care

Z = High impedance "off" scale

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
		output in Low state	128	
IOUT	DC output current	output in High state	-64	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT	
STWBOL	FARAIVETER	Min	Max	UNIT	
V _{CC}	DC supply voltage	4.5	5.5	V	
VI	Input voltage	0	V _{CC}	V	
V _{IH}	High-level input voltage	2.0		V	
V _{IL}	Low-level Input voltage		0.8	V	
I _{ОН}	High-level output current		-32	mA	
I _{OL}	Low-level output current		64	mA	
Δt/Δv	Input transition rise or fall rate	0	10	ns/V	
T _{amb}	Operating free-air temperature range	-40	+85	°C	

74ABT16245B 74ABTH16245B

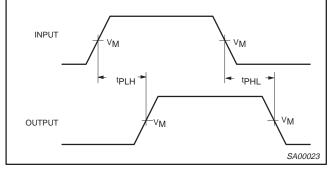
DC ELECTRICAL CHARACTERISTICS

				LIMITS					
SYMBOL PARAMETER		RAMETER TEST CONDITIONS		T _{amb} = +25°C			T _{amb} = −40°C to +85°C		
					Тур	Max	Min	Max]
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA			-0.9	-1.2		-1.2	V
		V_{CC} = 4.5V; I_{OH} = -3mA; V_{I} = V_{IL} or V_{I}	н	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V_{IL} or V_I	н	3.0	3.4		3.0		V
		V_{CC} = 4.5V; I _{OH} = -32mA; V _I = V _{IL} or V	/ _{IH}	2.0	2.4		2.0		V
V _{OL}	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 64mA; V_I = V_{IL} or V_{II}	4		0.42	0.55		0.55	V
I	Input leakage current		ontrol vins		±0.01	±1.0		±1.0	μΑ
	Bus hold current	V _{CC} = 4.5V; V _I = 0.8V		50			50		
I _{HOLD}	A and B inputs 74ABTH16245B	V _{CC} = 5.5V; V _I = 2.0V		-75			-75		μA
	74AD1110243D	$V_{CC} = 5.5$ V; $V_{I} = 0$ to 5.5V		±500					
I _{OFF}	Power-off leakage current	V_{CC} = 0.0V; V_{O} or $V_{I}~\leq~4.5V$			±5.0	±100		±100	μΑ
I _{PU} /I _{PD}	Power-up/down 3-State output current	V_{CC} = 2.0V; V_{O} = 0.5V; V_{I} = GND or V_{OE} V _{OE} = Don't care	CC;		±5.0	±50		±50	μA
I _{IH} +I _{OZH}	3-State output High current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = V_{IL} or V_{IH}			0.1	10		10	μΑ
I _{IL} +I _{OZL}	3-State output Low current	V_{CC} = 5.5V; V_{O} = 0.0V; V_{I} = V_{IL} or V_{IH}			0.1	10		10	μΑ
I _{CEX}	Output high leakage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{O}	cc		5.0	50		50	μΑ
Ι _Ο	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V		-50	-92	-180	-50	-180	mA
ICCH		V_{CC} = 5.5V; Outputs High, V_{I} = GND o	r V _{CC}		0.30	0.70		0.70	mA
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_{I} = GND or	V _{CC}		10	19		19	mA
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V _I = GND or V _{CC}			0.30	0.70		0.70	mA
		Outputs enabled, one data input at 3.4' other inputs at V _{CC} or GND; V _{CC} = 5.5'			400	700		700	μA
ΔI_{CC}	Additional supply current per input pin ²	Outputs disabled, one data input at 3.4 other inputs at V _{CC} or GND; V _{CC} = 5.5 $^{\circ}$			100	250		250	μA
		Control pins, outputs disabled, one ena input at 3.4V, other inputs at V_{CC} or GN $V_{CC} = 5.5V$	ible ND;		400	700		700	μA

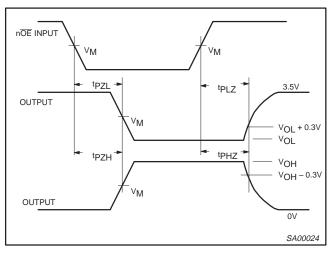
NOTES:

Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
This is the increase in supply current for each input at 3.4V.
This is the bus hold overdrive current required to force the input to the opposite logic state.

74ABT16245B 74ABTH16245B

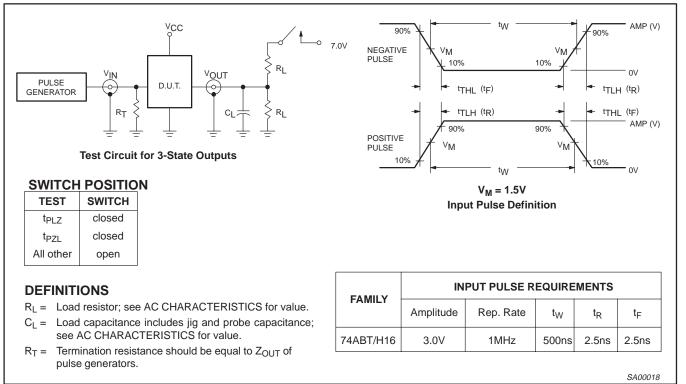

AC CHARACTERISTICS

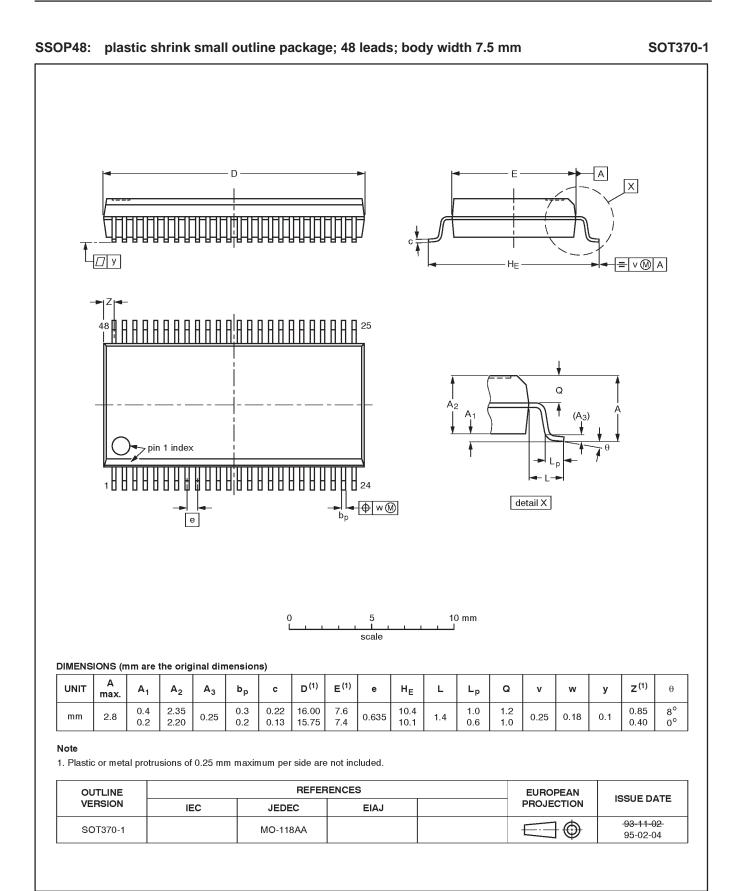
GND = 0V; $t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$, $R_L = 500 \Omega$


			LIMITS					
SYMBOL	PARAMETER	WAVEFORM	T _a V	amb = +25° ′ _{CC} = +5.0′	C V	$T_{amb} = -40^{\circ}$ $V_{CC} = +5^{\circ}$	°C to +85°C .0V ±0.5V	UNIT
			Min	Тур	Мах	Min	Max	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.0 1.0	2.0 2.3	3.2 3.5	1.0 1.0	3.5 4.0	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.0 1.7	3.1 4.0	4.4 5.2	1.0 1.7	5.1 6.1	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	1.7 1.5	3.5 3.2	4.9 4.4	1.7 1.5	5.4 5.0	ns

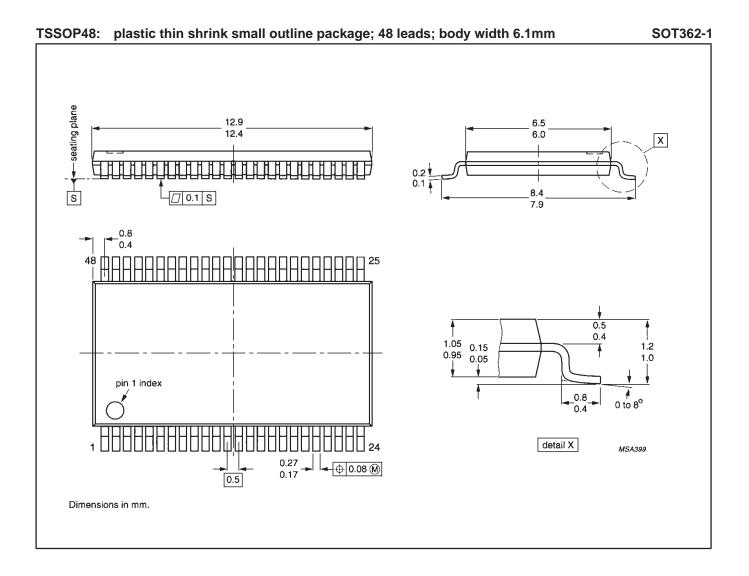
AC WAVEFORMS

 V_{M} = 1.5V, V_{IN} = GND to 3.0V




Waveform 2. 3-State Output Enable and Disable Times

74ABT16245B 74ABTH16245B


TEST CIRCUIT

74ABT16245B 74ABTH16245B

74ABT16245B 74ABTH16245B

74ABT16245B 74ABTH16245B

NOTES

74ABT16245B 74ABTH16245B

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03486

Let's make things better.

PHILIPS